Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Naturwissenschaften ; 107(3): 15, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32285203

RESUMEN

Laboratory water flumes are artificial troughs of moving water widely used in hydraulic studies of fluvial systems to investigate real-world problems at smaller, more manageable scales. Water flumes have also been used to understand bone transportation sorting and bone orientation found in the fossil record using actual bones. To date, these studies have not involved scaled bones. A 1/12 scale model of a 21.8-m long skeleton of Apatosaurus, a long-necked sauropod dinosaur from the Late Jurassic, was used to explore three problems at Dinosaur National Monument (USA) that cannot be explained by tradition bone flume studies: (1) why there is an abrupt bend in articulated vertebrae, (2) why articulated dorsals are inverted relative to the pelvis, and (3) how bone jams form. The flume experiments established that (1) bed friction with the wing-like transverse processes of vertebrae resists the force of the water flow, whereas those vertebrae lacking the processes are free to pivot in the flow; (2) elevation of the dorsal vertebrae by the transverse processes subjects the vertebrae to the energy of the flow stream, which causes the vertebrae to flip. Computation fluid dynamics (CFD) software shows this flip was due to differential pressure on the upstream and downstream sides. (3) The formation and growth of bone clusters or jams (analogous to log jams in rivers) occur as transported bones pile against an initial obstruction and jammed bones themselves become obstacles. These preliminary studies show that scale models can provide valuable insights into certain taphonomic problems that cannot be obtained by traditional bone flume studies.


Asunto(s)
Arqueología/métodos , Huesos , Fósiles , Movimientos del Agua , Modelos Biológicos
2.
J Neurophysiol ; 118(5): 2770-2788, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28877965

RESUMEN

The spatial distribution of receptors within sensory epithelia (e.g., retina and skin) is often markedly nonuniform to gain efficiency in information capture and neural processing. By contrast, odors, unlike visual and tactile stimuli, have no obvious spatial dimension. What need then could there be for either nearest-neighbor relationships or nonuniform distributions of receptor cells in the olfactory epithelium (OE)? Adrian (Adrian ED. J Physiol 100: 459-473, 1942; Adrian ED. Br Med Bull 6: 330-332, 1950) provided the only widely debated answer to this question when he posited that the physical properties of odors, such as volatility and water solubility, determine a spatial pattern of stimulation across the OE that could aid odor discrimination. Unfortunately, despite its longevity, few critical tests of the "sorption hypothesis" exist. Here we test the predictions of this hypothesis by mapping mouse OE responses using the electroolfactogram (EOG) and comparing these response "maps" to computational fluid dynamics (CFD) simulations of airflow and odorant sorption patterns in the nasal cavity. CFD simulations were performed for airflow rates corresponding to quiet breathing and sniffing. Consistent with predictions of the sorption hypothesis, water-soluble odorants tended to evoke larger EOG responses in the central portion of the OE than the peripheral portion. However, sorption simulation patterns along individual nasal turbinates for particular odorants did not correlate with their EOG response gradients. Indeed, the most consistent finding was a rostral-greater to caudal-lesser response gradient for all the odorants tested that is unexplained by sorption patterns. The viability of the sorption and related olfactory "fovea" hypotheses are discussed in light of these findings.NEW & NOTEWORTHY Two classical ideas concerning olfaction's receptor-surface two-dimensional organization-the sorption and olfactory fovea hypotheses-were found wanting in this study that afforded unprecedented comparisons between electrophysiological recordings in the mouse olfactory epithelium and computational fluid dynamic simulations of nasal airflow. Alternatively, it is proposed that the olfactory receptor layouts in macrosmatic mammals may be an evolutionary contingent state devoid of the functional significance found in other sensory epithelia like the cochlea and retina.


Asunto(s)
Células Quimiorreceptoras/citología , Células Quimiorreceptoras/fisiología , Modelos Neurológicos , Mucosa Olfatoria/citología , Mucosa Olfatoria/fisiología , Olfato/fisiología , Movimientos del Aire , Análisis de Varianza , Animales , Simulación por Computador , Electrodiagnóstico , Femenino , Hidrodinámica , Ratones , Odorantes , Estimulación Física , Respiración
3.
ISA Trans ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39048484

RESUMEN

Hydrodynamics analysis and control are very significant for the seabed operations, particularly for the intelligent manipulation process of streamlined intervention autonomous underwater vehicles (I-AUVs). The computation fluid dynamics simulations and verification were conducted in the consideration with water channel domain, mesh insensitivity, support straight bar connector, free surface and other boundary conditions. The variation trend of hydrodynamic coefficients in the process of manipulation is obtained, by simulations of streamlined I-AUV manipulation under dynamic manipulation state. To further realize underwater floating manipulation, a novel controller with an integral termed nonlinear sliding mode surface and disturbance observer has been developed. The disturbance observer can make quantity analysis on the interaction forces between I-AUV and the environment from hydrodynamic analysis. Simulations and experiments have verified the controller performance.

4.
Adv Healthc Mater ; 13(20): e2400643, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38648623

RESUMEN

Regenerative medicine has evolved with the rise of tissue engineering due to advancements in healthcare and technology. In recent years, bioprinting has been an upcoming approach to traditional tissue engineering practices, through the fabrication of functional tissue by its layer-by-layer deposition process. This overcomes challenges such as irregular cell distribution and limited cell density, and it can potentially address organ shortages, increasing transplant options. Bioprinting fully functional organs is a long stretch but the advancement is rapidly growing due to its precision and compatibility with complex geometries. Computational Fluid Dynamics (CFD), a carestone of computer-aided engineering, has been instrumental in assisting bioprinting research and development by cutting costs and saving time. CFD optimizes bioprinting by testing parameters such as shear stress, diffusivity, and cell viability, reducing repetitive experiments and aiding in material selection and bioprinter nozzle design. This review discusses the current application of CFD in bioprinting and its potential to enhance the technology that can contribute to the evolution of regenerative medicine.


Asunto(s)
Bioimpresión , Hidrodinámica , Medicina Regenerativa , Ingeniería de Tejidos , Bioimpresión/métodos , Humanos , Ingeniería de Tejidos/métodos , Medicina Regenerativa/métodos , Impresión Tridimensional , Animales , Simulación por Computador
5.
Med Biol Eng Comput ; 61(6): 1489-1506, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36763231

RESUMEN

The aim of this paper is to assess the association between valve morphology and vortical structures quantitatively and to highlight the influence of valve morphology/orientation on aorta's susceptibility to shear stress, both proximal and distal. Four-dimensional phase-contrast magnetic resonance imaging (4D PCMRI) data of 6 subjects, 3 with tricuspid aortic valve (TAV) and 3 with functionally bicuspid aortic values (BAV) with right-left coronary leaflet fusion, were processed and analyzed for vorticity and wall shear stress trends. Computational fluid dynamics (CFD) has been used with moving TAV and BAV valve designs in patient-specific aortae to compare with in vivo shear stress data. Vorticity from 4D PCMRI data about the aortic centerline demonstrated that TAVs had a higher number of vortical flow structures than BAVs at peak systole. Coalescing of flow structures was shown to be possible in the arch region of all subjects. Wall shear stress (WSS) distribution from CFD results at the aortic root is predominantly symmetric for TAVs but highly asymmetric for BAVs with the region opposite the raphe (fusion location of underdeveloped leaflets) being subjected to higher WSS. Asymmetry in the size and number of leaflets in BAVs and TAVs significantly influence vortical structures and WSS in the proximal aorta for all valve types and distal aorta for certain valve orientations of BAV. Analysis of vortical structures using 4D PCMRI data (on the left side) and wall shear stress data using CFD (on the right side).


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Enfermedades de las Válvulas Cardíacas , Humanos , Válvula Aórtica/diagnóstico por imagen , Enfermedades de las Válvulas Cardíacas/diagnóstico por imagen , Aorta , Imagen por Resonancia Magnética/métodos , Estrés Mecánico , Hemodinámica
6.
Artículo en Inglés | MEDLINE | ID: mdl-37090136

RESUMEN

Background: While image-derived predictors of intracranial aneurysm (IA) rupture have been well-explored, current understanding of IA growth is limited. Pulsatility index (PI) and wall shear stress pulsatility index (WSSPI) are important metrics measuring temporal hemodynamic instability. However, they have not been investigated in IA growth research. The present study seeks to verify reliable predictors of IA growth with comparative analyses of several important morphological and hemodynamic metrics between stable and growing cases among a group of unruptured IAs. Methods: Using 3D images, vascular models of 16 stable and 20 growing cases were constructed and verified using Geodesic techniques. With an overall mean follow-up period of 25 months, cases exhibiting a 10% or higher increase in diameter were considered growing. Patient-specific, pulsatile simulations were performed, and hemodynamic calculations were computed at 5 important regions of each aneurysm (inflow artery, aneurysm neck, body, dome, and outflow artery). Index values were compared between growing and stable IAs using ANCOVA controlling for aneurysm diameter. Stepwise multiple logistic regression and ROC analyses were conducted to investigate predictive models of IA growth. Results: Compared to stable IAs, growing IAs exhibited significantly higher intrasaccular PI, intrasaccular WSSPI, intrasaccular spatial flow rate deviation, and intrasaccular spatial wall shear stress (WSS) deviation. Stepwise logistic regression analysis revealed a significant predictive model involving PI at aneurysm body, WSSPI at inflow artery, and WSSPI at aneurysm body. Conclusions: Our results showed that high degree of hemodynamic variations within IAs is linked to growth, even after controlling for morphological parameters. Further, evaluation of PI in conjunction with WSSPI yielded a highly accurate predictive model of IA growth. Upon validation in future cohorts, these metrics may aid in early identification of IA growth and current understanding of IA remodeling mechanism.

7.
Atherosclerosis ; 342: 28-35, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34815069

RESUMEN

BACKGROUND AND AIMS: Wall shear stress (WSS) has been associated with atherogenesis and plaque progression. The present study assessed the value of WSS analysis derived from conventional coronary angiography to detect lesions culprit for future myocardial infarction (MI). METHODS AND RESULTS: Three-dimensional quantitative coronary angiography (3DQCA), was used to calculate WSS and pressure drop in 80 patients. WSS descriptors were compared between 80 lesions culprit of future MI and 108 non-culprit lesions (controls). Endothelium-blood flow interaction was assessed by computational fluid dynamics (10.8 ± 1.41 min per vessel). Median time between baseline angiography and MI was 25.9 (21.9-29.8) months. Mean patient age was 70.3 ± 12.7. Clinical presentation was STEMI in 35% and NSTEMI in 65%. Culprit lesions showed higher percent area stenosis (%AS), translesional vFFR difference (ΔvFFR), time-averaged WSS (TAWSS) and topological shear variation index (TSVI) compared to non-culprit lesions (p < 0.05 for all). TSVI was superior to TAWSS in predicting MI (AUC-TSVI = 0.77, 95%CI 0.71-0.84 vs. AUC-TAWSS = 0.61, 95%CI 0.53-0.69, p < 0.001). The addition of TSVI increased predictive and reclassification abilities compared to a model based on %AS and ΔvFFR (NRI = 1.04, p < 0.001, IDI = 0.22, p < 0.001). CONCLUSIONS: A 3DQCA-based WSS analysis was feasible and can identify lesions culprit for future MI. The combination of area stenoses, pressure gradients and WSS predicted the occurrence of MI. TSVI, a novel WSS descriptor, showed strong predictive capacity to detect lesions prone to cause MI.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Endotelio , Humanos , Modelos Cardiovasculares , Infarto del Miocardio/diagnóstico por imagen , Estrés Mecánico
8.
Biomech Model Mechanobiol ; 20(2): 481-490, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33068193

RESUMEN

In order for computational fluid dynamics to provide quantitative parameters to aid in the clinical assessment of type B aortic dissection, the results must accurately mimic the hemodynamic environment within the aorta. The choice of inlet velocity profile (IVP) therefore is crucial; however, idealised profiles are often adopted, and the effect of IVP on hemodynamics in a dissected aorta is unclear. This study examined two scenarios with respect to the influence of IVP-using (a) patient-specific data in the form of a three-directional (3D), through-plane (TP) or flat IVP; and (b) non-patient-specific flow waveform. The results obtained from nine simulations using patient-specific data showed that all forms of IVP were able to reproduce global flow patterns as observed with 4D flow magnetic resonance imaging. Differences in maximum velocity and time-averaged wall shear stress near the primary entry tear were up to 3% and 6%, respectively, while pressure differences across the true and false lumen differed by up to 6%. More notable variations were found in regions of low wall shear stress when the primary entry tear was close to the left subclavian artery. The results obtained with non-patient-specific waveforms were markedly different. Throughout the aorta, a 25% reduction in stroke volume resulted in up to 28% and 35% reduction in velocity and wall shear stress, respectively, while the shape of flow waveform had a profound influence on the predicted pressure. The results of this study suggest that 3D, TP and flat IVPs all yield reasonably similar velocity and time-averaged wall shear stress results, but TP IVPs should be used where possible for better prediction of pressure. In the absence of patient-specific velocity data, effort should be made to acquire patient's stroke volume and adjust the applied IVP accordingly.


Asunto(s)
Disección Aórtica/fisiopatología , Hemodinámica/fisiología , Velocidad del Flujo Sanguíneo , Simulación por Computador , Humanos , Presión , Estrés Mecánico , Sístole/fisiología , Trombosis/patología , Factores de Tiempo
9.
Int J Artif Organs ; 44(4): 251-261, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32957840

RESUMEN

The blood pump is a medical device used to assist or replace the diseased heart. Research on the structure of blood pumps has been committed to achieving better hemolysis and hydraulic performance. The purpose of this study was to find some effective ways to improve design methods and hydraulic structures. The research contents of improvement include: (1) improved blade streamline design method; (2) conical impeller hub; (3) additional auxiliary blades. Characteristic analysis and parameter design were carried out on the above three aspects. The methods used in this study included Dynamics (CFD) simulation, hydraulic experiments, and Particle Image Velocimetry (PIV) experiments. The results showed that this improved streamline design method could improve the distortion of blades and ensure a smaller impeller length. And, in the enhanced design of the hub, it is designed to be conical with inlet and outlet diameters of 7.5 and 12.8 mm, respectively. Furthermore, the auxiliary blades between the main blades are analyzed and designed. The results have the best performance optimization effect when the length of the auxiliary blades is 55% of the main blades. In general, the structural improvements in this study achieved the effect of improving hydraulic performance and avoiding increased hemolysis. These methods can be considered as an effective means of improving blood pump performance.


Asunto(s)
Corazón Auxiliar , Hemólisis , Hidrodinámica , Reología/métodos , Simulación por Computador , Diseño de Equipo , Corazón Auxiliar/efectos adversos , Corazón Auxiliar/normas , Humanos , Modelos Cardiovasculares , Mejoramiento de la Calidad
10.
Sci Prog ; 104(1): 368504211008064, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33788651

RESUMEN

Shear stress is often present in the blood flow within blood-contacting devices, which is the leading cause of hemolysis. However, the simulation method for blood flow with shear stress is still not perfect, especially the multiphase flow model and experimental verification. In this regard, this study proposes an enhanced discrete phase model for multiphase flow simulation of blood flow with shear stress. This simulation is based on the discrete phase model (DPM). According to the multiphase flow characteristics of blood, a virtual mass force model and a pressure gradient influence model are added to the calculation of cell particle motion. In the experimental verification, nozzle models were designed to simulate the flow with shear stress, varying the degree of shear stress through different nozzle sizes. The microscopic flow was measured by the Particle Image Velocimetry (PIV) experimental method. The comparison of the turbulence models and the verification of the simulation accuracy were carried out based on the experimental results. The result demonstrates that the simulation effect of the SST k-ω model is better than other standard turbulence models. Accuracy analysis proves that the simulation results are accurate and can capture the movement of cell-level particles in the flow with shear stress. The results of the research are conducive to obtaining accurate and comprehensive analysis results in the equipment development phase.


Asunto(s)
Gravitación , Hemodinámica , Simulación por Computador , Reología/métodos , Estrés Mecánico
11.
Recent Pat Biotechnol ; 13(1): 57-68, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30246646

RESUMEN

BACKGROUND: Membrane filtration process produced good quality of permeate flux due to which it is used in different industries like dairy, pharmaceutical, sugar, starch and sweetener industry, bioseparation, purification of biomedical materials, and downstream polishing etc. The cross-flow mode of operation has also been used to improve the quality of the Rubber Industrial effluent of Tripura, India. METHOD: The Computational Fluid Dynamics (CFD) simulation of the cross-flow membrane is done by using ANSYS Fluent 6.3. The meshing of the geometry of the membrane is done by Gambit 2.4.6 and a grid size of 100674, the number of faces is 151651 and number of nodes being 50978 has been selected for the simulation purpose from the grid independence test. We have revised and included all patents in the manuscripts related to the membrane filtration unit. RESULTS: Single phase Pressure-Velocity coupled Simple Algorithm and laminar model is used for the simulation of the developed model and Fluent 6.3 used for the prediction of pressure, pressure drop, flow phenomena, wall shear stress and shear strain rate inside the module is studied for cross flow membrane. CONCLUSION: From the study, it has been found that CFD simulated results hold good agreement with the experimental values.


Asunto(s)
Hidrodinámica , Membranas Artificiales , Aguas Residuales/química , Algoritmos , Simulación por Computador , Humanos , India , Patentes como Asunto , Goma/toxicidad
12.
Eng. sanit. ambient ; 26(1): 97-104, jan.-fev. 2021. graf
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1154113

RESUMEN

RESUMO O objetivo deste trabalho foi apresentar, por meio da técnica dinâmica dos fluidos computacional (CFD), dois métodos utilizados nas representações conceitual e física da vegetação em meio aquático: meio poroso e elementos geométricos simplificados. Três estudos de caso, que incluem um wetland flutuante e manchas de vegetação, exemplificam a aplicação dos métodos, mostrando suas vantagens e desvantagens. Nas etapas da geometria e da malha, a representação da vegetação como meio poroso é mais simples, prática e rápida do que a da vegetação como elementos geométricos simplificados. Porém, na parte da modelagem das equações, o método do meio poroso não consegue capturar os processos de mistura no interior da vegetação, enquanto o método dos elementos geométricos simplificados consegue.


ABSTRACT The goal of this work was to present, through computation fluid dynamics (CFD), two methods used in the conceptual and physical representation of vegetation in aquatic environments: the porous media approach and the simplified geometric elements. Three case studies, including a floating wetland and patches of vegetation, exemplify how the methods are applied, showing their advantages and disadvantages. At the geometry and meshing stage, the porous media approach shows to be simpler, faster, and more practical than the simplified geometric elements. However, in the equation modeling, the porous media approach is not able to capture the mixing processes inside the vegetation, while the simplified geometric elements method can capture those processes.

13.
Cardiovasc Eng Technol ; 6(1): 25-35, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26577100

RESUMEN

Cardiac allograft vasculopathy (CAV) is one of the leading causes of morbidity and morality in orthotopic heart transplant (HTx) patients. While disturbed flow patterns have been linked to the spatial localization of atherosclerosis, the role of hemodynamics in CAV development has not been examined. HTx patients (n = 5) requiring percutaneous coronary intervention (PCI) for a focal, epicardial lesion were studied. Angiographic images were retrospectively obtained from baseline (i.e., in the presence of no observed disease) and follow-up catheterizations (i.e., at the time of PCI; 12.4 ± 2.6 years post-HTx). Patient-specific computational models were created from baseline images. Computational fluid dynamic techniques were employed to quantify the hemodynamic environment, which was expressed as normalized time-averaged WSS (TAWSSnorm; measure of temporal WSS magnitude) and normalized WSS angle deviation (WSSADnorm; measure of instantaneous WSS vector oscillation) values. Baseline hemodynamic and follow-up angiographic data were co-registered to investigate the association between WSS and subsequent occlusive CAV lesion location. Results indicate a high degree of co-localization between baseline low WSS data and follow-up occlusive CAV lesion. Local minima in TAWSSnorm were located 2.5 ± 0.6 mm from the site of PCI. Furthermore, local maxima in WSSADnorm were located 3.9 ± 0.7 mm from the site of PCI. In 3 patients, the occlusive lesion formed in a region that was subjected to both low and oscillatory WSS at baseline. There was discernable spatial co-localization between baseline disturbed flow patterns and follow-up CAV lesions requiring PCI. These results suggest a role of fluid mechanics in the development of focal, flow-limiting CAV lesions.


Asunto(s)
Vasos Coronarios/patología , Vasos Coronarios/fisiopatología , Oclusión de Injerto Vascular/patología , Oclusión de Injerto Vascular/fisiopatología , Trasplante de Corazón/efectos adversos , Hemodinámica , Adolescente , Adulto , Aloinjertos , Estudios de Cohortes , Angiografía Coronaria , Estenosis Coronaria/patología , Estenosis Coronaria/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Intervención Coronaria Percutánea , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA