Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2403842, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966890

RESUMEN

Constructing versatile metal nanoclusters (NCs) assemblies through noncovalent weak interactions between inter-ligands is a long-standing challenge in interfacial chemistry, while compelling interfacial hydrogen-bond-driven metal NCs assemblies remain unexplored so far. Here, the study reports an amination-ligand o-phenylenediamine-coordinated copper NCs (CuNCs), demonstrating the impact of interfacial hydrogen-bonds (IHBs) motifs on the luminescent behaviors of metal NCs as the alteration of protic solvent. Experimental results supported by theoretical calculation unveil that the flexibility of interfacial ligand and the distance of cuprophilic CuI···CuI interaction between intra-/inter-NCs can be tailored by manipulating the cooperation between the diverse IHBs motifs reconstruction, therewith the IHBs-modulated fundamental structure-property relationships are established. Importantly, by utilizing the IHBs-mediated optical polychromatism of aminated CuNCs, portable visualization of humidity sensing test-strips with fast response is successfully manufactured. This work not only provides further insights into exploring the interfacial chemistry of NCs based on inter-ligands hydrogen-bond interactions, but also offers a new opportunity to expand the practical application for optical sensing of metal NCs.

2.
J Fluoresc ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231366

RESUMEN

In this study, a novel double-emission fluorescence probe at 340 and 400 nm was synthesized by one-pot method using phenylalanine (Phe) and ascorbic acid (AA) as stabilizing and reducing agents. It was found that the fluorescence intensity of the probe at 400 nm could be controlled by controlling the temperature within a certain range, and the ratio of double-emission fluorescence probe could be further regulated. Under the optimal conditions, the fluorescence intensity at 340 nm decreased significantly, while it only showed a slight decrease at 400 nm, which constituted the ratio fluorescence probe. The synthesized fluorescence probe showed good linearity in the range of 0.2-32 µM, and its detection limit was 63.4 nM. Moreover, the method was successfully employed to determine VA in vanilla drink and perfumes, and corresponding results were consistent with those of HPLC.

3.
J Fluoresc ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652358

RESUMEN

Herein, an aqueous phase synthesis approach was presented for the fabrication of copper nanoclusters (Cu NCs) with aggregation-induced emission (AIE) property, utilizing lipoic acid and NaBH4 as ligands and reducing agent, respectively. The as-synthesized Cu NCs exhibit an average size of 3.0 ± 0.2 nm and demonstrate strong solid-state fluorescence upon excitation with UV light. However, when dissolved in water, no observable fluorescent emission is detected in the aqueous solution of Cu NCs. Remarkably, the addition of Methimazole induced a significant red fluorescence from the aqueous solution of Cu NCs. This unexpected phenomenon can be ascribed to the aggregation of negatively charged Cu NCs caused by electrostatic interaction with positively charged imidazole groups in Methimazole, resulting in enhanced fluorescence through AIE mechanism. Therefore, there exists an excellent linear correlation between the fluorescent intensities of Cu NCs aqueous solution and the concentration of Methimazole within a range of 0.1-1.5 mM with a low limit of detection of 82.2 µM. Importantly, the designed enhanced-fluorescent nanoprobe based on Cu NCs exhibits satisfactory performance in assaying commercially available Methimazole tablets, demonstrating its exceptional sensitivity, reliability, and accuracy.

4.
Anal Bioanal Chem ; 416(4): 983-992, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38127274

RESUMEN

Zearalenone (ZEN), produced by Fusarium species, is a potential risk to human health. Traditional enzyme-linked immunosorbent assay (ELISA) is restricted due to low sensitivity for the detection of ZEN. Herein, enzyme nanocomposites (ALP-SA-Bio-ssDNA, ASBD) were prepared with the self-assembly strategy based on streptavidin-labeled alkaline phosphatase (SA-ALP) and dual-biotinylated ssDNA (B2-ssDNA). The enzyme nanocomposites improved the loading amount of ALP and catalyzed more ascorbic acid 2-phosphate to generate ascorbic acid (AA). Subsequently, Cu2+ could be reduced to copper nanoclusters (CuNCs) having strong fluorescence signal by AA with poly T. Benefiting from the high enzyme load of nanocomposites and the strong signal of CuNCs, the fluorescence ELISA was successfully established for the detection of ZEN. The proposed method exhibited lower limit of detection (0.26 ng mL-1) than traditional ELISA (1.55 ng mL-1). The recovery rates ranged from 92.00% to 108.38% (coefficient of variation < 9.50%) for the detection of zearalenone in corn and wheat samples. In addition, the proposed method exhibited no cross reaction with four other mycotoxins. This proposed method could be used in trace detection for food safety.


Asunto(s)
Nanocompuestos , Zearalenona , Humanos , Zearalenona/análisis , Cobre/análisis , Contaminación de Alimentos/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , ADN de Cadena Simple , Límite de Detección
5.
Luminescence ; 39(1): e4677, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38286601

RESUMEN

There is a significant need to accurately measure doxycycline concentrations in view of the adverse effects of an overdose on human health. A fluorescence (FL) detection method was adopted and copper nanoclusters (CuNCs) were synthesized using chemical reduction technology. Based on FL quenching with doxycycline, the prepared CuNCs were used to explore a fluorescent nanoprobe for doxycycline detection. In an optimal sensing environment, this FL nanosensor was sensitive and selective in doxycycline sensing and displayed a linear relationship in the range 0.5-200 µM with a detection limit of 0.092 µΜ. A characterization test demonstrated that CuNCs offered active functional groups for identifying doxycycline using electrostatic interaction and hydrogen bonds. Static quenching and the inner filter effect (IFE) resulted in weakness in the FL of His@CuNCs with doxycycline with great efficiency. This suggested nanosensor was revealed to be a functional model for simple and rapid detection of doxycycline in real samples with very pleasing accuracy.


Asunto(s)
Cobre , Nanopartículas del Metal , Humanos , Cobre/química , Histidina , Doxiciclina , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Nanopartículas del Metal/química , Límite de Detección
6.
Luminescence ; 39(3): e4702, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418861

RESUMEN

Tannic acid (TA), as a stabilizing agent, was successfully utilized to establish blue-emitting copper nanoclusters (TA-Cu NCs) on the basis of a facile chemical reduction preparation method. Characterization results proved successful synthesis of TA-Cu NCs with uniform size and excellent stability. TA-Cu NCs exhibited a blue emission wavelength at 431 nm when excited at 364 nm. Interestingly, the as-prepared TA-Cu NCs were selectively quenched by furazolidone based on static quenching. In addition, this analysis platform for furazolidone detection had an excellent linear range from 0.5 to 120 µM with a detection limit of 0.074 µM (S/N = 3). Furthermore, the accuracy of this sensing method was successfully confirmed by detecting furazolidone in bovine serum samples, indicating that TA-Cu NCs had bright application prospects.


Asunto(s)
Cobre , Nanopartículas del Metal , Polifenoles , Cobre/química , Furazolidona , Espectrometría de Fluorescencia , Colorantes Fluorescentes/química , Nanopartículas del Metal/química
7.
Luminescence ; 39(2): e4689, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38361140

RESUMEN

A new type of polyethyleneimine-protected copper nanoclusters (PEI-CuNCs) is favorably developed by a one-pot method under mild conditions. The obtained PEI-CuNCs is characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy and other techniques. It is worth noting that the proposed PEI-CuNCs demonstrate a selective response to chromium(VI) over other competitive species. Fluorescence quenching of PEI-CuNCs is determined to be chromium(VI) concentrations dependence with a low limit of detection of 8.9 nM. What is more, the as-developed PEI-CuNCs is further employed in building a detection platform for portable recognition of chromium(VI) in real samples with good accuracy. These findings may offer a distinctive strategy for the development of methods for analyzing and monitoring chromium(VI) and expand their application in real sample monitoring.


Asunto(s)
Cromo , Nanopartículas del Metal , Polietileneimina , Polietileneimina/química , Cobre/química , Espectrometría de Fluorescencia/métodos , Colorantes , Colorantes Fluorescentes/química , Límite de Detección , Nanopartículas del Metal/química
8.
Mikrochim Acta ; 191(2): 119, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300297

RESUMEN

A ratiometric fluorescence platform was developed based on the cobalt oxyhydroxide (CoOOH) nanosheet-modulated fluorescence response of blue emissive copper nanoclusters (Cu NCs) and yellow emissive o-phenylenediamine (OPD). CoOOH nanosheets showed dual function of strong absorption and oxidation ability, which can effectively quench the blue fluorescence of Cu NCs, with an excitation and emission peak maximum at 390 and 450 nm, respectively , and transfer the OPD into yellow fluorescence products, with an excitation and emission peak maximum at 390 and 560 nm, respectively. Upon introducing butyrylcholinesterase (BChE) and its substrates, CoOOH nanosheets were decomposed into Co2+, and malachite green (MG) showed strong inhibition ability to this  process. This resulted in the obvious difference on the ratio of blue and yellow fluorescence recorded on the system in the presence and absence of MG, which was utilized for the quantitative detection of MG, with a limit of detection of 0.140 µM and a coefficient of variation of 3.5%. The fluorescence ratiometric assay showed excellent detection performances in practical sample analysis.


Asunto(s)
Butirilcolinesterasa , Cobalto , Cobre , Óxidos , Fenilendiaminas , Animales , Colorantes de Rosanilina , Peces
9.
Mikrochim Acta ; 191(9): 511, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103612

RESUMEN

A sequential dual-locked luminescent copper nanoclusters (CuNCs) probe was designed and synthesized for the specific imaging and selective killing of tumor cells. This nanoprobe was prepared by first forming a Fe3+-coupled tannic acid (TA)-stabilized CuNCs (CuNCs-FeIII), which is in quenching state due to the electron transfer between CuNCs and Fe3+, and then coating a protectable layer of hyaluronic acid (HA) on the surface of CuNCs-FeIII to form the final dual-locked nanoprobe (CuNCs-FeIII@HA). When the nanoprobe of CuNCs-FeIII@HA target enter the tumor cells through CD44-HA receptor, HAase will first digest the HA layer of the nanoprobes, and then, GSH over-expressed in tumor cells will reduce Fe3+ to Fe2+, thus restoring the fluorescence emission of CuNCs and at the same time killing the tumor cells with the hydroxyl free radicals (∙OH) produced by the Fenton reaction between Fe2+ and H2O2. This sequential dual-locked luminescent nanoprobe of CuNCs-FeIII@HA has been successfully used for the specific imaging and selective killing of tumor cells.


Asunto(s)
Cobre , Cobre/química , Humanos , Nanopartículas del Metal/química , Ácido Hialurónico/química , Taninos/química , Imagen Óptica , Colorantes Fluorescentes/química , Supervivencia Celular/efectos de los fármacos , Sustancias Luminiscentes/química , Sustancias Luminiscentes/síntesis química , Línea Celular Tumoral , Radical Hidroxilo/química , Antineoplásicos/farmacología , Antineoplásicos/química , Peróxido de Hidrógeno/química
10.
Drug Dev Ind Pharm ; 50(4): 341-353, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38470160

RESUMEN

OBJECTIVE: To develop nontoxic and stable fluorescent emission B-Cu nanoclusters (NCs) for the specific detection of dopamine at low concentrations in cerebrospinal fluid (CSF). SIGNIFICANCE: Fluorescent gold and copper NCs conjugated with proteins, such as bovine serum albumin (BSA), offer photostability and healthcare potential. This study focused on fabricating B-Cu NCs that exhibited superior characteristics for sensitive dopamine detection. METHODS: The study employed various instrumental techniques including attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), spectrofluorometry, and transmission electron microscopy (TEM) to characterize the formulated B-Cu NCs. The NCs were synthesized, resulting in particle size ∼300 nm. The highest observed fluorescence was recorded at 24542.81 relative fluorescence units (RFU). RESULTS: The introduction of dopamine at concentrations of 0.1, 0.2, 0.3, and 0.4 ng/mL led to decreased fluorescence in both B-Au and B-Cu NCs due to an electron transport system. This reduction in fluorescence allowed dopamine concentration analysis in phosphate buffer and biological fluids such as blood plasma and CSF. B-Cu NCs showed potential as a biosensing system for point-of-care (POC) applications, specifically for diagnosing schizophrenia. CONCLUSION: The study successfully synthesized stable and nontoxic B-Cu NCs with enhanced fluorescent emission properties. These NCs exhibited the capacity to detect dopamine at low concentrations in CSF. The study's findings hold promise for future applications, particularly in the development of a B-Cu NCs-based biosensing system for convenient POC detection of schizophrenia by both patients and clinicians. The potential impact of this technology on healthcare and biomedical fields is substantial.


Asunto(s)
Nanopartículas del Metal , Esquizofrenia , Humanos , Cobre , Albúmina Sérica Bovina/química , Dopamina , Oro/química , Colorantes , Nanopartículas del Metal/química , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes
11.
Angew Chem Int Ed Engl ; 63(29): e202401724, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691401

RESUMEN

The dual emission (DE) characteristics of atomically precise copper nanoclusters (Cu NCs) are of significant theoretical and practical interest. Despite this, the underlying mechanism driving DE in Cu NCs remains elusive, primarily due to the complexities of excited state processes. Herein, a novel [Cu4(PPh3)4(C≡C-p-NH2C6H4)3]PF6 (Cu4) NC, shielded by alkynyl and exhibiting DE, was synthesized. Hydrostatic pressure was applied to Cu4, for the first time, to investigate the mechanism of DE. With increasing pressure, the higher-energy emission peak of Cu4 gradually disappeared, leaving the lower-energy emission peak as the dominant emission. Additionally, the Cu4 crystal exhibited notable piezochromism transitioning from cyan to orange. Angle-dispersive synchrotron X-ray diffraction results revealed that the reduced inter-cluster distances under pressure brought the peripheral ligands closer, leading to the formation of new C-H⋅⋅⋅N and N-H⋅⋅⋅N hydrogen bonds in Cu4. It is proposed that these strengthened hydrogen bond interactions limit the ligands' vibration, resulting in the vanishing of the higher-energy peak. In situ high-pressure Raman and vibrationally resolved emission spectra demonstrated that the benzene ring C=C stretching vibration is the structural source of the DE in Cu4.

12.
J Fluoresc ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882933

RESUMEN

In this article, the water-soluble blue-light-emitting copper nanoclusters (CuNCs) were prepared by polyvinylpyrrolidone (PVP) and ascorbic acid as templating and reducing agents, respectively. The optimization of synthesis conditions of PVP-CuNCs were studied and analyzed. And the quantum yield of the PVP-CuNCs was calculated to be 14.97%. It had good specificity and exceptionally sensitive detection for sodium dichloroisocyanurate (DCCNa)/rosmarinic acid (RA), with a linear response range of 0.030-2.400/0.030-0.900 µM and corresponding LOD value of 10.766/8.985 nM. Moreover, the fluorescent reaction mechanisms of the PVP-CuNCs-DCCNa and PVP-CuNCs-DCCNa-RA systems were discussed, and the sensing probe could be effectively used for the assays of DCCNa and RA in genuine samples, whose results were acceptable.

13.
J Dairy Sci ; 106(9): 5930-5939, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37474367

RESUMEN

Escherichia coli O157:H7 poses a threat to humans. Traditional ELISA is not a sensitive method for the detection of E. coli O157:H7. Here, an efficient method was designed for improving the load capacity of alkaline phosphatase (ALP) with streptavidin scaffolded DNA tetrad (SS-DNAt). With more ALP, more ascorbic acid 2-phosphate was catalyzed to ascorbic acid that was used to synthesize fluorescence poly adenine-thymine-templated copper nanoclusters. Based on SS-DNAt, fluorescence ELISA was successfully proposed for improving the sensitivity for detection of E. coli O157:H7 in milk samples. The method showed a linear range of 104 to 106 cfu/mL. The limit of detection of fluorescence ELISA was 3.75 × 103 cfu/mL and 6.16-fold better than that of traditional ELISA. The recovery of the fluorescence ELISA was 86.7 to 93.6% with the coefficient of variation of 5.6 to 10.5% in milk. This method could be used to detect hazardous material in food.


Asunto(s)
Escherichia coli O157 , Humanos , Animales , Estreptavidina , Ensayo de Inmunoadsorción Enzimática/veterinaria , Leche , ADN , Microbiología de Alimentos
14.
Mikrochim Acta ; 190(12): 487, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38010451

RESUMEN

A new ratiometric fluorescent probe for efficient determination of ALP was developed. The probe was constructed by combining Ce3+-crosslinked copper nanoclusters (Ce3+-CuNCs) which exhibit the aggregation-induced emission (AIE) feature with carbon dots (CDs). The introduction of phosphate (Pi) induced the generation of CePO4 precipitation, resulting in significant decrease of fluorescence emission of CuNCs at 634 nm. At the same time, the fluorescence of CDs at 455 nm was obviously enhanced, thus generating ratiometric fluorescence response. Based on the fact that the hydrolysis of pyrophosphate (PPi) by ALP can produce Pi, the CD/Ce3+-CuNCs ratiometric probe was successfully used to determine ALP. A good linear relationship between the ratiometric value of F455/F634 and ALP concentrations ranging from 0.2 to 80 U·L- 1 was obtained, with a low detection limit of 0.1 U·L- 1. The ratiometric responses of the probe resulted in the visible fluorescence color change from orange red to blue with the increase of ALP concentration. The smartphone-based RGB recognition of the fluorescent sample images was used for ALP quantitative determination. A novel ratiometric fluorescent system based on Ce3+-CuNCs with AIE feature and CDs were constructed for efficient detection of ALP.


Asunto(s)
Puntos Cuánticos , Cobre , Fosfatasa Alcalina , Carbono , Fluorescencia
15.
Mikrochim Acta ; 190(10): 403, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37728643

RESUMEN

An unsophisticated fluorescence-enabled strategy is brought forward to process the highly sensitive fluorescence detection of Salmonella typhimurium (S. typhimurium) which based on polyethyleneimine (PEI)-templated silver/copper nanoclusters (Ag/CuNCs) (λ excitation = 334 nm and λ emission = 466 nm) with cryonase-assisted target recycling amplification. The Ag/CuNCs nanoclusters are synthesized as fluorescent materials due to their strong and stable fluorescence characteristics and are modified with S. typhimurium aptamers to form aptamer-Ag/CuNCs probes. The probes can be adsorbed on the surface of quenching agents-polydopamine nanospheres (PDANSs), thereby inducing fluorescence quenching of the probes. Once the aptamers are bound to the target, the aptamers/targets complexes are separated from the PDANSs surface, and the Ag/CuNCs recover the fluorescence signal. The released complexes will immediately be transformed into a substrate digested by cryonase (an enzyme that can digest all types of nucleic acids), and the released targets are bound to another aptamers to initiate the next round of cleavage. This reaction will be repeated continuously until all relevant aptamers are consumed and all Ag/CuNCs are released, resulting in a significant amplification of the fluorescence signal and improved sensitivity. Using Ag/CuNCs as fluorescent probes combined with cryonase-assisted amplification strategy, the fluorescence aptasensor is constructed with detection limits as low as 3.8 CFU mL-1, which is tenfold better than without the cryonase assistance. The method developed has been applied to milk, orange juice, chicken, and egg white samples with excellent selectivity and accuracy providing an approach for the early and rapid detection of S. typhimurium in food.


Asunto(s)
Cobre , Salmonella typhimurium , Animales , Plata , Pollos , Colorantes Fluorescentes , Oligonucleótidos
16.
Sensors (Basel) ; 23(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37420598

RESUMEN

A simple and rapid method for determining mercury (II) has been developed using L-cysteine-capped copper nanocluster (CuNCs) with o-phenylenediamine (OPD) as the sensor. The characteristic fluorescence peak of the synthesized CuNCs was observed at 460 nm. The fluorescence properties of CuNCs were strongly influenced by the addition of mercury (II). Upon addition, CuNCs were oxidized to form Cu2+. Then, the OPD were rapidly oxidized by Cu2+ to form o-phenylenediamine oxide (oxOPD), as evidenced by the strong fluorescence peak at 547 nm, resulting in a decrease in the fluorescence intensity at 460 nm and an increase in the fluorescence intensity at 547 nm. Under optimal conditions, a calibration curve between the fluorescence ratio (I547/I460) and mercury (II) concentration was constructed with a linearity of 0-1000 µg L-1. The limit of detection (LOD) and limit of quantification (LOQ) were found at 18.0 µg L-1 and 62.0 µg L-1, respectively. The recovery percentage was in the range of 96.8-106.4%. The developed method was also compared with the standard ICP-OES method. The results were found to be not significantly different at a 95% confidence level (tstat = 0.365 < tcrit = 2.262). This demonstrated that the developed method could be applied for detecting mercury (II) in natural water samples.


Asunto(s)
Mercurio , Nanopartículas del Metal , Agua , Espectrometría de Fluorescencia/métodos , Cobre , Límite de Detección , Colorantes Fluorescentes
17.
Nano Lett ; 22(15): 6121-6127, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35895973

RESUMEN

DNA-templated copper nanoclusters (CuNCs) have limited applications because of their low fluorescence stability (several tens of minutes). In this study, we prepared CuNCs with improved temporal fluorescence stability by introducing fructose into the CuNC synthesis process and optimizing the reaction conditions. The inclusion of fructose increased the operating lifetime of CuNCs by approximately 5200-fold from 30 min to 108 days and improved their stability against heat, acids, and bases compared to CuNCs synthesized under original conditions. In addition, the fluorescence signal of CuNCs was maintained for a significantly longer time when stored at refrigeration (4 °C) and freezing (-20 °C) temperatures. Importantly, this method did not require the addition of substances other than fructose or any additional physicochemical treatment to maintain the fluorescence of DNA-templated CuNCs for more than several tens of days. As such, this study could serve as a basis to improve the stability of CuNCs for various applications.


Asunto(s)
Cobre , Nanopartículas del Metal , Cobre/química , ADN/química , Colorantes Fluorescentes/química , Fructosa , Nanopartículas del Metal/química , Espectrometría de Fluorescencia/métodos
18.
Angew Chem Int Ed Engl ; 62(44): e202312053, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37698462

RESUMEN

Copper nanoclusters (CuNCs) are emerging electrochemiluminescence (ECL) emitters with unique molecule-like electronic structures, high abundance, and low cost. However, the synthesis of CuNCs with high ECL efficiency and stability in a scalable manner remains challenging. Here, we report a facile gram-scale approach for preparing self-assembled CuNCs (CuNCsAssy ) induced by ligands with exceptionally boosted anodic ECL and stability. Compared to the disordered aggregates that are inactive in ECL, the CuNCsAssy shows a record anodic ECL efficiency for CuNCs (10 %, wavelength-corrected, relative to Ru(bpy)3 Cl2 /tripropylamine). Mechanism studies revealed the unusual dual functions of ligands in simultaneously facilitating electrochemical excitation and radiative transition. Moreover, the assembly addressed the limitation of poor stability of conventional CuNCs. As a proof of concept, an ECL biosensor for alkaline phosphatase detection was successfully constructed with an ultralow limit of detection of 8.1×10-6  U/L.


Asunto(s)
Técnicas Biosensibles , Cobre , Cobre/química , Ligandos , Mediciones Luminiscentes , Técnicas Electroquímicas
19.
J Fluoresc ; 32(5): 1949-1957, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35776261

RESUMEN

The determination of pyrophosphate and alkaline phosphatase activity plays a significant role in medical diagnosis. In this work, a label-free "ON-OFF-ON" fluorescence strategy is developed for the analysis of pyrophosphate and alkaline phosphatase activity. Using PolyT single strand DNA as templates to synthesize fluorescent copper nanoparticles, the coordination effect of pyrophosphoric acid on Cu2+ inhibited the generation of fluorescence. Afterwards, the addition of alkaline phosphatase into hydrolyze pyrophosphoric acid resulted in the release of Cu2+, whereby the fluorescence intensity could be recovered. Thereupon enhanced-sensitivity for alkaline phosphatase was obtained (0.1 mU/L), much better than previously reported methods. Meanwhile, it could be performed directly in homogeneous solution, which was very close to the actual activity level of alkaline phosphatase under physiological conditions. Likewise, satisfactory results were also obtained in specificity assessment, which demonstrated its potential application in clinical diagnosis. Notably, a new, sensitive, low-cost, short-time, and high-sensitivity platform for alkaline phosphatase detection was constructed, and the design of biosensor using DNA-templated Copper nanoclusters (CuNCs) was instructed in this study.


Asunto(s)
Difosfatos , Nanopartículas del Metal , Fosfatasa Alcalina/análisis , Fosfatasa Alcalina/metabolismo , Cobre/análisis , ADN de Cadena Simple , Colorantes Fluorescentes , Espectrometría de Fluorescencia/métodos
20.
Bioorg Chem ; 125: 105827, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35569188

RESUMEN

Hybridimagingtechnology has the potential to provide reliable imagingand accurate detection of cancer cells by combining the advantages and overcoming the shortages of various clinical imaging tools. Nanomaterials with unique targeting properties and their small size have improved biomedical imaging. Indeed, their small size determines local contrast agent concentrations in tumors by enhanced permeability and retention (EPR) effect. In this work, amino-modified silica-coated Gadolinium-Copper Nanoclusters were fabricated and conjugated to AS1411 aptamer (Apt-ASGCuNCs) and radiolabeled with technetium-99 m (99mTc) for in vivo fluorescence imaging, magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT). The synthesized nanoconjugate was fully characterized by transmission electron microscopy (TEM), element mapping, fluorescence spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, XTT assay, and apoptosis and necrosis methods were applied to study toxicity. Radiochemical yield was calculated 93% that revealed a great potential for complex formation between Apt-ASGCuNCs and 99mTcO4-. Also, good stability of 99mTc-Apt-ASGCuNCs was found in the human serum up to 4 h. Both Apt-ASGCuNCs and 99mTc-Apt-ASGCuNCs indicated a considerable tumor-targeting in in vivo fluorescence imaging, MRI and SPECT with 4T1 tumor-bearing BALB/c mice. The biodistribution results showed no undesirable accumulation of 99mTc-Apt-ASGCuNCs in the liver, and spleen as it circulated freely in the blood pool. Meanwhile, 99mTc-Apt-ASGCuNCs were removed from the body through the renal clearance system, making it more convenient for future multimodality imaging applications.


Asunto(s)
Gadolinio , Neoplasias , Animales , Aptámeros de Nucleótidos , Cobre , Gadolinio/química , Ratones , Imagen Multimodal , Oligodesoxirribonucleótidos , Radiofármacos , Dióxido de Silicio , Tecnecio , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA