Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 1): 118780, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555089

RESUMEN

In this experiment, the prepared tea biochar-cellulose@LDH material (TB-CL@LDH) was combined with mycelium pellets to form the composite mycelial pellets (CMP), then assembled and immobilized with strains Pseudomonas sp. Y1 and Cupriavidus sp. ZY7 to construct a bioreactor. At the best operating parameters, the initial concentrations of phosphate (PO43--P), ammonia nitrogen (NH4+-N), chemical oxygen demand (COD), zinc (Zn2+), and phenol were 22.3, 25.0, 763.8, 1.0, and 1.0 mg L-1, the corresponding removal efficiencies were 80.4, 87.0, 83.4, 91.8, and 96.6%, respectively. Various characterization analyses demonstrated that the strain Y1 used the additional carbon source produced by the strain ZY7 degradation of cellulose to enhance the removal of composite pollutants and clarified the principle of Zn2+ and PO43--P removal by adsorption, co-precipitation and biomineralization. Pseudomonas and Cupriavidus were the dominant genera according to the high-throughput sequencing. As shown by KEGG results, nitrification and denitrification genes were affected by phenol. The study offers prospects for the simultaneous removal of complex pollutants consisting of NH4+-N, PO43--P, Zn2+, and phenol.


Asunto(s)
Amoníaco , Reactores Biológicos , Celulosa , Micelio , Fenol , Fosfatos , Zinc , Reactores Biológicos/microbiología , Celulosa/química , Celulosa/metabolismo , Micelio/metabolismo , Fosfatos/metabolismo , Amoníaco/metabolismo , Nitrógeno/metabolismo , Biodegradación Ambiental , Pseudomonas/metabolismo , Cupriavidus/metabolismo , Cupriavidus/genética , Contaminantes Químicos del Agua/análisis , Carbón Orgánico
2.
J Environ Manage ; 299: 113589, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467861

RESUMEN

In this study, two multifunctional nano-chitosan flocculants (CPAM-NCS1 and CPAM-NCS2) were made through the graft modification of cationic monomer and carboxymethylchitosan (CMCTS) to remove combined contaminants. The effects of various factors (pH, flocculant dosage and hydraulic mixing conditions) on the flocculation performance under single and composite pollution conditions were systematically investigated, the optimal chemical oxygen demand (COD) and the chromaticity removal rates in the dye wastewater were 79.9% and 83.9% at wastewater pH 7, the fast stirring rate 300 rpm, the fast stirring time 8 min, and the dosage of CPAM-NCS1 80 mg/L, respectively. The optimal removal rates of Cu (II) obtained by CPAM-NCS1 and CPAM-NCS2 at were 80.3% and 75.2% at 60 mg/L and the wastewater pH 7, respectively. The optimal removal rates of Cu (II) and disperse orange were 85.3% and 89.4%, respectively, in a composite pollutant system in which Cu (II) and disperse orange coexisted when the pH of the composite system was 9 and the dosage of CPAM -NCS1 was 60 mg/L. This study proved that nanoflocculants made by modifying CMCTS with different structures can demonstrate ideal flocculation removal performance for dye and heavy metal wastewaters.


Asunto(s)
Metales Pesados , Aguas Residuales , Cationes , Colorantes , Floculación
3.
Membranes (Basel) ; 14(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38786943

RESUMEN

The membrane biofilm reactor (MBfR) is a novel wastewater treatment technology, garnering attention due to its high gas utilization rate and effective pollutant removal capability. This paper outlines the working mechanism, advantages, and disadvantages of MBfR, and the denitrification pathways, assessing the efficacy of MBfR in removing oxidized pollutants (sulfate (SO4-), perchlorate (ClO4-)), heavy metal ions (chromates (Cr(VI)), selenates (Se(VI))), and organic pollutants (tetracycline (TC), p-chloronitrobenzene (p-CNB)), and delves into the role of related microorganisms. Specifically, through the addition of nitrates (NO3-), this paper analyzes its impact on the removal efficiency of other pollutants and explores the changes in microbial communities. The results of the study show that NO3- inhibits the removal of other pollutants (oxidizing pollutants, heavy metal ions and organic pollutants), etc., in the simultaneous removal of multiple pollutants by MBfR.

4.
J Hazard Mater ; 476: 134938, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38901262

RESUMEN

Microplastics (MPs) and heavy metals (HMs) are important pollutants in terrestrial ecosystems. In particular, the "island" landscape's weak resistance makes it vulnerable to pollution. However, there is a lack of research on MPs and HMs in island landscapes. Therefore, we used Helan Mountain as the research area. Assess the concentrations, spatial distribution, ecological risks, sources, and transport of MPs and HMs in the soil and blue sheep (Pseudois nayaur) feces. Variations in geographical distribution showed a connection between human activity and pollutants. Risk assessment indicated soil and wildlife were influenced by long-term pollutant polarization and multi-element inclusion (Igeo, Class I; PHI, Class V; RI (MPs), 33 % Class II, and 17 % Class IV; HI = 452.08). Source apportionment showed that tourism and coal combustion were the primary sources of pollutants. Meanwhile, a new coupling model of PMF/Risk was applied to quantify the source contribution of various risk types indicated transportation roads and tourism sources were the main sources of ecological and health risks, respectively. Improve the traceability of pollution source risks. Furthermore, also developed a novel tracing model for pollutant transportation, revealing a unique "source-sink-source" cycle in pollutant transportation, which provides a new methodological framework for the division of pollution risk areas in nature reserves and the evaluation of spatial transport between sources and sinks. Overall, this study establishes a foundational framework for conducting comprehensive risk assessments and formulating strategies for pollution control and management.

5.
Sci Total Environ ; 870: 162003, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36737021

RESUMEN

The widespread use of industrial products containing lead (Pb2+) and tetracycline (TC) medications led to the combined pollution of nitrate, Pb2+, and TC in water. A novel biomaterial containing polyvinyl alcohol (PVA) and sponge cube with sintered ores (PVA/sintered ores@sponge cube) was prepared to ensure the maximum NO3--N removal efficiency (96.21 %) of the bioreactor under the hydraulic retention time (HRT) of 7.0 h, pH of 6.0, and the carbon to nitrogen (C/N) of 1.5 that had the ability to remove TC and Pb2+ synergistically. Composite pollutants slightly decreased denitrification performance in the combined pollution system on account of the addition of sintered ores. Results of scanning electron microscopy (SEM) showed that the sintered ores in the biocarrier induced denitrification and the adsorption of bio­iron oxides were involved in the removal of TC and Pb2+. The simultaneous removal of composite pollutants during denitrification was facilitated by extracellular polymeric substances (EPS) as revealed by Fourier transform infrared spectroscopy (FTIR) and fluorescence excitation-emission matrix (EEM). In addition, high-throughput sequencing results showed that Zoogloea had the highest proportion in the bioreactor.


Asunto(s)
Carbono , Nitrógeno , Plomo , Nitratos/metabolismo , Reactores Biológicos , Agua , Desnitrificación
6.
Environ Sci Pollut Res Int ; 29(27): 40415-40448, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35347608

RESUMEN

As emerging pollutants, direct and indirect adverse impacts of micro(nano)plastics (MPs/NPs) are raising an increasing environmental concern in recent years due to their poor biodegradability and difficulty in recycling. MPs/NPs can act as carriers of bacteria, viruses, or pollutants (such as heavy metals and toxic organic compounds), and may potentially change the toxicity and bioavailability of pollutants. Ingested or attached MPs/NPs can also be transferred from low-trophic level organisms to high-nutrient organisms or even the human body through the food chain transfer process. This article reviews the emerging field of micro- and nanoplastics on organisms, including the separate toxicity and toxicity of compound after the adsorption of organic pollutants or heavy metals, as well as possible mechanism of toxicological effects and evaluate the nano- and microplastics potential adverse effects on human health. The inherent toxic effects MPs/NPs mainly include the following: physical injury, growth performance decrease and behavioral alteration, lipid metabolic disorder, induced gut microbiota dysbiosis and disruption of the gut's epithelial permeability, neurotoxicity, damage of reproductive system and offspring, oxidative stress, immunotoxicity, etc. Additionally, MPs/NPs may release harmful plastic additives and toxic monomers such as bisphenol A, phthalates, and toluene diisocyanate. The vectors' effect also points out the potential interaction of MPs/NPs with pollutants such as heavy metals, polycyclic aromatic hydrocarbons, organochlorine pesticides, polychlorinated biphenyls, perfluorinated compounds, pharmaceuticals, and polybrominated diphenyl ethers. Nevertheless, these potential consequences of MPs/NPs being vectors for contaminants are controversial.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA