RESUMEN
This study focuses on assessing hydrochemical characteristics and non-carcinogenic health risks associated with fluoride contamination in groundwater within the Palacode and Pennagaram taluks of Dharmapuri district. The presence of fluoride in drinking water is a significant concern due to its potential health impacts on both adults and children. We collected a total of 158 groundwater samples during both the summer (SUM) and monsoon (MON) seasons in 2021 to evaluate the suitability of water for drinking purposes in this region. During the SUM season, groundwater exhibits alkaline characteristics with a pH range of 6.70 to 8.73 and a mean value of 7.43, while the MON season falls within the neutral pH range with values ranging from 6.60 to 7.60 and a mean of 7.00. Hydrogeochemical analysis reveals that fluoride concentrations during the SUM season range from 0.13 to 2.7 mg/L, with a mean of 0.82 mg/L, whereas the MON season exhibits concentrations ranging from 0.08 to 1.6 mg/L, with a mean of 0.5 mg/L. Spatial distribution analysis indicates a gradual increase in fluoride concentrations from the northeast to the central and southern parts of the study area during both seasons. Residents in these areas have been exposed to high fluoride levels for an extended period, leading to health issues related to fluorosis. Our hydrogeochemical analysis attributes fluoride dominance to the Cl--SO42- water type in both seasons. Furthermore, the relationship between fluoride and pH, HCO3-, Ca2+, and Na+ suggests the influence of geological factors in fluoride dissolution under alkaline conditions, while a reverse cation exchange process and increasing calcium concentration inhibit fluoride concentration. Saturation indices indicate that the unsaturated state of gypsum dissolution contributes to elevated fluoride levels in groundwater. Additionally, Gibbs plots highlight rock-water interactions as a significant factor influencing groundwater chemistry in the study area. Based on our hazard quotient (HQ) investigation, children are at a higher risk during both seasons compared to adults, with the central and northern regions showing alarming HQ values. These findings underscore the urgent need for enhanced groundwater quality monitoring and a comprehensive assessment of health risks, providing valuable insights for groundwater safety management in vulnerable areas of this region.
Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Niño , Adulto , Humanos , Fluoruros/análisis , Monitoreo del Ambiente , India , Contaminantes Químicos del Agua/análisis , Agua Subterránea/análisis , Agua Potable/análisis , Medición de Riesgo , Calidad del AguaRESUMEN
The presence of dissolved Fe(III) and Fe(III)-containing minerals has been found to alleviate cadmium (Cd) accumulation in wheat plants grown in Cd-contaminated soils, but the specific mechanism remains elusive. In this work, hydroponic experiments were conducted to dissect the mechanism for dissolved Fe(III) (0-2000 µmol L-1) to decrease Cd uptake of wheat plants and study the influence of Fe(III) concentration and Cd(II) pollution level (0-20 µmol L-1) on the Cd uptake process. The results indicated that dissolved Fe(III) significantly decreased Cd uptake through rhizosphere passivation, competitive absorption, and physiological regulation. The formation of poorly crystalline Fe(III) oxides facilitated the adsorption and immobilization of Cd(II) on the rhizoplane (over 80.4 %). In wheat rhizosphere, the content of CaCl2-extractable Cd decreased by 52.7 % when Fe(III) concentration was controlled at 2000 µmol L-1, and the presence of Fe(III) may reduce the formation of Cd(II)-organic acid complexes (including malic acid and succinic acid secreted by wheat roots), which could be attributed to competitive reactions. Down-regulation of Cd uptake genes (TaNramp5-a and TaNramp5-b) and transport genes (TaHMA3-a, TaHMA3-b and TaHMA2), along with up-regulation of the Cd efflux gene TaPDR8-4A7A, contributed much to the reduction of Cd accumulation in wheat plants in the presence of Fe(III). The inhibitory effect of Fe(III) on Cd uptake and transport in wheat plants declined with increasing Cd(II) concentration, particularly at 20 µmol L-1. This work provides important implications for remediating Cd-contaminated farmland soil and ensuring the safe production of wheat by using dissolved Fe(III) and Fe(III)-containing minerals.
Asunto(s)
Cadmio , Rizosfera , Contaminantes del Suelo , Triticum , Triticum/metabolismo , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Hierro/metabolismo , Compuestos Férricos , Raíces de Plantas/metabolismo , Suelo/químicaRESUMEN
Caesium-137 (137Cs) is a major anthropogenic radionuclide released into the environment as a result of the TEPCO Fukushima Daiichi Nuclear Reactor Station accident (occurring on March 11, 2011). Rice, being a staple food in Asian countries, including Japan, and is predominantly cultivated in paddy fields. Consequently, 137Cs present in rice is absorbed from both soil and irrigation water, making it the most important crop for estimating internal radiation doses. In this study, over the 2018-2022 cultivation periods, flood water and pore water samples were collected biweekly from paddy fields. These samples were analyzed to measure the 137Cs activity concentration, as well as the potassium (K+) and ammonium (NH4+) concentrations. Under anaerobic conditions, the 137Cs + activity concentration in pore water increased markedly to reach a value 20-fold higher than that in flood water, correlating with NH4+ concentration. However, despite the release of 137Cs + caused by increased NH4+ concentrations in pore water due to reduction processes, the 137Cs+/K+ ratio did not increase, which was attributed to the simultaneous release of K+. The competition between 137Cs+ and K+ uptake by plants indicates that rice uptake of 137Cs is not necessarily enhanced during the waterlogging period.
Asunto(s)
Radioisótopos de Cesio , Accidente Nuclear de Fukushima , Oryza , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Contaminantes Radiactivos del Agua , Radioisótopos de Cesio/análisis , Oryza/metabolismo , Oryza/química , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Agua/análisis , Japón , Inundaciones , AgriculturaRESUMEN
2,4-dinitroaniline (2,4DNBA), a significant hazardous chemical, is extensively used in industry and agriculture. The chemical accumulates in the environment for a long time, causing irreversible damage to the ecosystem. Currently, it is quite challenging to identify it by common analysis and detection techniques. Herein, a luminescent organic cocrystal (TCNB-8HQ) was prepared using 1,2,4,5-tetracyanobenzene (TCNB) as the electron acceptor and 8-hydroxyquinoline (8HQ) as the electron donor. The prepared TCNB-8HQ was used as a fluorescent probe with a fast and specific response to 2,4DNBA. This detection method possessed a linear range of 0.5-200 µmol/L with a detection limit as low as 0.085 µmol/L to detect 2,4DNBA in real samples with satisfactory spiking recovery. As revealed by fluorescence spectrum and UV-vis absorption spectrum, the detection mechanism involved competitive absorption between cocrystal material and 2,4DNBA. Moreover, the feasibility of the system was explored by preparing portable indicator strips for 2,4DNBA from organic cocrystal (TCNB-8HQ). This study not only provided an environmentally friendly gram-level preparation strategy to synthesize the fluorescent material but also investigated their application in chemical detection.
RESUMEN
Rapid and quantitative detection of 2,4,6-trinitrophenol (TNP) is very crucial for homeland security, military application, and environment protection. Herein, a nine-metal Zn(II)-Nd(III) nanoring 1 with a diameter of 2.3 nm was constructed by the use of a long-chain Schiff base ligand, which shows ratiometric fluorescence response to TNP with high selectivity and sensitivity. The fluorescence sensing behavior of 1 to TNP is expressed by a first-order equation I1060nm/I560nm = -0.0128*[TNP] + 0.9723, which can be used to quantitatively analyze TNP concentrations in solution. The limits of detection (LODs) to TNP based on the ligand-centered (LC) and Nd(III) emissions of 1 are 5.93 µM and 3.18 µM, respectively. The fluorescence response mechanism to TNP is attributed to the competitive absorption effect and photoinduced electron transfer (PET). The luminescence quenching of 1 is dominated by static process.
RESUMEN
2,6-Dichloro-4-nitroaniline, alias dicloran (DCN), is a broad-spectrum pesticide that can cause irreversible damage to the human body. Therefore, it is of great significance to develop a technology for the rapid and convenient detection of DCN. Luminescent metal organic frameworks have attracted extensive attention in the field of sensing and detection due to their excellent optical properties. In this study, two kinds of 2D Cd-MOFs (CdMOF-1 and CdMOF-2) were developed for the detection of residual DCN in the environment. Both CdMOFs exhibit excellent solvent and acid-base stability and can respond to DCN quickly and sensitively in a short time (30 s). CdMOFs not only have good selectivity and anti-interference toward DCN but also have good reusability. Under the conditions of DCN concentrations of 1-15 and 0.3-30 µM, the change in fluorescence intensity of CdMOF-1 and CdMOF-2 showed a good linear relationship with DCN concentration (R2 = 0.999/0.991), and the detection limits were 0.36 and 0.12 µM, respectively. Through ultraviolet-visible absorption spectroscopy (UV-Vis), X-ray photoelectron spectroscopy, fluorescence lifetime, and density functional theory calculations, it is revealed that the fluorescence quenching mechanisms of DCN for two kinds of Cd-MOFs are competitive absorption and photoinduced electron transfer, and there may be a weak π-π interaction. Finally, it is demonstrated that by using two types of fluorescent CdMOFs to make the fluorescent test paper and detect actual soil, these can be applied to the actual scene and achieve onsite real-time detection.
RESUMEN
Fluorescence quenching induced by competitive absorption between different components of solid foods was observed for the first time. By using front-face synchronous fluorescence spectroscopy (FFSFS) and fluorescence titration, competitive absorption between maize flour and turmeric powder was proven to occur between phenolic acids in maize flour and curcumin in turmeric powder. FFSFS was applied for the rapid and non-destructive determination of maize flour adulterated in turmeric powder. Prediction models were constructed by partial least square (PLS) regression based on unfolded total synchronous fluorescence spectra, and were validated by five-fold cross-validation and external validation, with the determination coefficient of prediction (Rp2) greater than 0.95, root mean square error of prediction (RMSEP) < 6%, relative error of prediction (REP) < 15% and residual predictive deviation (RPD) greater than 5. The limit of detection (LOD) of maize flour was approximately 9%. In addition, most relative errors for test samples were from -20% to 20%.
Asunto(s)
Curcuma , Harina , Análisis de los Mínimos Cuadrados , Polvos , Zea maysRESUMEN
Phytoremediation makes use of hyperaccumulating plants to remove potentially toxic elements (PTEs) from soil selectively. Most researches examining hyperaccumulators focused on how they act on a single PTE contaminant. However, there is more than one kind of PTEs in most contaminated soils. Phytoremediation approaches could be less effective in environments containing multiple PTEs contaminants. Here we examine arsenic (As) and lead (Pb) accumulation in Indian Mustard (Brassica juncea) from solutions with one or both pollutants. Indian mustard accumulates As or Pb when exposed in the single liquid exposure of As or Pb, and the highest concentrations of As and Pb in Indian Mustard reach 1,786 mg/kg and 47,200 mg/kg, respectively. But the absorption efficiencies of As and Pb decrease (by >90% for As, and â¼10-30% for Pb) when both As and Pb are present. The translocation of As and Pb from the root to leaf is also impeded by 36%-88% for As and 55-85% for Pb when treated with both PTEs. In As and Pb co-treatment, significant negative correlations between As (V) and P and between Pb and other elements (including K, Mg and Ca) were found in Indian mustard. X-ray absorption near edge (XANES) spectroscopy and subcellular extraction experiments indicate that much of the accumulated Pb bound within lead phosphate particles, and often located within the cell wall. Pb could decrease the percentage of water-soluble As and increase protein combined As in subcellular levels within Indian mustard. Based on these data, we suggest that the competition between Pb and monovalent and divalent nutrients (e.g., Ca(II), Mg(II) and K(I)), and the formation of lead phosphates within cell walls play critical roles in decreasing As and Pb co-uptake efficiencies for Indian mustard.
Asunto(s)
Arsénico , Contaminantes del Suelo , Biodegradación Ambiental , Plomo , Planta de la Mostaza , Raíces de Plantas/química , Contaminantes del Suelo/análisisRESUMEN
To understand the risk of two emerging contaminants, gallium (Ga) and indium (In) to humans via rice consumption, effects of soil properties and concentrations of spiked Ga/In on the accumulation of Ga and In in rice grains were investigated. A pot experiment was conducted, and paddy rice was grown in three soils with different pH values and Al availabilities (i.e., Pc, TWz and Cf), which were spiked with various Ga and In concentrations. The growth index and concentrations of Ga, In, and Al in plant tissues and soil pore water were measured. Results revealed that the concentrations of Ga and In in soil pore water increase with the spiking of Ga or In in all of the tested soils, but the biomass of roots and shoots does not significantly decrease. The accumulation of Ga in shoots and brown rice was significantly reduced in high available Al acidic soils (Pc soils), but this accumulation was significantly increased in low available Al acidic soils (TWz soils), which can be explained by the competitive uptake between Ga and Al by rice plants. The extent of competitive effects between In and Al was less than that between Ga and Al because of the lower solubility and translocation capability of In than those of Ga in soil-rice systems. However, significant differences in the concentrations of Ga and In in brown rice in neutral soils (Cf soils) among the Ga or In treatment were not observed. In addition, the iron plaque formed on the root surface can serve as a barrier to reduce the accumulation of Ga in rice plants. This study suggested that the risk of accumulation of Ga and In in rice grains should be of concern when paddy rice is grown in acidic Ga- or In-contaminated soils with low Al availability.
Asunto(s)
Galio , Oryza , Contaminantes del Suelo/análisis , Cadmio/análisis , Humanos , Indio , SueloRESUMEN
Distinguishing specific molecules from similar chemical species with minor structural differences is challenging, and differentiation has typically been based on analyte-dependent host-guest interactions upon irradiation with a single wavelength. In this study, we prepared a Cd-based metal-organic framework exhibiting nearly constant emission intensity over a wide range of excitations. Because of its unique emission characteristics, this material facilitated the differentiation of specific molecules amidst structurally similar chemical species via competitive absorption. Such discriminative identification was uniquely achieved based on the use of different excitation wavelengths and is demonstrated to be applicable to the recognition of a target analyte in sensory applications.