Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; : e202400555, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149944

RESUMEN

Understanding all parameters contributing to enzyme activity is crucial in enzyme catalysis. For enzymatic PET degradation, this involves examining the formation of the enzyme-PET complex. In IsPETase (WT), a PET-degrading enzyme from Ideonellasakaiensis, mutating two non-catalytic residues (DM) significantly enhances activity. Such mutations, depending on their position in the tertiary structure, fine-tune enzyme function. However, detailed molecular insights into these mutations' structurefunction relationship for PET degradation are lacking. This study characterizes IsPETase's catalytic ability compared to WT TfCut2 using molecular dynamics simulations and quantum mechanical methods. We explore the conformational landscape of the enzyme-PET complex and quantify residue-wise interaction energy. Notably, aromatic and hydrophobic residues Tyr, Trp, and Ile in the catalytic subsite S1, and aromatic Phe and polar Asn in the anchoring subsite S3, crucially optimize PET binding. These residues enhance PET specificity over non-aromatic plastics. Our findings suggest that the balance between binding at subsite S1 and subsite S3, which is influenced by cooperative mutations, underlies catalytic activity. This balance shows a positive correlation with experimentally obtained kcat/Km values: WT TfCut2 < WT IsPETase << DM IsPETase.

2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999945

RESUMEN

Montmorillonite (MM) crystal nanoplates acquire anticancer properties when coated with the mitochondrial protein cytochrome c (cytC) due to the cancer cells' capability to phagocytize cytC-MM colloid particles. The introduced exogenous cytC initiates apoptosis: an irreversible cascade of biochemical reactions leading to cell death. In the present research, we investigate the organization of the cytC layer on the MM surface by employing physicochemical and computer methods-microelectrophoresis, static, and electric light scattering-to study cytC adsorption on the MM surface, and protein electrostatics and docking to calculate the local electric potential and Gibbs free energy of interacting protein globules. The found protein concentration dependence of the adsorbed cytC quantity is nonlinear, manifesting a positive cooperative effect that emerges when the adsorbed cytC globules occupy more than one-third of the MM surface. Computer analysis reveals that the cooperative effect is caused by the formation of protein associates in which the cytC globules are oriented with oppositely charged surfaces. The formation of dimers and trimers is accompanied by a strong reduction in the electrostatic component of the Gibbs free energy of protein association, while the van der Waals component plays a secondary role.


Asunto(s)
Bentonita , Citocromos c , Electricidad Estática , Citocromos c/química , Citocromos c/metabolismo , Bentonita/química , Adsorción , Animales , Propiedades de Superficie , Simulación del Acoplamiento Molecular , Termodinámica , Silicatos de Aluminio
3.
Angew Chem Int Ed Engl ; : e202410428, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980962

RESUMEN

Quasi-1D chain antiferromagnets with reduced structural dimensionality are a rich playground for investigating novel quantum phenomena. We report the synthesis, crystal structure, and magnetism of two novel quasi-1D antiferromagnets, ß-PbCu2(TeO3)2Cl2 (I) and PbCu2(TeO3)2Br2 (II). Their magnetic frameworks are constructed via Cu-based quasi-1D [Cu(2)O4]∞ zigzag chains with square-planar [Cu(1)O2X2] (X=Cl or Br) separated among 1D chains. Specific heat measurements show λ peaks at ~9 K and ~19 K for I and II, respectively. Moreover, both broad maximums (χmax=90 K for I and 80 K for II) and small kinks (TN≈9 K for I and 19 K for II) have been observed in magnetic susceptibility measurements of I and II. Bonner-Fisher model fitting, and theoretical analyses were performed to evaluate the magnetic exchange interactions. Our experimental and theoretical results and structure-properties relationship analysis reveal the coexistence of short- and long-range magnetic ordering from the cooperative effect of 1D [CuO4]∞ chains and [CuO2X2] quadrilateral.

4.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298330

RESUMEN

In this work, the MnFe2O4/BGA (boron-doped graphene aerogel) composite prepared via the solvothermal method is applied as a photocatalyst to the degradation of tetracycline in the presence of peroxymonosulfate. The composite's phase composition, morphology, valence state of elements, defect and pore structure were analyzed by XRD, SEM/TEM, XPS, Raman scattering and N2 adsorption-desorption isotherms, respectively. Under the radiation of visible light, the experimental parameters, including the ratio of BGA to MnFe2O4, the dosages of MnFe2O4/BGA and PMS, and the initial pH and tetracycline concentration were optimized in line with the degradation of tetracycline. Under the optimized conditions, the degradation rate of tetracycline reached 92.15% within 60 min, whereas the degradation rate constant on MnFe2O4/BGA remained 4.1 × 10-2 min-1, which was 1.93 and 1.56 times of those on BGA and MnFe2O4, respectively. The largely enhanced photocatalytic activity of the MnFe2O4/BGA composite over MnFe2O4 and BGA could be ascribed to the formation of type I heterojunction on the interfaces of BGA and MnFe2O4, which leads to the efficient transfer and separation of photogenerated charge carriers. Transient photocurrent response and electrochemical impedance spectroscopy tests offered solid support to this assumption. In line with the active species trapping experiments, SO4•- and O2•- radicals are confirmed to play crucial roles in the rapid and efficient degradation of tetracycline, and accordingly, a photodegradation mechanism for the degradation of tetracycline on MnFe2O4/BGA is proposed.


Asunto(s)
Antibacterianos , Tetraciclina , Catálisis , Antibacterianos/química , Tetraciclina/química , Fotólisis , Luz
5.
Molecules ; 27(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268594

RESUMEN

One- and two-photon characterizations of a series of hetero- and homoleptic [RuL3-n(bpy)n]2+ (n = 0, 1, 2) complexes carrying bipyridine π-extended ligands (L), have been carried out. These π-extended D-π-A-A-π-D-type ligands (L), where the electron donor units (D) are based on diphenylamine, carbazolyl, or fluorenyl units, have been designed to modulate the conjugation extension and the donating effect. Density functional theory calculations were performed in order to rationalize the observed spectra. Calculations show that the electronic structure of the π-extended ligands has a pronounced effect on the composition of HOMO and LUMO and on the metallic contribution to frontier MOs, resulting in strikingly different nonlinear properties. This work demonstrates that ILCT transitions are the keystone of one- and two-photon absorption bands in the studied systems and reveals how much MLCT and LLCT charge transfers play a decisive role on the two-photon properties of both hetero- and homoleptic ruthenium complexes through cooperative or suppressive effects.

6.
Chemistry ; 26(44): 9964-9970, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32347608

RESUMEN

The design and the characterization of supramolecular additives to control the chain length of benzene-1,3,5-tricarboxamide (BTA) cooperative supramolecular polymers under thermodynamic equilibrium is unraveled. These additives act as chain cappers of supramolecular polymers and feature one face as reactive as the BTA discotic to interact strongly with the polymer end, whereas the other face is nonreactive and therefore impedes further polymerization. Such a design requires fine tuning of the conformational preorganization of the amides and the steric hindrance of the motif. The chain cappers studied are monotopic derivatives of BTA, modified by partial N-methylation of the amides or by positioning of a bulky cyclotriveratrylene cage on one face of the BTA unit. This study not only clarifies the interplay between structural variations and supramolecular interactions, but it also highlights the necessity to combine orthogonal characterization methods, spectroscopy and light scattering, to elucidate the structures and compositions of supramolecular systems.

7.
Angew Chem Int Ed Engl ; 58(30): 10138-10141, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31115966

RESUMEN

As a major greenhouse gas, methane, which is directly vented from the coal-mine to the atmosphere, has not yet drawn sufficient attention. To address this problem, we report a methane nano-trap that features oppositely adjacent open metal sites and dense alkyl groups in a metal-organic framework (MOF). The alkyl MOF-based methane nano-trap exhibits a record-high methane uptake and CH4 /N2 selectivity at 298 K and 1 bar. The methane molecules trapped within the alkyl MOF were crystalographically identified by single-crystal X-ray diffraction experiments, which in combination with molecular simulation studies unveiled the methane adsorption mechanism within the MOF-based nano-trap. The IAST calculations and the breakthrough experiments revealed that the alkyl MOF-based methane nano-trap is a new benchmark for CH4 /N2 separation, thereby providing a new perspective for capturing methane from coal-mine methane to recover fuel and reduce greenhouse gas emissions.

8.
Nano Lett ; 17(5): 3215-3224, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28358215

RESUMEN

The π-π interactions between organic molecules are among the most important parameters for optimizing the transport and optical properties of organic transistors, light-emitting diodes, and (bio-) molecular devices. Despite substantial theoretical progress, direct experimental measurement of the π-π electronic coupling energy parameter t has remained an old challenge due to molecular structural variability and the large number of parameters that affect the charge transport. Here, we propose a study of π-π interactions from electrochemical and current measurements on a large array of ferrocene-thiolated gold nanocrystals. We confirm the theoretical prediction that t can be assessed from a statistical analysis of current histograms. The extracted value of t ≈35 meV is in the expected range based on our density functional theory analysis. Furthermore, the t distribution is not necessarily Gaussian and could be used as an ultrasensitive technique to assess intermolecular distance fluctuation at the subangström level. The present work establishes a direct bridge between quantum chemistry, electrochemistry, organic electronics, and mesoscopic physics, all of which were used to discuss results and perspectives in a quantitative manner.

9.
Eur Biophys J ; 45(3): 195-207, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26745958

RESUMEN

Aurein 2.6-COOH and aurein 3.1-COOH were studied along with their naturally occurring C-terminally amidated analogues. Circular dichroism (CD) and molecular dynamic (MD) simulations were used to study the effects of amidation on the interaction of antimicrobial peptides (AMPs) with lipid bilayers. CD measurements and MD analysis suggested that both peptide analogues were predominantly random coil and adopted low levels of α-helical structure in solution (<30%) and in the presence of a lipid bilayer the peptides formed a stable α-helical structure. In general, amidated analogues have a greater propensity than the non-amidated peptides to form a α-helical structure. MD simulations predicted that aurein 2.6-COOH and aurein 3.1-CHOOH destabilised lipid bilayers from 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphoserine via angled bilayer penetration. They also showed that aurein 2.6-CONH2 and aurein 3.1-CONH2 formed a helix horizontal to the plane of an asymmetric interface.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Simulación de Dinámica Molecular , Amidas/química , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química
10.
Biochim Biophys Acta ; 1838(11): 2870-81, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25046254

RESUMEN

A systematic analysis of the hypothesis of the antimicrobial peptides' (AMPs) cooperative action is performed by means of full atomistic molecular dynamics simulations accompanied by circular dichroism experiments. Several AMPs from the aurein family (2.5,2.6, 3.1), have a similar sequence in the first ten amino acids, are investigated in different environments including aqueous solution, trifluoroethanol (TFE), palmitoyloleoylphosphatidylethanolamine (POPE), and palmitoyloleoylphosphatidylglycerol (POPG) lipid bilayers. It is found that the cooperative effect is stronger in aqueous solution and weaker in TFE. Moreover, in the presence of membranes, the cooperative effect plays an important role in the peptide/lipid bilayer interaction. The action of AMPs is a competition of the hydrophobic interactions between the side chains of the peptides and the hydrophobic region of lipid molecules, as well as the intra peptide interaction. The aureins 2.5-COOH and 2.6-COOH form a hydrophobic aggregate to minimize the interaction between the hydrophobic group and the water. Once that the peptides reach the water/lipid interface the hydrophobic aggregate becomes smaller and the peptides start to penetrate into the membrane. In contrast, aurein 3.1-COOH forms only a transient aggregate which disintegrates once the peptides reached the membrane, and it shows no cooperativity in membrane penetration.

11.
Polymers (Basel) ; 16(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065400

RESUMEN

Polycarbonate/acrylonitrile butadiene styrene (PC/ABS) blends are widely used as engineering plastic alloys; however, they have a low fire safety level. To improve the flame-retardant property of PC/ABS, a zirconium-based metal-organic framework material (UiO-66) was synthesized with zirconium chloride and terephthalic acid and used as a flame-retardant cooperative agent. Its flame-retardant performance and mode of action in the PC/ABS blends were carefully investigated. The results showed that UiO-66 had good thermal stability and delayed the pyrolysis of the materials, thus significantly enhancing the efficiency of intumescent flame retardants. By compounding 7.0 wt% hexaphenyloxy-cyclotri-phosphazene (HPCTP) with 3.0 wt% UiO-66, the PC/ABS blends reached a limiting oxygen index value of 27.0% and V0 rating in the UL-94 test, showing significantly improved resistance to combustion dripping. In addition, UiO-66 enhanced the smoke and heat suppression characteristics of the intumescent flame-retardant materials. Finally, the flame-retardant mode of action in the blends was indicative of UiO-66 having a cooperative effect on the flame-retardant performance of PC/ABS/HPCTP materials. This work provides good ideas for further development of the flame-retardant ABS/PC.

12.
Adv Mater ; : e2309572, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096076

RESUMEN

The construction of ultrathin porous membranes with stable structures is critical for achieving efficient gas separation. Inspired by the binary-cooperative structural features of bones and teeth-composed of rigid hydroxyapatite and flexible collagen, which confer excellent mechanical strength-a binary-cooperative porous membrane constructed with gel-state zeolitic imidazolate frameworks (g-ZIFs), synthesized using a metal-gel-induced strategy, is proposed. The enlarged cavity size and flexible frameworks of the g-ZIF nanoparticles significantly improve gas adsorption and diffusion, respectively. After thermal treatment, the coordination structures forming rigid segments in the g-ZIF membranes appear at the stacked g-ZIF boundaries, exhibiting a higher Young's modulus than the g-ZIF nanoparticles, denoted as the flexible segments. The g-ZIF membranes demonstrate excellent tensile and compression resistances, attributed to the effective translation of binary-cooperative effects of rigidity and flexibility into the membranes. The resulting dual-aperture structure, composed of g-ZIF nanoparticles surrounded by nanoscale apertures at the boundaries, yields a membrane with a stable CO2 permeance of 4834 GPU and CO2/CH4 selectivity of 90 within 3.0 MPa.

13.
Comput Biol Med ; 180: 108932, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079416

RESUMEN

We propose a shape prior representation-constrained multi-scale features fusion segmentation network for medical image segmentation, including training and testing stages. The novelty of our training framework lies in two modules comprised of the shape prior constraint and the multi-scale features fusion. The shape prior learning model is embedded into a segmentation neural network to solve the problems of low contrast and neighboring organs with intensities similar to the target organ. The latter can provide both local and global contexts to address the issues of large variations in patient postures as well as organ's shape. In the testing stage, we propose a circular collaboration framework strategy which combines a shape generator auto-encoder network model with a segmentation network model, allowing the two models to collaborate with each other, resulting in a cooperative effect that leads to accurate segmentations. Our proposed method is evaluated and demonstrated on the ACDC MICCAI'17 Challenge Dataset, CT scans datasets, namely, in COVID-19 CT lung, and LiTS2017 liver from three different datasets, and its results are compared with the recent state of the art in these areas. Our method ranked 1st on the ACDC Dataset in terms of Dice score and achieved very competitive performance on COVID-19 CT lung and LiTS2017 liver segmentation.


Asunto(s)
COVID-19 , Aprendizaje Profundo , SARS-CoV-2 , Tomografía Computarizada por Rayos X , Humanos , COVID-19/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Hígado/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Bases de Datos Factuales
14.
Plant Physiol Biochem ; 203: 107993, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37678090

RESUMEN

As progressively increasing food safety concerns, diversified plant diseases and abiotic stresses, environmental-friendly bio-pesticides and bio-stimulants combinations may are likely to serve as a vital means of safeguarding green and sustainable food production. Accordingly, in this study, pot and field trials were performed to examine the application potential of the combination of physcion and chitosan-Oligosaccharide (COS) in wheat production. Wheat seeds were coated with physcion and COS and the effects exerted by them on morphology, physiology and yield of the wheat were investigated. As indicated by the results, the combination of physcion and COS not only did not inhibit the growth of wheat seedlings, but also synergistically increased root vigor and photosynthetic pigment content. Simultaneously, the lignin content in the roots and leaves was increased significantly. Moreover, the result confirmed that the combination of both substances reduced the MDA content, which was correlated with the up-regulation of the transcript expression level of antioxidant enzyme genes and the resulting increased enzyme activity. Furthermore, this combination synergistically increased the net photosynthetic rate (Pn) of the flag leaves and ultimately contributed to the increase in yield. Notably, the above-mentioned desirable cooperative effect was not limited by cultivars and cultivation methods. The conclusion of this study suggested that the combination of physcion and COS synergistically improved the photosynthetic rate and resilience in wheat, such that high wheat yields can be more significantly maintained, and future food security can be more effectively ensured.

15.
Bioelectrochemistry ; 143: 107951, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34601262

RESUMEN

Microbiologically influenced corrosion (MIC) is a complex process involving the cooperative effect of different bacterial species that coexist in the biofilm. Early studies focused on the MIC of single bacterial communities. However, in natural and industrial fields, biofilms are mostly composed of a variety of species. In this work, the effect of interspecific interaction on corrosion of X65 steel was investigated through the mixed culture of sulfate reducing bacteria (SRB) and iron oxidizing bacteria (IOB). Results demonstrated that the mixed microbial consortia created a cooperative effect to aggravate the local corrosion of X65 steel. Compared with the single species, the presence of IOB increased the growth activity of SRB cells and promoted the role of SRB in steel corrosion. The corrosion form on the surface of X65 steel gradually changed to annular pits induced by anaerobic SRB. The succession of dominant bacteria and the development of mixed species biofilm led to an increase in corrosion rate and local corrosion. The corrosion mechanism of X65 steel by mixed species biofilm at different stages was carefully elucidated.


Asunto(s)
Acero
16.
Nanomicro Lett ; 14(1): 98, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35394219

RESUMEN

Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety, environmental friendliness, and low cost. However, the freezing of aqueous electrolytes limits the normal operation of batteries at low temperatures. Herein, a series of high-performance and low-cost chloride hydrogel electrolytes with high concentrations and low freezing points are developed. The electrochemical windows of the chloride hydrogel electrolytes are enlarged by > 1 V under cryogenic conditions due to the obvious evolution of hydrogen bonds, which highly facilitates the operation of electrolytes at ultralow temperatures, as evidenced by the low-temperature Raman spectroscopy and linear scanning voltammetry. Based on the Hofmeister effect, the hydrogen-bond network of the cooperative chloride hydrogel electrolyte comprising 3 M ZnCl2 and 6 M LiCl can be strongly interrupted, thus exhibiting a sufficient ionic conductivity of 1.14 mS cm-1 and a low activation energy of 0.21 eV at -50 °C. This superior electrolyte endows a polyaniline/Zn battery with a remarkable discharge specific capacity of 96.5 mAh g-1 at -50 °C, while the capacity retention remains ~ 100% after 2000 cycles. These results will broaden the basic understanding of chloride hydrogel electrolytes and provide new insights into the development of ultralow-temperature aqueous batteries.

17.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458290

RESUMEN

Polypyrrole-decorated tungsten tailing particles (PPY-TTF) were prepared via the in situ polymerization of pyrrole in the presence of tungsten tailing particles (TTF), and then carefully characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TG) analyses. The effect of PPY-TTF on the flame retardancy, smoke suppression property and ageing resistance of intumescent fire-resistant coatings was investigated by a fire protection test, smoke density test and cone calorimeter test. The results show that PPY-TTF exerts excellent cooperative effect on enhancing the flame retardancy and smoke suppression properties of the intumescent fire-retardant coatings, which is ascribed to the formation of more cross-linking structures in the condense phase that enhance the compactness and thermal stability of intumescent char. The cooperative effect of PPY-TTF in the coatings depends on its content, and the coating containing 3 wt% PPY-TTF exhibits the best cooperative effect among the samples, showing a 10.7% reduction in mass loss and 35.4% reduction in flame-spread rating compared to that with 3% TTF. The accelerated ageing test shows that the presence of PPY-TTF greatly slows down the blistering and powdering phenomenon of the coatings, thus endowing the coating with the super durability of fire resistance and smoke suppression property. This work provides a new strategy for the resource utilization of tungsten tailing in the field of flame-retardant materials.

18.
Adv Sci (Weinh) ; 9(27): e2202811, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35871554

RESUMEN

Ammonia recently has gained increasing attention as a carrier for the efficient and safe usage of hydrogen to further advance the hydrogen economy. However, there is a pressing need to develop new ammonia synthesis techniques to overcome the problem of intense energy consumption associated with the widely used Haber-Bosch process. Chemical looping ammonia synthesis (CLAS) is a promising approach to tackle this problem, but the ideal redox materials to drive these chemical looping processes are yet to be discovered. Here, by mining the well-established MP database, the reaction free energies for CLAS involving 1699 bicationic inorganic redox pairs are screened to comprehensively investigate their potentials as efficient redox materials in four different CLAS schemes. A state-of-the-art machine learning strategy is further deployed to significantly widen the chemical space for discovering the promising redox materials from more than half a million candidates. Most importantly, using the three-step H2 O-CL as an example, a new metric is introduced to determine bicationic redox pairs that are "cooperatively enhanced" compared to their corresponding monocationic counterparts. It is found that bicationic compounds containing a combination of alkali/alkaline-earth metals and transition metal (TM)/post-TM/metalloid elements are compounds that are particularly promising in this respect.


Asunto(s)
Metaloides , Elementos de Transición , Álcalis , Amoníaco/química , Ensayos Analíticos de Alto Rendimiento , Hidrógeno/química , Metales Alcalinotérreos , Oxidación-Reducción
19.
Chem Asian J ; 17(21): e202200764, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36066571

RESUMEN

It is of great significance for constructing electrocatalysts with accurate structures and compositions to pinpoint the active sites, thereby improving the C2 products (C2 H4 , C2 H5 OH and CH3 COOH) selectivity during electrocatalytic CO2 reduction raction. Here, we report a tetracopper(I) cluster-based metal-organic framework that exhibits long-term stability and remarkable performance for electroreduction CO2 towards C2 products in an H-type cell with a maximum Faradaic efficiency (FE) of 72%, and delivers a current density of 350 mA cm-2 with a FE(C2 ) up to 46% in a flow cell device, outperforming most of the Cu-based electrocatalysts such as Cu derivatives and Cu nanostructured materials. Importantly, no obvious degradation was observed at 350 mA cm-2 over 20 hours of continuous operation, strengthening the practicability. In-situ infrared spectroscopy analysis showed the cooperative effect of adjacent Cu(I) ions in tetracopper(I) cluster may promote the C-C coupling to generate C2 products.

20.
ACS Appl Mater Interfaces ; 13(12): 14221-14229, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33734661

RESUMEN

CO2 conversion into chemical fuels is a sustainable approach to the concurrent mitigation of the energy crisis and the greenhouse effect. It is still urgently desirable but quite challenging to explore a promising catalyst for CO2 photoreduction due to the severity in the fast recombination of electron holes and the deficiency of active sites, which have a tremendous influence on the catalytic behavior. In this regard, mesoporous TiO2 nanospheres containing oxygen vacancies (OVs) and metallic Au nanoparticles (NPs) were successfully prepared and showed markedly enhanced CO2 reduction activity and CH4 selectivity by the simple combination of photocatalysis with the simultaneous photothermal effect under full-spectrum irradiation. The dual introduction of OVs and a Au/TiO2 Schottky junction can not only serve as an electron sink to significantly improve the charge separation/transfer efficiency but also show effective photothermal conversion to raise the local temperature of the catalyst, thus resulting in an enhanced shuttle of electrons and desorption of products. This study not only offers new insights into the integrated tuning of charge recombination processes but also demonstrates that the photothermocatalysis has great potential in CO2 reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA