Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecology ; 98(3): 712-720, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27984646

RESUMEN

Negative population feedbacks mediated by natural enemies can promote species coexistence at the community scale through disproportionate mortality of numerically dominant (common) tree species. Simultaneously, associations with arbuscular mycorrhizal fungi (AMF) can result in positive effects on tree populations. Coupling data on seedling foliar damage from herbivores and pathogens and DNA sequencing of soil AMF diversity, we assessed the effects of these factors on tree seedling mortality at local (1 m2 ) and community (16 ha plot) scales in a tropical rainforest in Puerto Rico. At the local scale, AMF diversity in soil counteracted negative effects from foliar damage on seedling mortality. At the community scale, mortality of seedlings of common tree species increased with foliar damage while rare tree species benefited from soil AMF diversity. Together, the effects of foliar damage and soil AMF diversity on seedling mortality might foster tree species coexistence in this forest.


Asunto(s)
Bosques , Micorrizas/clasificación , Plantones/microbiología , Microbiología del Suelo , Árboles/microbiología , Biodiversidad , Micorrizas/fisiología , Puerto Rico
2.
Oecologia ; 184(1): 259-266, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28382478

RESUMEN

Rare plant species often suffer stronger conspecific negative density dependence (CNDD) in studies that assess the impact of local conspecific density on individual survival. All else equal, this causes a relative disadvantage among rare species that appears inconsistent with the role of CNDD in coexistence. The resolution to this apparent paradox is for lower species abundance to decrease the frequency of conspecific interactions sufficiently to outweigh the disadvantage of stronger CNDD. Whether this occurs in natural systems is untested because existing metrics do not isolate demographic impacts of CNDD, and it is also uncertain for tropical forest trees because the greater spatial aggregation observed in rare species could cause higher frequency of conspecific interactions despite lower abundance on the landscape. We develop a new metric, effective density-dependent mortality (EDDM), to quantify the proportion of individuals that are killed by density-dependent effects. We apply EDDM to a long-term study of seed fall and recruitment at Barro Colorado Island, Panama. Rare species had stronger CNDD but lower conspecific densities, and EDDM increased with abundance. Lower abundance, thus, reduces the frequency of conspecific interaction and, consequently, mortality associated with CNDD. This mechanism allows rare species to avoid a disadvantage-when-rare that would, all else equal, result from stronger CNDD in rare species. Our work provides empirical support for a resolution to the apparently paradoxical findings that rare species experience stronger CNDD and may help reconcile contrasting findings for the relationship between the CNDD strength and abundance.


Asunto(s)
Ecosistema , Plantones , Demografía , Bosques , Árboles , Clima Tropical
3.
Oecologia ; 179(3): 853-61, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26227367

RESUMEN

Although one of the most widely studied hypotheses for high tree diversity in the tropics, the Janzen-Connell hypothesis (JC), and the community compensatory trend upon which it is based, have conflicting support from prior studies. Some of this variation could arise from temporal variation in seedling survival of common and rare species. Using 10 years of data from La Selva Biological Station in Costa Rica, we analyzed annual seedling survival and found that negative density-dependence (negative DD) was significantly stronger for rare species than for common species in 2 years and was significantly stronger for common species than for rare species in 4 years. This temporal variation in survival was correlated with climatic variables: in warmer and wetter years, common species had higher negative DD than rare species. The relationship between climate and variation in JC effects on seedling survival of common and rare species could have important consequences for the maintenance of tree species diversity in Central America, which is predicted to experience warmer and wetter years as global change proceeds.


Asunto(s)
Árboles/fisiología , Biodiversidad , Costa Rica , Bosques , Densidad de Población , Plantones/crecimiento & desarrollo , Plantones/fisiología , Especificidad de la Especie , Clima Tropical
4.
Ecol Evol ; 5(19): 4287-99, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26664679

RESUMEN

Negative density dependence (NDD) and niche partitioning have been perceived as important mechanisms for the maintenance of species diversity. However, little is known about their relative contributions to seedling survival. We examined the effects of biotic and abiotic neighborhoods and the variations of biotic neighborhoods among species using survival data for 7503 seedlings belonging to 22 woody species over a period of 2 years in three different forest types, a half-mature forest (HF), a mature forest (MF), and an old-growth forest (OGF), each of these representing a specific successional stage in a temperate forest ecosystem in northeastern China. We found a convincing evidence for the existence of NDD in temperate forest ecosystems. The biotic and abiotic variables affecting seedlings survival change with successional stage, seedling size, and age. The strength of NDD for the smaller (<20 cm in height) and younger seedlings (1-2 years) as well as all seedlings combined varies significantly among species. We found no evidence that a community compensatory trend (CCT) existed in our study area. The results of this study demonstrate that the relative importance of NDD and habitat niche partitioning in driving seedling survival varies with seedling size and age and that the biotic and abiotic factors affecting seedlings survival change with successional stage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA