Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(6): e2308215121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38294944

RESUMEN

In various biological systems, information from many noisy molecular receptors must be integrated into a collective response. A striking example is the thermal imaging organ of pit vipers. Single nerve fibers in the organ reliably respond to milli-Kelvin (mK) temperature increases, a thousand times more sensitive than their molecular sensors, thermo-transient receptor potential (TRP) ion channels. Here, we propose a mechanism for the integration of this molecular information. In our model, amplification arises due to proximity to a dynamical bifurcation, separating a regime with frequent and regular action potentials (APs), from a regime where APs are irregular and infrequent. Near the transition, AP frequency can have an extremely sharp dependence on temperature, naturally accounting for the thousand-fold amplification. Furthermore, close to the bifurcation, most of the information about temperature available in the TRP channels' kinetics can be read out from the times between consecutive APs even in the presence of readout noise. A key model prediction is that the coefficient of variation in the distribution of interspike times decreases with AP frequency, and quantitative comparison with experiments indeed suggests that nerve fibers of snakes are located very close to the bifurcation. While proximity to such bifurcation points typically requires fine-tuning of parameters, we propose that having feedback act from the order parameter (AP frequency) onto the control parameter robustly maintains the system in the vicinity of the bifurcation. This robustness suggests that similar feedback mechanisms might be found in other sensory systems which also need to detect tiny signals in a varying environment.


Asunto(s)
Crotalinae , Canales de Potencial de Receptor Transitorio , Animales , Serpientes/fisiología , Temperatura , Potenciales de Acción
2.
Proc Natl Acad Sci U S A ; 120(9): e2208998120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827262

RESUMEN

The brain is in a state of perpetual reverberant neural activity, even in the absence of specific tasks or stimuli. Shedding light on the origin and functional significance of such a dynamical state is essential to understanding how the brain transmits, processes, and stores information. An inspiring, albeit controversial, conjecture proposes that some statistical characteristics of empirically observed neuronal activity can be understood by assuming that brain networks operate in a dynamical regime with features, including the emergence of scale invariance, resembling those seen typically near phase transitions. Here, we present a data-driven analysis based on simultaneous high-throughput recordings of the activity of thousands of individual neurons in various regions of the mouse brain. To analyze these data, we construct a unified theoretical framework that synergistically combines a phenomenological renormalization group approach and techniques that infer the general dynamical state of a neural population, while designing complementary tools. This strategy allows us to uncover strong signatures of scale invariance that are "quasiuniversal" across brain regions and experiments, revealing that all the analyzed areas operate, to a greater or lesser extent, near the edge of instability.


Asunto(s)
Encéfalo , Neuronas , Animales , Ratones , Encéfalo/fisiología , Neuronas/fisiología
3.
Proc Natl Acad Sci U S A ; 120(21): e2302701120, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192166

RESUMEN

We describe the confining instabilities of a proposed quantum spin liquid underlying the pseudogap metal state of the hole-doped cuprates. The spin liquid can be described by a SU(2) gauge theory of Nf = 2 massless Dirac fermions carrying fundamental gauge charges-this is the low-energy theory of a mean-field state of fermionic spinons moving on the square lattice with π-flux per plaquette in the ℤ2 center of SU(2). This theory has an emergent SO(5)f global symmetry and is presumed to confine at low energies to the Néel state. At nonzero doping (or smaller Hubbard repulsion U at half-filling), we argue that confinement occurs via the Higgs condensation of bosonic chargons carrying fundamental SU(2) gauge charges also moving in π ℤ2-flux. At half-filling, the low-energy theory of the Higgs sector has Nb = 2 relativistic bosons with a possible emergent SO(5)b global symmetry describing rotations between a d-wave superconductor, period-2 charge stripes, and the time-reversal breaking "d-density wave" state. We propose a conformal SU(2) gauge theory with Nf = 2 fundamental fermions, Nb = 2 fundamental bosons, and a SO(5)f×SO(5)b global symmetry, which describes a deconfined quantum critical point between a confining state which breaks SO(5)f and a confining state which breaks SO(5)b. The pattern of symmetry breaking within both SO(5)s is determined by terms likely irrelevant at the critical point, which can be chosen to obtain a transition between Néel order and d-wave superconductivity. A similar theory applies at nonzero doping and large U, with longer-range couplings of the chargons leading to charge order with longer periods.

4.
Proc Natl Acad Sci U S A ; 120(39): e2305943120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37738298

RESUMEN

Different superconducting pairing mechanisms are markedly distinct in the underlying Cooper pair kinematics. Quantum-critical soft modes drive pairing interactions in which the pair scattering processes are highly collinear and can be classified into two categories: forward scattering and backscattering. Conversely, in conventional phonon mechanisms, Cooper pair scattering is of a generic noncollinear character. In this study, we present a method to discern the kinematic type by observing the evolution of superconductivity while adjusting the Fermi surface geometry. To demonstrate our approach, we utilize the recently reported phase diagrams of untwisted graphene multilayers. Our analysis connects the emergence of superconductivity at "ghost crossings" of Fermi surfaces in distinct valleys to the pair kinematics of a backscattering type. Together with the observed nonmonotonic behavior of superconductivity near its onset (sharp rise followed by a drop), it lends strong support to a particular quantum-critical superconductivity scenario in which pairing is driven by intervalley coherence fluctuations. These findings offer direct insights into the genesis of pairing in these systems, providing compelling evidence for the electron-electron interactions driving superconductivity. More broadly, our work highlights the potential of tuning bands via ghost crossings as a promising means of boosting superconductivity.

5.
Proc Natl Acad Sci U S A ; 120(30): e2300903120, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459538

RESUMEN

Strange metals appear in a wide range of correlated materials. Electronic localization-delocalization and the expected loss of quasiparticles characterize beyond-Landau metallic quantum critical points and the associated strange metals. Typical settings involve local spins. Systems that contain entwined degrees of freedom offer new platforms to realize unusual forms of quantum criticality. Here, we study the fate of an SU(4) spin-orbital Kondo state in a multipolar Bose-Fermi Kondo model, which provides an effective description of a multipolar Kondo lattice, using a renormalization-group method. We show that at zero temperature, a generic trajectory in the model's parameter space contains two quantum critical points, which are associated with the destruction of Kondo entanglement in the orbital and spin channels, respectively. Our asymptotically exact results reveal an overall phase diagram, provide the theoretical basis to understand puzzling recent experiments of a multipolar heavy fermion metal, and point to a means of designing different forms of quantum criticality and strange metallicity in a variety of strongly correlated systems.

6.
Proc Natl Acad Sci U S A ; 119(10): e2116980119, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238676

RESUMEN

SignificanceThe elusive strange metal phase (ground state) was observed in a variety of quantum materials, notably in f-electron-based rare-earth intermetallic compounds. Its emergence has remained unclear. Here, we propose a generic mechanism for this phenomenon driven by the interplay of the gapless fermionic short-ranged antiferromagnetic spin correlation and critical bosonic charge fluctuations near a Kondo breakdown quantum phase transition. It is manifested as a fluctuating Kondo-scattering-stabilized critical (gapless) fermionic spin liquid. It shows [Formula: see text] scaling in dynamical electron scattering rate, a signature of quantum criticality. Our results on quasilinear-in-temperature scattering rate and logarithmic-in-temperature divergence in specific heat coefficient as temperature vanishes were recently seen in CePd[Formula: see text]NixAl.

7.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35145021

RESUMEN

Mounting evidence suggests that during conscious states, the electrodynamics of the cortex are poised near a critical point or phase transition and that this near-critical behavior supports the vast flow of information through cortical networks during conscious states. Here, we empirically identify a mathematically specific critical point near which waking cortical oscillatory dynamics operate, which is known as the edge-of-chaos critical point, or the boundary between stability and chaos. We do so by applying the recently developed modified 0-1 chaos test to electrocorticography (ECoG) and magnetoencephalography (MEG) recordings from the cortices of humans and macaques across normal waking, generalized seizure, anesthesia, and psychedelic states. Our evidence suggests that cortical information processing is disrupted during unconscious states because of a transition of low-frequency cortical electric oscillations away from this critical point; conversely, we show that psychedelics may increase the information richness of cortical activity by tuning low-frequency cortical oscillations closer to this critical point. Finally, we analyze clinical electroencephalography (EEG) recordings from patients with disorders of consciousness (DOC) and show that assessing the proximity of slow cortical oscillatory electrodynamics to the edge-of-chaos critical point may be useful as an index of consciousness in the clinical setting.


Asunto(s)
Corteza Cerebral/fisiología , Estado de Conciencia/fisiología , Fenómenos Electrofisiológicos , Animales , Mapeo Encefálico , Humanos
8.
Proc Natl Acad Sci U S A ; 119(51): e2210235119, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36516067

RESUMEN

We report that high-quality single crystals of the hexagonal heavy fermion material uranium diauride (UAu2) become superconducting at pressures above 3.2 GPa, the pressure at which an unusual antiferromagnetic state is suppressed. The antiferromagnetic state hosts a marginal fermi liquid and the pressure evolution of the resistivity within this state is found to be very different from that approaching a standard quantum phase transition. The superconductivity that appears above this transition survives in high magnetic fields with a large critical field for all field directions. The critical field also has an unusual angle dependence suggesting that the superconductivity may have an order parameter with multiple components. An order parameter consistent with these observations is predicted to host half-quantum vortices (HQVs). Such vortices can be topologically entangled and have potential applications in quantum computing.

9.
Proc Natl Acad Sci U S A ; 119(49): e2209549119, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442120

RESUMEN

Nontrivial quantum states can be realized in the vicinity of the quantum critical point (QCP) in many strongly correlated electron systems. In particular, an emergence of unconventional superconductivity around the QCP strongly suggests that the quantum critical fluctuations play a central role in the superconducting pairing mechanism. However, a clear signature of the direct coupling between the superconducting pairing states and the quantum criticality has not yet been elucidated by the microscopic probes. Herein, we present muon spin rotation/relaxation and neutron diffraction measurements in the superconducting dome of CeCo(In1 - xZnx)5. It was found that a magnetically ordered state develops at x≥ 0.03, coexisting with the superconductivity. The magnitude of the ordered magnetic moment is continuously reduced with decreasing x, and it disappears below x∼ 0.03, indicating a second-order phase transition and the presence of the QCP at this critical Zn concentration. Furthermore, the magnetic penetration depth diverges toward the QCP. These facts provide evidence for the intimate coupling between quantum criticality and Cooper pairing.

10.
Proc Natl Acad Sci U S A ; 119(28): e2119942119, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787036

RESUMEN

We report results of low-temperature heat-capacity, magnetocaloric-effect, and neutron-diffraction measurements of TmVO4, an insulator that undergoes a continuous ferroquadrupolar phase transition associated with local partially filled 4f orbitals of the thulium (Tm[Formula: see text]) ions. The ferroquadrupolar transition, a realization of Ising nematicity, can be tuned to a quantum critical point by using a magnetic field oriented along the c axis of the tetragonal crystal lattice, which acts as an effective transverse field for the Ising-nematic order. In small magnetic fields, the thermal phase transition can be well described by using a semiclassical mean-field treatment of the transverse-field Ising model. However, in higher magnetic fields, closer to the field-tuned quantum phase transition, subtle deviations from this semiclassical behavior are observed, which are consistent with expectations of quantum fluctuations. Although the phase transition is driven by the local 4f degrees of freedom, the crystal lattice still plays a crucial role, both in terms of mediating the interactions between the local quadrupoles and in determining the critical scaling exponents, even though the phase transition itself can be described via mean field. In particular, bilinear coupling of the nematic order parameter to acoustic phonons changes the spatial and temporal fluctuations of the former in a fundamental way, resulting in different critical behavior of the nematic transverse-field Ising model, as compared to the usual case of the magnetic transverse-field Ising model. Our results establish TmVO4 as a model material and electronic nematicity as a paradigmatic example for quantum criticality in insulators.

11.
Proc Natl Acad Sci U S A ; 119(51): e2211193119, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36520670

RESUMEN

An interplay of geometrical frustration and strong quantum fluctuations in a spin-1/2 triangular-lattice antiferromagnet (TAF) can lead to exotic quantum states. Here, we report the neutron-scattering, magnetization, specific heat, and magnetocaloric studies of the recently discovered spin-1/2 TAF Na2BaCo(PO4)2, which can be described by a spin-1/2 easy axis XXZ model. The zero-field neutron diffraction experiment reveals an incommensurate antiferromagnetic ground state with a significantly reduced ordered moment of about 0.54(2) µB/Co. Different magnetic phase diagrams with magnetic fields in the ab plane and along the easy c-axis were extracted based on the magnetic susceptibility, specific heat, and elastic neutron-scattering results. In addition, two-dimensional (2D) spin dispersion in the triangular plane was observed in the high-field polarized state, and microscopic exchange parameters of the spin Hamiltonian have been determined through the linear spin wave theory. Consistently, quantum critical behaviors with the universality class of d = 2 and νz = 1 were established in the vicinity of the saturation field, where a Bose-Einstein condensation (BEC) of diluted magnons occurs. The newly discovered quantum criticality and fractional magnetization phase in this ideal spin-1/2 TAF present exciting opportunities for exploring exotic quantum phenomena.

12.
J Neurosci ; 43(18): 3259-3283, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37019622

RESUMEN

Neuronal activity propagates through the network during seizures, engaging brain dynamics at multiple scales. Such propagating events can be described through the avalanches framework, which can relate spatiotemporal activity at the microscale with global network properties. Interestingly, propagating avalanches in healthy networks are indicative of critical dynamics, where the network is organized to a phase transition, which optimizes certain computational properties. Some have hypothesized that the pathologic brain dynamics of epileptic seizures are an emergent property of microscale neuronal networks collectively driving the brain away from criticality. Demonstrating this would provide a unifying mechanism linking microscale spatiotemporal activity with emergent brain dysfunction during seizures. Here, we investigated the effect of drug-induced seizures on critical avalanche dynamics, using in vivo whole-brain two-photon imaging of GCaMP6s larval zebrafish (males and females) at single neuron resolution. We demonstrate that single neuron activity across the whole brain exhibits a loss of critical statistics during seizures, suggesting that microscale activity collectively drives macroscale dynamics away from criticality. We also construct spiking network models at the scale of the larval zebrafish brain, to demonstrate that only densely connected networks can drive brain-wide seizure dynamics away from criticality. Importantly, such dense networks also disrupt the optimal computational capacities of critical networks, leading to chaotic dynamics, impaired network response properties and sticky states, thus helping to explain functional impairments during seizures. This study bridges the gap between microscale neuronal activity and emergent macroscale dynamics and cognitive dysfunction during seizures.SIGNIFICANCE STATEMENT Epileptic seizures are debilitating and impair normal brain function. It is unclear how the coordinated behavior of neurons collectively impairs brain function during seizures. To investigate this we perform fluorescence microscopy in larval zebrafish, which allows for the recording of whole-brain activity at single-neuron resolution. Using techniques from physics, we show that neuronal activity during seizures drives the brain away from criticality, a regime that enables both high and low activity states, into an inflexible regime that drives high activity states. Importantly, this change is caused by more connections in the network, which we show disrupts the ability of the brain to respond appropriately to its environment. Therefore, we identify key neuronal network mechanisms driving seizures and concurrent cognitive dysfunction.


Asunto(s)
Epilepsia , Pez Cebra , Animales , Masculino , Femenino , Convulsiones/inducido químicamente , Encéfalo , Neuronas/fisiología , Modelos Neurológicos
13.
J Neurosci ; 43(45): 7642-7656, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37816599

RESUMEN

The classic brain criticality hypothesis postulates that the brain benefits from operating near a continuous second-order phase transition. Slow feedback regulation of neuronal activity could, however, lead to a discontinuous first-order transition and thereby bistable activity. Observations of bistability in awake brain activity have nonetheless remained scarce and its functional significance unclear. Moreover, there is no empirical evidence to support the hypothesis that the human brain could flexibly operate near either a first- or second-order phase transition despite such a continuum being common in models. Here, using computational modeling, we found bistable synchronization dynamics to emerge through elevated positive feedback and occur exclusively in a regimen of critical-like dynamics. We then assessed bistability in vivo with resting-state MEG in healthy adults (7 females, 11 males) and stereo-electroencephalography in epilepsy patients (28 females, 36 males). This analysis revealed that a large fraction of the neocortices exhibited varying degrees of bistability in neuronal oscillations from 3 to 200 Hz. In line with our modeling results, the neuronal bistability was positively correlated with classic assessment of brain criticality across narrow-band frequencies. Excessive bistability was predictive of epileptic pathophysiology in the patients, whereas moderate bistability was positively correlated with task performance in the healthy subjects. These empirical findings thus reveal the human brain as a one-of-a-kind complex system that exhibits critical-like dynamics in a continuum between continuous and discontinuous phase transitions.SIGNIFICANCE STATEMENT In the model, while synchrony per se was controlled by connectivity, increasing positive local feedback led to gradually emerging bistable synchrony with scale-free dynamics, suggesting a continuum between second- and first-order phase transitions in synchrony dynamics inside a critical-like regimen. In resting-state MEG and SEEG, bistability of ongoing neuronal oscillations was pervasive across brain areas and frequency bands and was observed only with concurring critical-like dynamics as the modeling predicted. As evidence for functional relevance, moderate bistability was positively correlated with executive functioning in the healthy subjects, and excessive bistability was associated with epileptic pathophysiology. These findings show that critical-like neuronal dynamics in vivo involves both continuous and discontinuous phase transitions in a frequency-, neuroanatomy-, and state-dependent manner.


Asunto(s)
Epilepsia , Neocórtex , Masculino , Adulto , Femenino , Humanos , Encéfalo/fisiología , Electroencefalografía/métodos , Mapeo Encefálico , Simulación por Computador
14.
J Neurosci ; 43(14): 2515-2526, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36868860

RESUMEN

Numerous studies suggest that biological neuronal networks self-organize toward a critical state with stable recruitment dynamics. Individual neurons would then statistically activate exactly one further neuron during activity cascades termed neuronal avalanches. Yet, it is unclear if and how this can be reconciled with the explosive recruitment dynamics within neocortical minicolumns in vivo and within neuronal clusters in vitro, which indicates that neurons form supercritical local circuits. Theoretical studies propose that modular networks with a mix of regionally subcritical and supercritical dynamics would create apparently critical dynamics, resolving this inconsistency. Here, we provide experimental support by manipulating the structural self-organization process of networks of cultured rat cortical neurons (either sex). Consistent with the prediction, we show that increasing clustering in neuronal networks developing in vitro strongly correlates with avalanche size distributions transitioning from supercritical to subcritical activity dynamics. Avalanche size distributions approximated a power law in moderately clustered networks, indicating overall critical recruitment. We propose that activity-dependent self-organization can tune inherently supercritical networks toward mesoscale criticality by creating a modular structure in neuronal networks.SIGNIFICANCE STATEMENT Critical recruitment dynamics in neuronal networks are considered optimal for information processing in the brain. However, it remains heavily debated how neuronal networks would self-organize criticality by detailed fine-tuning of connectivity, inhibition, and excitability. We provide experimental support for theoretical considerations that modularity tunes critical recruitment dynamics at the mesoscale level of interacting neuron clusters. This reconciles reports of supercritical recruitment dynamics in local neuron clusters with findings on criticality sampled at mesoscopic network scales. Intriguingly, altered mesoscale organization is a prominent aspect of various neuropathological diseases currently investigated in the framework of criticality. We therefore believe that our findings would also be of interest for clinical scientists searching to link the functional and anatomic signatures of such brain disorders.


Asunto(s)
Modelos Neurológicos , Red Nerviosa , Ratas , Animales , Potenciales de Acción/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Encéfalo/fisiología
15.
Theor Popul Biol ; 158: 121-138, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844263

RESUMEN

Muller's ratchet, in its prototype version, models a haploid, asexual population whose size N is constant over the generations. Slightly deleterious mutations are acquired along the lineages at a constant rate, and individuals carrying less mutations have a selective advantage. The classical variant considers fitness proportional selection, but other fitness schemes are conceivable as well. Inspired by the work of Etheridge et al. (2009) we propose a parameter scaling which fits well to the "near-critical" regime that was in the focus of Etheridge et al. (2009) (and in which the mutation-selection ratio diverges logarithmically as N→∞). Using a Moran model, we investigate the"rule of thumb" given in Etheridge et al. (2009) for the click rate of the "classical ratchet" by putting it into the context of new results on the long-time evolution of the size of the best class of the ratchet with (binary) tournament selection. This variant of Muller's ratchet was introduced in González Casanova et al. (2023), and was analysed there in a subcritical parameter regime. Other than that of the classical ratchet, the size of the best class of the tournament ratchet follows an autonomous dynamics up to the time of its extinction. It turns out that, under a suitable correspondence of the model parameters, this dynamics coincides with the so called Poisson profile approximation of the dynamics of the best class of the classical ratchet.


Asunto(s)
Selección Genética , Mutación , Aptitud Genética , Modelos Genéticos , Haploidia , Evolución Biológica
16.
Epilepsia ; 65(7): 2041-2053, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38687176

RESUMEN

OBJECTIVE: Postsurgical seizure freedom in drug-resistant epilepsy (DRE) patients varies from 30% to 80%, implying that in many cases the current approaches fail to fully map the epileptogenic zone (EZ). We aimed to advance a novel approach to better characterize epileptogenicity and investigate whether the EZ encompasses a broader epileptogenic network (EpiNet) beyond the seizure zone (SZ) that exhibits seizure activity. METHODS: We first used computational modeling to test putative complex systems-driven and systems neuroscience-driven mechanistic biomarkers for epileptogenicity. We then used these biomarkers to extract features from resting-state stereoelectroencephalograms recorded from DRE patients and trained supervised classifiers to localize the SZ against gold standard clinical localization. To further explore the prevalence of pathological features in an extended brain network outside of the clinically identified SZ, we also used unsupervised classification. RESULTS: Supervised SZ classification trained on individual features achieved accuracies of .6-.7 area under the receiver operating characteristic curve (AUC). Combining all criticality and synchrony features further improved the AUC to .85. Unsupervised classification discovered an EpiNet-like cluster of brain regions, in which 51% of brain regions were outside of the SZ. Brain regions in the EpiNet-like cluster engaged in interareal hypersynchrony and locally exhibited high-amplitude bistability and excessive inhibition, which was strikingly similar to the high seizure risk regime revealed by our computational modeling. SIGNIFICANCE: The finding that combining biomarkers improves SZ localization accuracy indicates that the novel mechanistic biomarkers for epileptogenicity employed here yield synergistic information. On the other hand, the discovery of SZ-like brain dynamics outside of the clinically defined SZ provides empirical evidence of an extended pathophysiological EpiNet.


Asunto(s)
Epilepsia Refractaria , Electroencefalografía , Humanos , Electroencefalografía/métodos , Epilepsia Refractaria/fisiopatología , Masculino , Femenino , Biomarcadores , Adulto , Red Nerviosa/fisiopatología , Encéfalo/fisiopatología , Adolescente , Adulto Joven , Niño , Simulación por Computador , Mapeo Encefálico/métodos
17.
Cereb Cortex ; 33(8): 4574-4605, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36156074

RESUMEN

The past 40 years have witnessed extensive research on fractal structure and scale-free dynamics in the brain. Although considerable progress has been made, a comprehensive picture has yet to emerge, and needs further linking to a mechanistic account of brain function. Here, we review these concepts, connecting observations across different levels of organization, from both a structural and functional perspective. We argue that, paradoxically, the level of cortical circuits is the least understood from a structural point of view and perhaps the best studied from a dynamical one. We further link observations about scale-freeness and fractality with evidence that the environment provides constraints that may explain the usefulness of fractal structure and scale-free dynamics in the brain. Moreover, we discuss evidence that behavior exhibits scale-free properties, likely emerging from similarly organized brain dynamics, enabling an organism to thrive in an environment that shares the same organizational principles. Finally, we review the sparse evidence for and try to speculate on the functional consequences of fractality and scale-freeness for brain computation. These properties may endow the brain with computational capabilities that transcend current models of neural computation and could hold the key to unraveling how the brain constructs percepts and generates behavior.


Asunto(s)
Encéfalo , Fractales , Encéfalo/diagnóstico por imagen
18.
Artif Life ; : 1-15, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38805660

RESUMEN

This work concerns the long-term collective excitability properties and the statistical analysis of the critical events displayed by a recently introduced spatiotemporal many-body model, proposed as a new paradigm for Artificial Life. Numerical simulations show that excitable collective structures emerge in the form of dynamic networks, created by bursts of spatiotemporal activity (avalanches) at the edge of a synchronization phase transition. The spatiotemporal dynamics is portraited by a movie and quantified by time varying collective parameters, showing that the dynamic networks undergo a "life cycle," made of self-creation, homeostasis, and self-destruction. The power spectra of the collective parameters show 1/f power law tails. The statistical properties of the avalanches, evaluated in terms of size and duration, show power laws with characteristic exponents in agreement with those values experimentally found in the neural networks literature. The mechanism underlying avalanches is argued in terms of local-to-collective excitability. The connections that link the present work to self-organized criticality, neural networks, and Artificial Life are discussed.

19.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34588302

RESUMEN

Brain aging is associated with hypometabolism and global changes in functional connectivity. Using functional MRI (fMRI), we show that network synchrony, a collective property of brain activity, decreases with age. Applying quantitative methods from statistical physics, we provide a generative (Ising) model for these changes as a function of the average communication strength between brain regions. We find that older brains are closer to a critical point of this communication strength, in which even small changes in metabolism lead to abrupt changes in network synchrony. Finally, by experimentally modulating metabolic activity in younger adults, we show how metabolism alone-independent of other changes associated with aging-can provide a plausible candidate mechanism for marked reorganization of brain network topology.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma , Humanos , Imagen por Resonancia Magnética , Modelos Neurológicos
20.
Proc Natl Acad Sci U S A ; 118(34)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34413195

RESUMEN

During the last decade, translational and rotational symmetry-breaking phases-density wave order and electronic nematicity-have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprate superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains unclear. Here, we employ resonant X-ray scattering in a cuprate high-temperature superconductor [Formula: see text] (Nd-LSCO) to navigate the cuprate phase diagram, probing the relationship between electronic nematicity of the Cu 3d orbitals, charge order, and the pseudogap phase as a function of doping. We find evidence for a considerable decrease in electronic nematicity beyond the pseudogap phase, either by raising the temperature through the pseudogap onset temperature T* or increasing doping through the pseudogap critical point, p*. These results establish a clear link between electronic nematicity, the pseudogap, and its associated quantum criticality in overdoped cuprates. Our findings anticipate that electronic nematicity may play a larger role in understanding the cuprate phase diagram than previously recognized, possibly having a crucial role in the phenomenology of the pseudogap phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA