Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Neurosci ; 40(37): 7169-7186, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32801153

RESUMEN

Conditional gene inactivation and restoration are powerful tools for studying gene functions in the nervous system and for modeling neuropsychiatric diseases. The combination of the two is necessary to interrogate specific cell types within defined developmental stages. However, very few methods and animal models have been developed for such purpose. Here we present a versatile method for conditional gene inactivation and in situ restoration through reversibly inverting a critical part of its endogenous genomic sequence by Cre- and Flp-mediated recombinations. Using this method, we generated a mouse model to manipulate Mecp2, an X-linked dosage-sensitive gene whose mutations cause Rett syndrome. Combined with multiple Cre- and Flp-expressing drivers and viral tools, we achieved efficient and reliable Mecp2 inactivation and restoration in the germline and several neuronal cell types, and demonstrated phenotypic reversal and prevention on cellular and behavioral levels in male mice. This study not only provides valuable tools and critical insights for Mecp2 and Rett syndrome, but also offers a generally applicable strategy to decipher other neurologic disorders.SIGNIFICANCE STATEMENT Studying neurodevelopment and modeling neurologic disorders rely on genetic tools, such as conditional gene regulation. We developed a new method to combine conditional gene inactivation and restoration on a single allele without disturbing endogenous expression pattern or dosage. We applied it to manipulate Mecp2, a gene residing on X chromosome whose malfunction leads to neurologic disease, including Rett syndrome. Our results demonstrated the efficiency, specificity, and versatility of this new method, provided valuable tools and critical insights for Mecp2 function and Rett syndrome research, and offered a generally applicable strategy to investigate other genes and genetic disorders.


Asunto(s)
Marcación de Gen/métodos , Proteína 2 de Unión a Metil-CpG/metabolismo , Fenotipo , Síndrome de Rett/genética , Animales , ADN Nucleotidiltransferasas/genética , ADN Nucleotidiltransferasas/metabolismo , Mutación de Línea Germinal , Integrasas/genética , Integrasas/metabolismo , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Movimiento , Neuronas/metabolismo , Neuronas/fisiología , Síndrome de Rett/patología
2.
Neuron ; 93(1): 33-47, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27989459

RESUMEN

To decipher neural circuits underlying brain functions, viral tracers are widely applied to map input and output connectivity of neuronal populations. Despite the successful application of retrograde transsynaptic viruses for identifying presynaptic neurons of transduced neurons, analogous anterograde transsynaptic tools for tagging postsynaptically targeted neurons remain under development. Here, we discovered that adeno-associated viruses (AAV1 and AAV9) exhibit anterograde transsynaptic spread properties. AAV1-Cre from transduced presynaptic neurons effectively and specifically drives Cre-dependent transgene expression in selected postsynaptic neuronal targets, thus allowing axonal tracing and functional manipulations of the latter input-defined neuronal population. Its application in superior colliculus (SC) reveals that SC neuron subpopulations receiving corticocollicular projections from auditory and visual cortex specifically drive flight and freezing, two different types of defense behavior, respectively. Together with an intersectional approach, AAV-mediated anterograde transsynaptic tagging can categorize neurons by their inputs and molecular identity, and allow forward screening of distinct functional neural pathways embedded in complex brain circuits.


Asunto(s)
Corteza Auditiva/fisiología , Dependovirus , Reacción de Fuga/fisiología , Reacción Cataléptica de Congelación/fisiología , Neuronas/fisiología , Colículos Superiores/fisiología , Sinapsis/fisiología , Corteza Visual/fisiología , Animales , Corteza Auditiva/citología , Conducta Animal/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , ADN Nucleotidiltransferasas , Integrasas , Ratones , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Colículos Superiores/citología , Corteza Visual/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA