RESUMEN
Color vision extracts spectral information by comparing signals from photoreceptors with different visual pigments. Such comparisons are encoded by color-opponent neurons that are excited at one wavelength and inhibited at another. Here, we examine the circuit implementation of color-opponent processing in the Drosophila visual system by combining two-photon calcium imaging with genetic dissection of visual circuits. We report that color-opponent processing of UVshort/blue and UVlong/green is already implemented in R7/R8 inner photoreceptor terminals of "pale" and "yellow" ommatidia, respectively. R7 and R8 photoreceptors of the same type of ommatidia mutually inhibit each other directly via HisCl1 histamine receptors and receive additional feedback inhibition that requires the second histamine receptor Ort. Color-opponent processing at the first visual synapse represents an unexpected commonality between Drosophila and vertebrates; however, the differences in the molecular and cellular implementation suggest that the same principles evolved independently.
Asunto(s)
Percepción de Color , Visión de Colores , Proteínas de Drosophila/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Receptores Histamínicos/metabolismo , Animales , Drosophila , Proteínas de Drosophila/genética , Retroalimentación Fisiológica , Células Fotorreceptoras de Invertebrados/fisiología , Receptores Histamínicos/genéticaRESUMEN
Daylight vision begins when light activates cone photoreceptors in the retina, creating spatial patterns of neural activity. These cone signals are then combined and processed in downstream neural circuits, ultimately producing visual perception. Recent technical advances have made it possible to deliver visual stimuli to the retina that probe this processing by the visual system at its elementary resolution of individual cones. Physiological recordings from nonhuman primate retinas reveal the spatial organization of cone signals in retinal ganglion cells, including how signals from cones of different types are combined to support both spatial and color vision. Psychophysical experiments with human subjects characterize the visual sensations evoked by stimulating a single cone, including the perception of color. Future combined physiological and psychophysical experiments focusing on probing the elementary visual inputs are likely to clarify how neural processing generates our perception of the visual world.
Asunto(s)
Primates/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Visión Ocular/fisiología , Animales , Visión de Colores/fisiología , Percepción de Forma/fisiología , Técnicas de Placa-Clamp , Estimulación Luminosa , Células Ganglionares de la Retina/fisiología , Análisis de la Célula Individual , Percepción Visual/fisiologíaRESUMEN
The neural pathways that start human color vision begin in the complex synaptic network of the foveal retina where signals originating in long (L), middle (M), and short (S) wavelength-sensitive cone photoreceptor types are compared through antagonistic interactions, referred to as opponency. In nonhuman primates, two cone opponent pathways are well established: an L vs. M cone circuit linked to the midget ganglion cell type, often called the red-green pathway, and an S vs. L + M cone circuit linked to the small bistratified ganglion cell type, often called the blue-yellow pathway. These pathways have been taken to correspond in human vision to cardinal directions in a trichromatic color space, providing the parallel inputs to higher-level color processing. Yet linking cone opponency in the nonhuman primate retina to color mechanisms in human vision has proven particularly difficult. Here, we apply connectomic reconstruction to the human foveal retina to trace parallel excitatory synaptic outputs from the S-ON (or "blue-cone") bipolar cell to the small bistratified cell and two additional ganglion cell types: a large bistratified ganglion cell and a subpopulation of ON-midget ganglion cells, whose synaptic connections suggest a significant and unique role in color vision. These two ganglion cell types are postsynaptic to both S-ON and L vs. M opponent midget bipolar cells and thus define excitatory pathways in the foveal retina that merge the cardinal red-green and blue-yellow circuits, with the potential for trichromatic cone opponency at the first stage of human vision.
Asunto(s)
Percepción de Color , Visión de Colores , Fóvea Central , Células Fotorreceptoras Retinianas Conos , Células Ganglionares de la Retina , Humanos , Fóvea Central/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Conos/metabolismo , Visión de Colores/fisiología , Células Ganglionares de la Retina/fisiología , Percepción de Color/fisiología , Células Bipolares de la Retina/fisiología , Células Bipolares de la Retina/metabolismo , Retina/fisiología , Masculino , Femenino , Adulto , Conectoma , Vías Visuales/fisiologíaRESUMEN
The acquisition of novel sexually dimorphic traits poses an evolutionary puzzle: How do new traits arise and become sex-limited? Recently acquired color vision, sexually dimorphic in animals like primates and butterflies, presents a compelling model for understanding how traits become sex-biased. For example, some Heliconius butterflies uniquely possess UV (ultraviolet) color vision, which correlates with the expression of two differentially tuned UV-sensitive rhodopsins, UVRh1 and UVRh2. To discover how such traits become sexually dimorphic, we studied Heliconius charithonia, which exhibits female-specific UVRh1 expression. We demonstrate that females, but not males, discriminate different UV wavelengths. Through whole-genome shotgun sequencing and assembly of the H. charithonia genome, we discovered that UVRh1 is present on the W chromosome, making it obligately female-specific. By knocking out UVRh1, we show that UVRh1 protein expression is absent in mutant female eye tissue, as in wild-type male eyes. A PCR survey of UVRh1 sex-linkage across the genus shows that species with female-specific UVRh1 expression lack UVRh1 gDNA in males. Thus, acquisition of sex linkage is sufficient to achieve female-specific expression of UVRh1, though this does not preclude other mechanisms, like cis-regulatory evolution from also contributing. Moreover, both this event, and mutations leading to differential UV opsin sensitivity, occurred early in the history of Heliconius. These results suggest a path for acquiring sexual dimorphism distinct from existing mechanistic models. We propose a model where gene traffic to heterosomes (the W or the Y) genetically partitions a trait by sex before a phenotype shifts (spectral tuning of UV sensitivity).
Asunto(s)
Mariposas Diurnas , Visión de Colores , Animales , Femenino , Visión de Colores/genética , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Ojo/metabolismo , Opsinas/genética , Opsinas/metabolismo , Rodopsina/metabolismoRESUMEN
The Old World macaque monkey and New World common marmoset provide fundamental models for human visual processing, yet the human ancestral lineage diverged from these monkey lineages over 25 Mya. We therefore asked whether fine-scale synaptic wiring in the nervous system is preserved across these three primate families, despite long periods of independent evolution. We applied connectomic electron microscopy to the specialized foveal retina where circuits for highest acuity and color vision reside. Synaptic motifs arising from the cone photoreceptor type sensitive to short (S) wavelengths and associated with "blue-yellow" (S-ON and S-OFF) color-coding circuitry were reconstructed. We found that distinctive circuitry arises from S cones for each of the three species. The S cones contacted neighboring L and M (long- and middle-wavelength sensitive) cones in humans, but such contacts were rare or absent in macaques and marmosets. We discovered a major S-OFF pathway in the human retina and established its absence in marmosets. Further, the S-ON and S-OFF chromatic pathways make excitatory-type synaptic contacts with L and M cone types in humans, but not in macaques or marmosets. Our results predict that early-stage chromatic signals are distinct in the human retina and imply that solving the human connectome at the nanoscale level of synaptic wiring will be critical for fully understanding the neural basis of human color vision.
Asunto(s)
Visión de Colores , Conectoma , Animales , Humanos , Callithrix , Percepción de Color/fisiología , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Macaca , CercopithecidaeRESUMEN
A long-standing question in vision science is how the three cone photoreceptor types-long (L), medium (M), and short (S) wavelength sensitive-combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L + S and L vs. M + S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds following adaptation are L vs. M and S vs. L + M. These cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in the cortex. While neurons with the appropriate M vs. L + S and L vs. M + S opponency have been reported in the retina and lateral geniculate nucleus, their existence continues to be debated. Resolving this long-standing debate is necessary because a complete account of the cone opponency in the retinal output is critical for understanding how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to noninvasively measure foveal RGC light responses in the living Macaca fascicularis eye. We confirm the presence of L vs. M + S and M vs. L + S neurons with noncardinal cone opponency and demonstrate that cone-opponent signals in the retinal output are more diverse than classically thought.
Asunto(s)
Percepción de Color , Fóvea Central , Células Fotorreceptoras Retinianas Conos , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Fóvea Central/fisiología , Percepción de Color/fisiología , Estimulación Luminosa/métodos , Masculino , Femenino , Macaca fascicularisRESUMEN
Cone photoreceptor diversity allows detection of wavelength information in light, the first step in color (chromatic) vision. In most mammals, cones express opsin photopigments for sensitivity to medium/long (M, "green") or short (S, "blue") wavelengths and are differentially arrayed over the retina. Cones appear early in retinal neurogenesis but little is understood of the subsequent control of diversity of these postmitotic neurons, because cone populations are sparse and, apart from opsins, poorly defined. It is also a challenge to distinguish potentially subtle differences between cell subtypes within a lineage. Therefore, we derived a Cre driver to isolate individual M and S opsin-enriched cones, which are distributed in counter-gradients over the mouse retina. Fine resolution transcriptome analyses identified expression gradients for groups of genes. The postnatal emergence of gradients indicated divergent differentiation of cone precursors during maturation. Using genetic tagging, we demonstrated a role for thyroid hormone receptor ß2 (TRß2) in control of gradient genes, many of which are enriched for TRß2 binding sites and TRß2-regulated open chromatin. Deletion of TRß2 resulted in poorly distinguished cones regardless of retinal location. We suggest that TRß2 controls a bipotential transcriptional state to promote cone diversity and the chromatic potential of the species.
Asunto(s)
Receptores de Hormona Tiroidea , Células Fotorreceptoras Retinianas Conos , Animales , Ratones , Regulación de la Expresión Génica , Opsinas/genética , Retina , Opsinas de Bastones/genéticaRESUMEN
Many animals depend on the sense of vision for survival. In eumetazoans, vision requires specialized, light-sensitive cells called photoreceptors. Light reaches the photoreceptors and triggers the excitation of light-detecting proteins called opsins. Here, we describe the story of visual opsin evolution from the ancestral bilaterian to the extant vertebrate lineages. We explain the mechanisms determining color vision of extant vertebrates, focusing on opsin gene losses, duplications, and the expression regulation of vertebrate opsins. We describe the sequence variation both within and between species that has tweaked the sensitivities of opsin proteins towards different wavelengths of light. We provide an extensive resource of wavelength sensitivities and mutations that have diverged light sensitivity in many vertebrate species and predict how these mutations were accumulated in each lineage based on parsimony. We suggest possible natural and sexual selection mechanisms underlying these spectral differences. Understanding how molecular changes allow for functional adaptation of animals to different environments is a major goal in the field, and therefore identifying mutations affecting vision and their relationship to photic selection pressures is imperative. The goal of this review is to provide a comprehensive overview of our current understanding of opsin evolution in vertebrates.
Asunto(s)
Evolución Molecular , Opsinas , Animales , Opsinas/genética , Opsinas/metabolismo , Filogenia , Vertebrados/genética , Vertebrados/metabolismo , Opsinas de Bastones/genéticaRESUMEN
Color vision in insects is determined by signaling cascades, central to which are opsin proteins, resulting in sensitivity to light at different wavelengths. In certain insect groups, lineage-specific evolution of opsin genes, in terms of copy number, shifts in expression patterns, and functional amino acid substitutions, has resulted in changes in color vision with subsequent behavioral and niche adaptations. Lepidoptera are a fascinating model to address whether evolutionary change in opsin content and sequence evolution are associated with changes in vision phenotype. Until recently, the lack of high-quality genome data representing broad sampling across the lepidopteran phylogeny has greatly limited our ability to accurately address this question. Here, we annotate opsin genes in 219 lepidopteran genomes representing 33 families, reconstruct their evolutionary history, and analyze shifts in selective pressures and expression between genes and species. We discover 44 duplication events in opsin genes across â¼300 million years of lepidopteran evolution. While many duplication events are species or family specific, we find retention of an ancient long-wavelength-sensitive (LW) opsin duplication derived by retrotransposition within the speciose superfamily Noctuoidea (in the families Nolidae, Erebidae, and Noctuidae). This conserved LW retrogene shows life stage-specific expression suggesting visual sensitivities or other sensory functions specific to the early larval stage. This study provides a comprehensive order-wide view of opsin evolution across Lepidoptera, showcasing high rates of opsin duplications and changes in expression patterns.
Asunto(s)
Visión de Colores , Lepidópteros , Humanos , Animales , Opsinas/genética , Duplicación de Gen , Lepidópteros/genética , Evolución Molecular , Opsinas de Bastones/química , Opsinas de Bastones/genética , Insectos/genética , Filogenia , Expresión GénicaRESUMEN
Recent research has proposed new approaches to investigate color vision in Old World Monkeys by measuring suprathreshold chromatic discrimination. In this study, we aimed to extend this approach to New World Monkeys with different color vision genotypes by examining their performance in chromatic discrimination tasks along different fixed chromatic saturation axes. Four tufted capuchin monkeys were included in the study, and their color vision genotypes were one classical protanope, one classical deuteranope, one non-classical protanope, and a normal trichromat. During the experiments, the monkeys were required to perform a chromatic discrimination task using pseudoisochromatic stimuli with varying target saturations of 0.06, 0.04, 0.03, and 0.02 u'v' units. The number of errors made by the monkeys along different chromatic axes was recorded, and their performance was quantified using the binomial probability of their hits during the tests. Our results showed that dichromatic monkeys made more errors near the color confusion lines associated with their specific color vision genotypes, while the trichromatic monkey did not demonstrate any systematic errors. At high chromatic saturation, the trichromatic monkey had significant hits in the chromatic axes around the 180° chromatic axis, whereas the dichromatic monkeys had errors in colors around the color confusion lines. At lower saturation, the performance of the dichromatic monkeys became more challenging to differentiate among the three types, but it was still distinct from that of the trichromatic monkey. In conclusion, our findings suggest that high saturation conditions can be used to identify the color vision dichromatic phenotype of capuchin monkeys, while low chromatic saturation conditions enable the distinction between trichromats and dichromats. These results extend the understanding of color vision in New World Monkeys and highlight the usefulness of suprathreshold chromatic discrimination measures in exploring color vision in non-human primates.
Asunto(s)
Visión de Colores , Animales , Percepción de Color/fisiología , Sapajus apella , Genotipo , Cebus/genética , Platirrinos , ColorRESUMEN
Visuoperceptual dysfunction is common in Parkinson's disease (PD) and is also reported in its prodromal phase, isolated REM sleep behavior disorder (iRBD). We aimed to investigate color discrimination ability and complex visual illusions known as pareidolias in patients with iRBD and PD compared to healthy controls, and their associating clinical factors. 46 iRBD, 43 PD, and 64 healthy controls performed the Farnsworth-Munsell 100 hue test and noise pareidolia tests. Any relationship between those two visual functions and associations with prodromal motor and non-motor manifestations were evaluated, including MDS-UPDRS part I to III, Cross-Cultural Smell Identification Test, sleep questionnaires, and comprehensive neuropsychological assessment. iRBD and PD patients both performed worse on the Farnsworth-Munsell 100 hue test and had greater number of pareidolias compared to healthy controls. No correlations were found between the extent of impaired color discrimination and pareidolia scores in either group. In iRBD patients, pareidolias were associated with frontal executive dysfunction, while impaired color discrimination was associated with visuospatial dysfunction, hyposmia, and higher MDS-UPDRS-III scores. Pareidolias in PD patients correlated with worse global cognition, whereas color discrimination deficits were associated with frontal executive dysfunction. Color discrimination deficits and pareidolias are frequent but does not correlate with each other from prodromal to clinically established stage of PD. The different pattern of clinical associates with the two visual symptoms suggests that evaluation of both color and pareidolias may aid in revealing the course of neurodegeneration in iRBD and PD patients.
Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/complicaciones , Trastorno de la Conducta del Sueño REM/diagnóstico , Disfunción Cognitiva/complicaciones , Cognición , Pruebas NeuropsicológicasRESUMEN
Investigating the conspicuousness of animal color patterns to different observers is crucial for understanding their function. This study examines the peculiar case of a jumping spider (Saitis barbipes) whose males display red and black ornaments during courtship despite an apparent inability to distinguish these colors. We propose that, through predator eyes, red may actually be a better match than black to the spiders' leaf litter background, and that the black fringe of hairs surrounding red ornaments may blur with red at natural predator acuities and viewing distances to produce a background-matching desaturated red. In a field experiment, we test whether red ornaments reduce predation relative to red ornaments painted black, and find that, unexpectedly, spiders with red ornaments are more heavily predated upon. Having established birds as the spiders' primary predators, we image the spiders in their natural habitat using an avian-vision camera. We find their red coloration to have similar color contrast, but lower achromatic contrast, with the background than black coloration. We also find that red and black elements blur together at typical avian acuities and viewing distances to produce lower chromatic and achromatic contrasts with the background than would be seen by animals with higher acuities and/or closer viewing distances. Interestingly, red ornaments appear orange or yellow when viewed obliquely, which reduces their achromatic, but not chromatic, contrast with the background. Our imaging results provide support for our hypothesis that red is camouflaging, whereas the results of our predation experiment do not. Any functional significance of the spiders' red coloration therefore remains unresolved.
Asunto(s)
Color , Conducta Predatoria , Arañas , Animales , Arañas/fisiología , Masculino , Conducta Predatoria/fisiología , Mimetismo Biológico/fisiología , Pigmentación/fisiología , Aves/fisiología , FemeninoRESUMEN
Color vision deficiency is a common X-linked genetic disorder affecting the day-to-day lives of individuals, in which school-aged children's academic performance can be negatively affected. The aim of this study was to evaluate the prevalence and genotypic frequency of congenital color vision defects (CVD), among primary schoolchildren in Adama, Ethiopia. A school-based cross-sectional study design was used. Students were purposively selected based on their ethnicity but were randomly selected from their sections, resulting in a final sample size estimated at 846 schoolchildren who had received informed consent from their families. Data was gathered using the Ishihara color vision test, 38-plate edition. The result of the study revealed that the total prevalence of CVD was much higher (5.6%) among the male children than that of the females, which was only about 1.79%. The prevalence rates of CVD among the targeted ethnic groups were found to be the highest among Amhara (7.45%) > Oromo (5.00%) > Gurage (2.13%) children, respectively, in descending order. 62.76% of the study subjects were homozygous dominant (AA), followed by those with a heterozygous genotype (Aa) (32.51%), and the remaining 4.73% had recessive (aa) genes.
Asunto(s)
Enfermedades Cardiovasculares , Defectos de la Visión Cromática , Niño , Femenino , Humanos , Masculino , Defectos de la Visión Cromática/epidemiología , Defectos de la Visión Cromática/genética , Etiopía/epidemiología , Estudios Transversales , Prevalencia , GenotipoRESUMEN
L-cone opsin expression by gene therapy is a promising treatment for blue cone monochromacy (BCM) caused by congenital lack of long- and middle-wavelength-sensitive (L/M) cone function. Eight patients with BCM and confirmed pathogenic variants at the OPN1LW/OPN1MW gene cluster participated. Optical coherence tomography (OCT), chromatic perimetry, chromatic microperimetry, chromatic visual acuity (VA), and chromaticity thresholds were performed with unmodified commercial equipment and/or methods available in the public domain. Adaptive optics scanning laser ophthalmoscope (AOSLO) imaging was performed in a subset of patients. Outer retinal changes were detectable by OCT with an age-related effect on the foveal disease stage. Rod and short-wavelength-sensitive (S) cone functions were relatively retained by perimetry, although likely impacted by age-related increases in the pre-retinal absorption of short-wavelength lights. The central macula showed a large loss of red sensitivity on dark-adapted microperimetry. Chromatic VAs with high-contrast red gratings on a blue background were not detectable. Color vision was severely deficient. AOSLO imaging showed reduced total cone density with majority of the population being non-waveguiding. This study developed and evaluated specialized outcomes that will be needed for the determination of efficacy and safety in human clinical trials. Dark-adapted microperimetry with a red stimulus sampling the central macula would be a key endpoint to evaluate the light sensitivity improvements. VA changes specific to L-opsin can be measured with red gratings on a bright blue background and should also be considered as outcome measures in future interventional trials.
Asunto(s)
Defectos de la Visión Cromática , Terapia Genética , Células Fotorreceptoras Retinianas Conos , Opsinas de Bastones , Tomografía de Coherencia Óptica , Agudeza Visual , Humanos , Defectos de la Visión Cromática/terapia , Defectos de la Visión Cromática/genética , Terapia Genética/métodos , Adulto , Masculino , Femenino , Tomografía de Coherencia Óptica/métodos , Persona de Mediana Edad , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Adolescente , Adulto Joven , Retina/metabolismo , Retina/diagnóstico por imagen , Niño , Pruebas del Campo Visual , Visión de Colores , Opsinas de los Conos/genética , Opsinas de los Conos/metabolismoRESUMEN
PURPOSE: To evaluate mesopic and photopic contrast sensitivity in patients with congenital red-green color vision deficiency regarding with and without glare conditions and to compare these findings with age- and gender-matched healthy controls with normal color vision. METHODS: Patients with congenital red-green color vision deficiency and age- and gender-matched healthy controls were included in this cross-sectional comparative study. Contrast sensitivity measurements were taken from all subjects in 4 different conditions; binocular mesopic-without glare, mesopic-with glare, photopic-without glare, photopic-with glare, and the results were compared. RESULTS: Twenty one patients with color vision deficiency (13 deuteranopic, 8 protanopic) and 22 age- and gender-matched healthy controls were included in the study. The mean age was 35.2 ± 13.5 years in the protan group, 30.6 ± 7.7 years in the deutan group, 32.0 ± 8.8 years in the control group, and there was no significant difference in age between the groups (P > 0.05). The mean mesopic and photopic contrast sensitivity values of the groups at all spatial frequencies (1.5, 3, 6, 12, 18 cpd) were not statistically significant when evaluated by the multifactor repeated measures test of ANOVA to evaluate the effect of light conditions (with and without glare) (P > .05). CONCLUSION: Mesopic and photopic contrast sensitivity values of patients with congenital red-green color vision deficiency were similar to healthy controls regarding with and without glare conditions.
Asunto(s)
Defectos de la Visión Cromática , Visión de Colores , Sensibilidad de Contraste , Humanos , Sensibilidad de Contraste/fisiología , Defectos de la Visión Cromática/fisiopatología , Defectos de la Visión Cromática/diagnóstico , Femenino , Masculino , Estudios Transversales , Adulto , Visión de Colores/fisiología , Adulto Joven , Persona de Mediana Edad , Visión Mesópica/fisiología , Deslumbramiento , Agudeza Visual , AdolescenteRESUMEN
BACKGROUND/AIM: Congenital color vision deficiency (CCVD) is an eye disease characterized by abnormalities in the cone cells in the photoreceptor layer. Visual evoked potentials (VEPs) are electrophysiological tests that physiologically examine the optic nerve, other visual pathways, and the visual cortex. The aim of this research was to determine whether there are VEP abnormalities in CCVD patients. METHODS: Patients with CCVD and healthy individuals were included in this prospective case-control study. Participants with eye disease or neurodegenerative disease were excluded from the study. Pattern reversal VEP (PVEP), flash VEP (FVEP), and optical coherence tomography were performed on all participants. RESULTS: Twenty healthy individuals (15 male) and 21 patients with CCVD (18 male) were included in the study. The mean ages of healthy individuals and patients with CCVD were 29.8 ± 9.6 and 31.1 ± 10.9 years (p = 0.804). Retinal nerve fiber layer thickness and central macular thickness values did not differ between the two groups. In PVEP, Right P100, Left N75, P100, N135 values were delayed in CCVD patients compared to healthy individuals (p = 0.001, p = 0.032, p = 0.003, p = 0.032). At least one PVEP and FVEP abnormality was present in nine (42.9%) and six (28.6%) of the patients, respectively. PVEP or FVEP abnormalities were found in 13 (61.9%) of the patients. CONCLUSION: This study indicated that there may be PVEP and FVEP abnormalities in patients with CCVD.
Asunto(s)
Defectos de la Visión Cromática , Potenciales Evocados Visuales , Tomografía de Coherencia Óptica , Humanos , Potenciales Evocados Visuales/fisiología , Masculino , Femenino , Defectos de la Visión Cromática/fisiopatología , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/congénito , Estudios Prospectivos , Adulto , Tomografía de Coherencia Óptica/métodos , Estudios de Casos y Controles , Adulto Joven , Persona de Mediana Edad , Adolescente , Agudeza Visual/fisiologíaRESUMEN
The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.
Asunto(s)
Mariposas Diurnas , Visión de Colores , Animales , Mariposas Diurnas/genética , Visión de Colores/genética , Femenino , Opsinas/genética , Células Fotorreceptoras , Alas de AnimalesRESUMEN
BACKGROUND: The behavioral photosensitivity of animals could be quantified via the optomotor response (OMR), for example, and the luminous efficiency function (the range of visible light) should largely rely on the repertoire and expression of light-absorbing proteins in the retina, i.e., the opsins. In fact, the OMR under red light was suppressed in medaka lacking the red (long-wavelength sensitive [LWS]) opsin. RESULTS: We investigated the ultraviolet (UV)- or blue-light sensitivity of medaka lacking the violet (short-wavelength sensitive 1 [SWS1]) and blue (SWS2) opsins. The sws1/sws2 double or sws1/sws2/lws triple mutants were as viable as the wild type. The remaining green (rhodopsin 2 [RH2]) or red opsins were not upregulated. Interestingly, the OMR of the double or triple mutants was equivalent or even increased under UV or blue light (λ = 350, 365, or 450 nm), which demonstrated that the rotating stripes (i.e., changes in luminance) could fully be recognized under UV light using RH2 alone. The OMR test using dichromatic stripes projected onto an RGB display consistently showed that the presence or absence of SWS1 and SWS2 did not affect the equiluminant conditions. CONCLUSIONS: RH2 and LWS, but not SWS1 and SWS2, should predominantly contribute to the postreceptoral processes leading to the OMR or, possibly, to luminance detection in general, as the medium-wavelength-sensitive and LWS cones, but not the SWS cones, are responsible for luminance detection in humans.
Asunto(s)
Oryzias , Rayos Ultravioleta , Animales , Humanos , Oryzias/metabolismo , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , FilogeniaRESUMEN
Due to the unique morphology of their adult visual system, stalk-eyed flies represent an important model of exaggerated trait evolution through sexual selection. Early physiological measurements indicated wavelength sensitivity peaks in the ultraviolet (360 nm), blue (450), blue-green (490 nm), and red (>550 nm) ranges in the compound eye retina of the stalk-eyed fly Teleopsis dalmanni, consistent with the trichromatic color and broad range motion detection vision system of brachyceran Diptera. A previous study of dipteran opsin gene diversification, however, detected only homologs of members of the long wavelength range sensitive opsin subfamilies Rh2 and Rh6 in T. dalmanni. Here, I report findings from analyzing the most recent T. dalmanni genome assembly, which revealed the conservation of most brachyceran opsin homologs except for the UV wavelength range-sensitive homolog Rh4. These results and other examples highlight the caution that needs to be applied to gene loss conclusions.
Asunto(s)
Dípteros , Animales , Dípteros/genética , Opsinas/genética , Ojo/anatomía & histología , Cabeza , FenotipoRESUMEN
Categorical color constancy has been widely investigated and found to be very robust. As one of object material properties, the surface gloss was found to barely contribute to color constancy in a natural viewing condition. In this study, the effect of surface gloss on categorical color constancy was investigated by asking eight observers to categorize 208 Munsell matte surfaces and 260 Munsell glossy surfaces under D65, F, and TL84 illuminants in a viewing chamber with a uniform gray background. A color constancy index based on the centroid shift of the color category was used to evaluate color constancy degree of each color category across illumination changes from D65 to F or TL84 illuminant. The result showed that both matte and glossy surfaces showed almost perfect color constancy on all color categories under F and TL84 illuminants, and there was no significant difference between them. This result suggests that surface gloss has little effect on categorical color constancy in a uniform gray background where the local surround cue was present, which is consistent with the previous findings.