Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; : 1-20, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973014

RESUMEN

D-allulose, an epimer of D-fructose at C-3 position, is a low-calorie rare sugar with favorable physiochemical properties and special physiological functions, which displays promising perspectives in the food and pharmaceutical industries. Currently, D-allulose is extremely sparse in nature and is predominantly biosynthesized through the isomerization of D-fructose by D-allulose 3-epimerase (DAEase). In recent years, D-allulose 3-epimerase as the key biocatalyst for D-allulose production has received increasing interest. The current review begins by providing a summary of D-allulose regarding its characteristics and applications, as well as different synthesis pathways dominated by biotransformation. Then, the research advances of D-allulose 3-epimerase are systematically reviewed, focusing on heterologous expression and biochemical characterization, crystal structure and molecular modification, and application in D-allulose production. Concerning the constraint of low yield of DAEase for industrial application, this review addresses the various attempts made to promote the production of DAEase in different expression systems. Also, various strategies have been adopted to improve its thermotolerance and catalytic activity, which is mainly based on the structure-function relationship of DAEase. The application of DAEase in D-allulose biosynthesis from D-fructose or low-cost feedstocks through single- or multi-enzymatic cascade reaction has been discussed. Finally, the prospects for related research of D-allulose 3-epimerase are also proposed, facilitating the industrialization of DAEase and more efficient and economical bioproduction of D-allulose.

2.
Appl Microbiol Biotechnol ; 108(1): 279, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564031

RESUMEN

A novel L-rhamnose isomerase was identified and cloned from an extreme-temperature aquatic habitat metagenome. The deduced amino acid sequence homology suggested the possible source of this metagenomic sequence to be Chloroflexus islandicus. The gene expression was performed in a heterologous host, Escherichia coli, and the recombinant protein L-rhamnose isomerase (L-RIM) was extracted and purified. The catalytic function of L-RIM was characterized for D-allulose to D-allose bioconversion. D-Allose is a sweet, rare sugar molecule with anti-tumour, anti-hypertensive, cryoprotective, and antioxidative properties. The characterization experiments showed L-RIM to be a Co++- or Mn++-dependent metalloenzyme. L-RIM was remarkably active (~ 80%) in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges. Optimal L-RIM activity with D-allulose as the substrate occurred at pH 7.0 and 75 °C. The enzyme was found to be excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively. L-RIM catalysis conducted at slightly acidic pH of 6.0 and 70 °C achieved biosynthesis of about 30 g L-1 from 100 g L-1 D-allulose in 3 h. KEY POINTS: • The present study explored an extreme temperature metagenome to identify a novel gene that encodes a thermostable l-rhamnose isomerase (L-RIM) • L-RIM exhibits substantial (80% or more) activity in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges • L-RIM is excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively.


Asunto(s)
Isomerasas Aldosa-Cetosa , Fructosa , Glucosa , Antihipertensivos , Escherichia coli/genética
3.
Appl Microbiol Biotechnol ; 108(1): 249, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430263

RESUMEN

A recombinant L-rhamnose isomerase (L-RhI) from probiotic Lactobacillus rhamnosus Probio-M9 (L. rhamnosus Probio-M9) was expressed. L. rhamnosus Probio-M9 was isolated from human colostrum and identified as a probiotic lactic acid bacterium, which can grow using L-rhamnose. L-RhI is one of the enzymes involved in L-rhamnose metabolism and catalyzes the reversible isomerization between L-rhamnose and L-rhamnulose. Some L-RhIs were reported to catalyze isomerization not only between L-rhamnose and L-rhamnulose but also between D-allulose and D-allose, which are known as rare sugars. Those L-RhIs are attractive enzymes for rare sugar production and have the potential to be further improved by enzyme engineering; however, the known crystal structures of L-RhIs recognizing rare sugars are limited. In addition, the optimum pH levels of most reported L-RhIs are basic rather than neutral, and such a basic condition causes non-enzymatic aldose-ketose isomerization, resulting in unexpected by-products. Herein, we report the crystal structures of L. rhamnosus Probio-M9 L-RhI (LrL-RhI) in complexes with L-rhamnose, D-allulose, and D-allose, which show enzyme activity toward L-rhamnose, D-allulose, and D-allose in acidic conditions, though the activity toward D-allose was low. In the complex with L-rhamnose, L-rhamnopyranose was found in the catalytic site, showing favorable recognition for catalysis. In the complex with D-allulose, D-allulofuranose and ring-opened D-allulose were observed in the catalytic site. However, bound D-allose in the pyranose form was found in the catalytic site of the complex with D-allose, which was unfavorable for recognition, like an inhibition mode. The structure of the complex may explain the low activity toward D-allose. KEY POINTS: • Crystal structures of LrL-RhI in complexes with substrates were determined. • LrL-RhI exhibits enzyme activity toward L-rhamnose, D-allulose, and D-allose. • The LrL-RhI is active in acidic conditions.


Asunto(s)
Isomerasas Aldosa-Cetosa , Lacticaseibacillus rhamnosus , Humanos , Rayos X , Ramnosa , Monosacáridos
4.
Bioprocess Biosyst Eng ; 47(6): 841-850, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676737

RESUMEN

D-Allulose 3-epimerase (DAE) is a vital biocatalyst for the industrial synthesis of D-allulose, an ultra-low calorie rare sugar. However, limited thermostability of DAEs hinders their use at high-temperature production. In this research, hyperthermophilic TI-DAE (Tm = 98.4 ± 0.7 ℃) from Thermotoga sp. was identified via in silico screening. A comparative study of the structure and function of site-directed saturation mutagenesis mutants pinpointed the residue I100 as pivotal in maintaining the high-temperature activity and thermostability of TI-DAE. Employing TI-DAE as a biocatalyst, D-allulose was produced from D-fructose with a conversion rate of 32.5%. Moreover, TI-DAE demonstrated excellent catalytic synergy with glucose isomerase CAGI, enabling the one-step conversion of D-glucose to D-allulose with a conversion rate of 21.6%. This study offers a promising resource for the enzyme engineering of DAEs and a high-performance biocatalyst for industrial D-allulose production.


Asunto(s)
Thermotoga , Thermotoga/enzimología , Thermotoga/genética , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/biosíntesis , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Racemasas y Epimerasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/biosíntesis , Fructosa/metabolismo , Fructosa/biosíntesis , Fructosa/química , Estabilidad de Enzimas , Biocatálisis , Mutagénesis Sitio-Dirigida , Calor
5.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612868

RESUMEN

Natural rare sugars are an alternative category of sweeteners with positive physiologic and metabolic effects both in in vitro and animal models. D-allulose is a D-fructose epimer that combines 70% sucrose sweetness with the advantage of an extremely low energy content. However, there are no data about the effect of D-allulose against adipose dysfunction; thus, it remains to be confirmed whether D-allulose is useful in the prevention and in treatment of adipose tissue alterations. With this aim, we evaluated D-allulose's preventive effects on lipid accumulation in 3T3-L1 murine adipocytes exposed to palmitic acid (PA), a trigger for hypertrophic adipocytes. D-allulose in place of glucose prevented adipocyte hypertrophy and the activation of adipogenic markers C/EBP-ß and PPARγ induced by high PA concentrations. Additionally, D-allulose pretreatment inhibited the NF-κB pathway and endoplasmic reticulum stress caused by PA, through activation of the Nrf2 pathway. Interestingly, these effects were also observed as D-allulose post PA treatment. Although our data need to be confirmed through in vivo models, our findings suggest that incorporating D-allulose as a glucose substitute in the diet might have a protective role in adipocyte function and support a unique mechanism of action in this sugar as a preventive or therapeutic compound against PA lipotoxicity through the modulation of pathways connected to lipid transport and metabolism.


Asunto(s)
Fructosa , Ácido Palmítico , Animales , Ratones , Ácido Palmítico/toxicidad , Células 3T3-L1 , Adipocitos , Hipertrofia , Estrés del Retículo Endoplásmico , Glucosa
6.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928068

RESUMEN

As a low-calorie sugar, D-allulose is produced from D-fructose catalyzed by D-allulose 3-epimerase (DAE). Here, to improve the catalytic activity, stability, and processability of DAE, we reported a novel method by forming organic-inorganic hybrid nanoflowers (NF-DAEs) and co-immobilizing them on resins to form composites (Re-NF-DAEs). NF-DAEs were prepared by combining DAE with metal ions (Co2+, Cu2+, Zn2+, Ca2+, Ni2+, Fe2+, and Fe3+) in PBS buffer, and were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and X-ray diffraction. All of the NF-DAEs showed higher catalytic activities than free DAE, and the NF-DAE with Ni2+ (NF-DAE-Ni) reached the highest relative activity of 218%. The NF-DAEs improved the thermal stability of DAE, and the longest half-life reached 228 min for NF-DAE-Co compared with 105 min for the free DAE at 55 °C. To further improve the recycling performance of the NF-DAEs in practical applications, we combined resins and NF-DAEs to form Re-NF-DAEs. Resins and NF-DAEs co-effected the performance of the composites, and ReA (LXTE-606 neutral hydrophobic epoxy-based polypropylene macroreticular resins)-based composites (ReA-NF-DAEs) exhibited outstanding relative activities, thermal stabilities, storage stabilities, and processabilities. The ReA-NF-DAEs were able to be reused to catalyze the conversion from D-fructose to D-allulose, and kept more than 60% of their activities after eight cycles.


Asunto(s)
Estabilidad de Enzimas , Enzimas Inmovilizadas , Enzimas Inmovilizadas/química , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Nanoestructuras/química , Fructosa/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
7.
Crit Rev Food Sci Nutr ; 63(22): 5661-5679, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34965808

RESUMEN

D-Allulose is the C-3 epimer of D-fructose, and widely regarded as a promising substitute for sucrose. It's an excellent low-calorie sweetener, with 70% sweetness of sucrose, 0.4 kcal/g dietary energy, and special physiological functions. It has been approved as GRAS by the U.S. Food and Drug Administration, and is allowed to be excluded from total and added sugar counts on the food labels. Therefore, D-allulose gradually attracts more public attention. Owing to scarcity in nature, the bioproduction of D-allulose by using ketose 3-epimerase (KEase) has become the research hotspot. Herein, we give a summary of the physicochemical properties, physiological function, applications, and the chemical and biochemical synthesis methods of D-allulose. In addition, the recent progress in the D-allulose bioproduction using KEases, and the possible solutions for existing challenges in the D-allulose industrial production are comprehensively discussed, focusing on the molecular modification, immobilization, food-grade expression, utilizing low-cost biomass as feedstock, overcoming thermodynamic limitation, as well as the downstream separation and purification. Finally, Prospects for further development are also proposed.


Asunto(s)
Fructosa , Azúcares , Estados Unidos , Racemasas y Epimerasas , Sacarosa
8.
Br J Nutr ; 130(11): 1852-1858, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713062

RESUMEN

D-allulose, D-sorbose and D-tagatose are D-fructose isomers that are called rare sugars. These rare sugars have been studied intensively in terms of biological production and food application as well as physiological effects. There are limited papers with regard to the transporters mediating the intestinal absorption of these rare sugars. We examined whether these rare sugars are absorbed via sodium-dependent glucose cotransporter 1 (SGLT1) as well as via GLUT type 5 (GLUT5) using rats. High-fructose diet fed rats, which express more intestinal GLUT5, exhibited significantly higher peripheral concentrations, Cmax and AUC0­180 min when D-allulose, D-sorbose and D-tagatose were orally administrated. KGA-2727, a selective SGLT1 inhibitor, did not affect the peripheral and portal vein concentrations and pharmacokinetic parameters of these rare sugars. The results suggest that D-allulose, D-sorbose and D-tagatose are likely transported via GLUT5 but not SGLT1 in rat small intestine.


Asunto(s)
Fructosa , Transportador de Glucosa de Tipo 5 , Glicósidos , Hexosas , Absorción Intestinal , Transportador 1 de Sodio-Glucosa , Sorbosa , Animales , Transportador 1 de Sodio-Glucosa/metabolismo , Masculino , Ratas , Transportador de Glucosa de Tipo 5/metabolismo , Sorbosa/metabolismo , Ratas Sprague-Dawley , Ratas Wistar
9.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628886

RESUMEN

The rare sugar D-allulose is a potential replacement for sucrose with a wide range of health benefits. Conventional production involves the employment of the Izumoring strategy, which utilises D-allulose 3-epimerase (DAEase) or D-psicose 3-epimerase (DPEase) to convert D-fructose into D-allulose. Additionally, the process can also utilise D-tagatose 3-epimerase (DTEase). However, the process is not efficient due to the poor thermotolerance of the enzymes and low conversion rates between the sugars. This review describes three newly identified DAEases that possess desirable properties for the industrial-scale manufacturing of D-allulose. Other methods used to enhance process efficiency include the engineering of DAEases for improved thermotolerance or acid resistance, the utilization of Bacillus subtilis for the biosynthesis of D-allulose, and the immobilization of DAEases to enhance its activity, half-life, and stability. All these research advancements improve the yield of D-allulose, hence closing the gap between the small-scale production and industrial-scale manufacturing of D-allulose.


Asunto(s)
Ingeniería de Proteínas , Racemasas y Epimerasas/química , Racemasas y Epimerasas/metabolismo , Ingeniería de Proteínas/métodos , Expresión Génica , Modelos Moleculares , Estructura Terciaria de Proteína , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
10.
J Sci Food Agric ; 103(1): 339-348, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35871484

RESUMEN

BACKGROUND: Rare sugars have become promising 'sugar alternatives' because of their low calories and unique physiological functions. Among the family of rare sugars, d-allulose is one of the sugars attracting interest. Ketose 3-epimerases (KEase), including d-tagatose 3-epimerase (DTEase) and d-allulose 3-epimerase (DAEase), are mainly used for d-allulose production. RESULTS: In this study, a putative xylose isomerase from Caballeronia insecticola was characterized and identified as a novel DAEase. Caballeronia insecticola DAEase displayed prominent enzymatic properties, and 150 g L-1 d-allulose was produced from 500 g L-1 d-fructose in 45 min with a conversion rate of 30% and high productivity of 200 g L-1 h-1 . Furthermore, DAEase was employed in a phosphorylation-dephosphorylation cascade reaction, which significantly increased the conversion rate of d-allulose. Under optimized conditions, the conversion rate of d-allulose was approximately 100% when the concentration of d-fructose was 50 mmol L-1 . CONCLUSION: This research described a very beneficial and facile approach for d-allulose production based on C. insecticola DAEase. © 2022 Society of Chemical Industry.


Asunto(s)
Fructosa , Racemasas y Epimerasas , Racemasas y Epimerasas/genética , Concentración de Iones de Hidrógeno , Fructosa/química
11.
J Sci Food Agric ; 103(11): 5481-5489, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37050847

RESUMEN

BACKGROUND: As a rare hexose with low calories and various physiological functions, d-allulose has drawn increasing attention. The current industrial production of d-allulose from d-fructose or d-glucose is achieved via epimerization based on the Izumoring strategy; however, the inherent reaction equilibrium during reversible reaction limits its high conversion yield. Although the conversion of d-fructose to d-allulose could be enhanced via phosphorylation-dephosphorylation mediated by metabolic engineering, biomass reduction and byproduct accumulation remain a largely unresolved issue. RESULTS: After modifying the glycolytic pathway of Escherichia coli and optimizing the whole-cell reaction condition, the engineered strain produced 7.57 ± 0.61 g L-1 d-allulose from 30 g L-1 d-glucose after 24 h of catalysis. By developing an ATP regeneration system for enhanced substrate phosphorylation, the cell growth inhibition was alleviated and d-allulose production increased by 55.3% to 11.76 ± 0.58 g L-1 (0.53 g g-1 ). Fine-tuning of carbon flux caused a 48% reduction in d-fructose accumulation to 1.47 ± 0.15 g L-1 . After implementing fed-batch co-substrate strategy, the d-allulose titer reached 15.80 ± 0.31 g L-1 (0.62 g g-1 ) with a d-glucose conversion rate of 84.8%. CONCLUSION: The present study reports a novel strategy for high-yield d-allulose production from low-cost substrate. © 2023 Society of Chemical Industry.


Asunto(s)
Escherichia coli , Glucosa , Glucosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fructosa/metabolismo , Ciclo del Carbono , Regeneración
12.
Angew Chem Int Ed Engl ; 62(10): e202216721, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36658306

RESUMEN

Biosynthesis of D-allulose has been achieved using ketose 3-epimerases (KEases), but its application is limited by poor catalytic performance. In this study, we redesigned a genetically encoded biosensor based on a D-allulose-responsive transcriptional regulator for real-time monitoring of D-allulose. An ultrahigh-throughput droplet-based microfluidic screening platform was further constructed by coupling with this D-allulose-detecting biosensor for the directed evolution of the KEases. Structural analysis of Sinorhizobium fredii D-allulose 3-epimerase (SfDAE) revealed that a highly flexible helix/loop region exposes or occludes the catalytic center as an essential lid conformation regulating substrate recognition. We reprogrammed SfDAE using structure-guided rational design and directed evolution, in which a mutant M3-2 was identified with 17-fold enhanced catalytic efficiency. Our research offers a paradigm for the design and optimization of a biosensor-based microdroplet screening platform.


Asunto(s)
Fructosa , Racemasas y Epimerasas , Fructosa/química
13.
Biochem Biophys Res Commun ; 613: 159-165, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35561584

RESUMEN

A rare sugar D-Allulose has sweetness without calorie. Previous studies have shown that D-Allulose improves glucose and energy metabolism and ameliorates obesity. However, underlying mechanisms remain elusive. This study explored the effect of central injection of D-Allulose on feeding behavior in mice. We also examined direct effects of D-Allulose on the neurons in the hypothalamic arcuate nucleus (ARC) that regulate feeding, including the anorexigenic glucagon-like peptide-1 (GLP-1)-responsive neurons and proopiomelanocortin (POMC) neurons. Single neurons were isolated from ARC and cytosolic Ca2+ concentration ([Ca2+]i) was measured by fura-2 microfluorometry. Administration of D-Allulose at 5.6, 16.7 and 56 mM concentration-dependently increased [Ca2+]i in ARC neurons. The [Ca2+]i increases took place similarly when the osmolarity of superfusion solution was kept constant. The majority (40%) of the D-Allulose-responsive neurons also responded to GLP-1 with [Ca2+]i increases. D-Allulose increased [Ca2+]i in 33% of POMC neurons in ARC. D-Allulose potentiated the GLP-1 action to increase [Ca2+]i in ARC neurons including POMC neurons. Intracerebroventricular injection of D-Allulose significantly decreased food intake at 1 and 2 h after injection. These results demonstrate that D-Allulose cooperates with glucagon-like peptide-1 and activates the ARC neurons including POMC neurons. Furthermore, central injection of D-Allulose inhibits feeding. These central actions of D-Allulose may underlie the ability of D-Allulose to counteract obesity and diabetes.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Proopiomelanocortina , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Fructosa , Péptido 1 Similar al Glucagón/metabolismo , Ratones , Neuronas/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Proopiomelanocortina/metabolismo
14.
J Nutr ; 152(5): 1228-1238, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35135006

RESUMEN

BACKGROUND: Glucose induces the release of gastrointestinal (GI) satiation hormones, such as glucagon-like peptide 1 (GLP-1) and peptide tyrosine tyrosine (PYY), in part via the activation of the gut sweet taste receptor (T1R2/T1R3). OBJECTIVES: The primary objective was to investigate the importance of T1R2/T1R3 for the release of cholecystokinin (CCK), GLP-1, and PYY in response to D-allulose and erythritol by assessing the effect of the T1R2/T1R3 antagonist lactisole on these responses and as secondary objectives to study the effect of the T1R2/T1R3 blockade on gastric emptying, appetite-related sensations, and GI symptoms. METHODS: In this randomized, controlled, double-blind, crossover study, 18 participants (5 men) with a mean ± SD BMI (in kg/m2) of 21.9 ± 1.7 and aged 24 ± 4 y received an intragastric administration of 25 g D-allulose, 50 g erythritol, or tap water, with or without 450 parts per million (ppm) lactisole, respectively, in 6 different sessions. 13C-sodium acetate was added to all solutions to determine gastric emptying. At fixed time intervals, blood and breath samples were collected, and appetite-related sensations and GI symptoms were assessed. Data were analyzed with linear mixed-model analysis. RESULTS: D-allulose and erythritol induced a significant release of CCK, GLP-1, and PYY compared with tap water (all PHolm < 0.0001, dz >1). Lactisole did not affect the D-allulose- and erythritol-induced release of CCK, GLP-1, and PYY (all PHolm > 0.1). Erythritol significantly delayed gastric emptying, increased fullness, and decreased prospective food consumption compared with tap water (PHolm = 0.0002, dz = -1.05; PHolm = 0.0190, dz = 0.69; and PHolm = 0.0442, dz = -0.62, respectively). CONCLUSIONS: D-allulose and erythritol stimulate the secretion of GI satiation hormones in humans. Lactisole had no effect on CCK, GLP-1, and PYY release, indicating that D-allulose- and erythritol-induced GI satiation hormone release is not mediated via T1R2/T1R3 in the gut.


Asunto(s)
Hormonas Gastrointestinales , Colecistoquinina , Estudios Cruzados , Eritritol , Femenino , Fructosa , Péptido 1 Similar al Glucagón , Humanos , Masculino , Péptido YY , Saciedad , Gusto , Tirosina , Agua
15.
Protein Expr Purif ; 199: 106145, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35863720

RESUMEN

d-allulose, a rare sugar that is scarce in nature, exerts several beneficial effects and has commercial potential. d-allulose 3-epimerase (DAEase) plays a vital role in catalyzing the isomerization from d-fructose to d-allulose. However, the industrial application of DAEase for d-allulose production is hindered by its poor long-term thermostability. In the present research, we introduced a proline residue (i) to restrict its spatial conformation and (ii) to reduce the entropy of the unfolded state of DAEase. The t1/2 value of the double-site Clostridium bolteae DAEase mutant Cb-51P/89P was prolonged to 58 min at 55 °C, a 2.32-fold increase compared with wild-type DAEase. The manipulation did not cause obvious changes in the enzymatic properties, including optimum pH, optimal temperature, optimum metal ion, and enzymatic activity. As the accumulation of multiple small effects through proline substitution could dramatically improve the thermostability of the mutant protein, our method to improve the thermostability while roughly retaining the original enzymatic properties is promising.


Asunto(s)
Prolina , Racemasas y Epimerasas , Clostridiales , Clostridium , Estabilidad de Enzimas , Fructosa/metabolismo , Concentración de Iones de Hidrógeno , Racemasas y Epimerasas/metabolismo
16.
Microb Cell Fact ; 21(1): 63, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440084

RESUMEN

BACKGROUND: D-allulose, a hexulose monosaccharide with low calorie content and high sweetness, is commonly used as a functional sugar in food and nutrition. However, enzyme preparation of D-allulose from D-frutose was severely hindered by the non-enzymatic browning under alkaline and high-temperature, and the unnecessary by-products further increased the difficulties in separation and extraction for industrial applications. Here, to address the above issue during the production process, a tandem D-allulose 3-epimerase (DPEases) isomerase synergistic expression strategy and an auto-inducible promoter engineering were levered in Bacillus subtilis 168 (Bs168) for efficient synthesis of D-allulose under the acidic conditions without browning. RESULTS: First, based on the dicistron expression system, two DPEases with complementary functional characteristics from Dorea sp. CAG:317 (DSdpe) and Clostridium cellulolyticum H10 (RCdpe) were expressed in tandem under the promoter HpaII in one cell. A better potential strain Bs168/pMA5-DSdpe-RCdpe increases enzyme activity to 18.9 U/mL at acidic conditions (pH 6.5), much higher than 17.2 and 16.7 U/mL of Bs168/pMA5-DSdpe and Bs168/pMA5-RCdpe, respectively. Subsequently, six recombinant strains based on four constitutive promoters were constructed in variable expression cassettes for improving the expression level of protein. Among those engineered strains, Bs168/pMA5-PspoVG-DSdpe-PsrfA-RCdpe exhibited the highest enzyme activity with 480.1 U/mL on fed-batch fermentation process in a 5 L fermenter at pH 6.5, about 2.1-times higher than the 228.5 U/mL of flask fermentation. Finally, the maximum yield of D-allulose reached as high as 163.5 g/L at the fructose concentration (50% w/v) by whole-cell biocatalyst. CONCLUSION: In this work, the engineered recombinant strain Bs168/pMA5-PspoVG-DSdpe-PsrfA-RCdpe was demonstrated as an effective microbial cell factory for the high-efficient synthesis of D-allulose without browning under acidic conditions. Based on the perspectives from this research, this strategy presented here also made it possible to meet the requirements of the industrial hyper-production of other rare sugars under more acidic conditions in theory.


Asunto(s)
Bacillus subtilis , Racemasas y Epimerasas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Fermentación , Fructosa/metabolismo , Racemasas y Epimerasas/metabolismo
17.
Nutr Neurosci ; 25(6): 1115-1127, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33151133

RESUMEN

BACKGROUND: Prediabetes can be characterized as obesity with metabolic disturbance, leading to cognitive decline and brain pathologies. D-allulose administration in obese animals decreased metabolic disturbance. However, the comparative effects of D-allulose and metformin on cognition and brain functions in the diet-induced prediabetic condition are unclear. We assume that both D-allulose and metformin equally restore cognition and brain functions in prediabetic rats to an equal extent. MATERIALS AND METHODS: Fifty-six rats were randomly divided into two groups: a control and diet-induced prediabetic group which had received a normal diet (ND) and a high-fat diet (HFD) for 24 weeks, respectively. After dietary protocol had been followed for 12 weeks, ND rats were given solely drinking water daily for 12 weeks. HFD-prediabetic rats randomly received drinking water with either D-allulose (1.9 g/kg/day of D-allulose) or metformin (300 mg/kg/day of metformin) for 12 weeks. Following this, cognition and brain parameters were determined. RESULTS: Brain oxidative stress, mitochondrial dysfunction, microglial hyper-activation, apoptosis, brain insulin insensitivity, hippocampal synaptic dysfunction, and cognitive decline were observed in prediabetic rats. D-allulose and metformin equally attenuated brain oxidative stress, brain mitochondrial ROS production, hippocampal apoptosis, brain insulin insensitivity, hippocampal synaptic dysfunction, resulting in improved learning process in prediabetic rats. Metformin conferred greater advantage on the amelioration of brain mitochondrial dysfunction and brain microglial hyper-activation than D-allulose, resulting in improvement in both learning and memory processes in prediabetic rats. CONCLUSIONS: Not only metformin, but also D-allulose, has beneficial effects on the enhancement of brain function and cognition in prediabetic condition.


Asunto(s)
Disfunción Cognitiva , Agua Potable , Resistencia a la Insulina , Insulinas , Metformina , Estado Prediabético , Animales , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Dieta Alta en Grasa/efectos adversos , Fructosa , Resistencia a la Insulina/fisiología , Metformina/farmacología , Metformina/uso terapéutico , Obesidad/metabolismo , Estado Prediabético/tratamiento farmacológico , Ratas , Ratas Wistar
18.
Molecules ; 27(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35408623

RESUMEN

Starch-based confectionery products were prepared using different types of sugar. In addition to using different sugar, starch was replaced with soy protein isolate (SPI) in some of the products. 1H NMR spin-lattice relaxation experiments were performed for the collection of products in a broad frequency range from 4 KHz to 30 MHz to get insight into the influence of different sugar types and SPI on the dynamics of water in composite gel systems. The relaxation data have been decomposed into relaxation contributions associated with two different pools of water molecules characterized by different mobility. The translation dynamics of water molecules has been quantitatively described in terms of a dedicated relaxation model. The influence of the sample composition (the type of sugar and/or the presence of SPI) on the water mobility was thoroughly discussed. The results indicate that the addition of soy protein does not affect water dynamics for samples including sucrose. In addition, as the complementary measurements, physical properties of the products, such as the moisture content, water activity and texture, were investigated in terms of X-ray diffraction and thermogravimetric analysis.


Asunto(s)
Almidón , Agua , Espectroscopía de Resonancia Magnética , Proteínas de Soja/química , Almidón/química , Azúcares , Agua/química
19.
World J Microbiol Biotechnol ; 38(8): 144, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35748959

RESUMEN

D-allulose is a rare low-calorie sugar that has many fundamental biological functions. D-allulose 3-epimerase from Agrobacterium tumefaciens (AT-DAEase) catalyzes the conversion of D-fructose to D-allulose. The enzyme has attracted considerable attention because of its mild catalytic properties. However, the bioconversion efficiency and reusability of AT-DAEase limit its industrial application. Magnetic metal-organic frameworks (MOFs) have uniform pore sizes and large surface areas and can facilitate mass transport and enhance the capacity for enzyme immobilization. Here, we successfully encapsulated cobalt-type AT-DAEase into the cobalt-based magnetic MOF ZIF-67@Fe3O4 using a self-assembly strategy. We confirmed the immobilization of enzyme AT-DAEase and characterized the enzymatic properties of the MOF-immobilized AT-DAEase@ZIF-67@Fe3O4. The AT-DAEase@ZIF-67@Fe3O4 nanoparticles had higher catalytic activity (65.1 U mg-1) and bioconversion ratio (38.1%) than the free AT-DAEase. The optimal conditions for maximum enzyme activity of the AT-DAEase@ZIF-67@Fe3O4 nanoparticles were 55 °C and pH 8.0, which were significantly higher than those of the free AT-DAEase (50 °C and pH 7.5). The AT-DAEase@ZIF-67@Fe3O4 nanoparticles displayed significantly improved thermal stability and excellent recycling performance, with 80% retention of enzyme activity at a temperature range of 45-70 °C and > 45% of its initial activity after eight cycles of enzyme use. The AT-DAEase@ZIF-67@Fe3O4 nanoparticles have great potential for large-scale industrial preparation of D-allulose by immobilizing cobalt-type AT-DAEase into magnetic MOF ZIF-67@Fe3O4.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Agrobacterium tumefaciens/metabolismo , Biocatálisis , Cobalto , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Fructosa , Concentración de Iones de Hidrógeno , Fenómenos Magnéticos , Racemasas y Epimerasas
20.
Microb Cell Fact ; 20(1): 60, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663507

RESUMEN

BACKGROUND: D-Allulose is an ultra-low calorie sugar of multifarious health benefits, including anti-diabetic and anti-obesity potential. D-Allulose 3-epimerase family enzymes catalyze biosynthesis of D-allulose via epimerization of D-fructose. RESULTS: A novel D-allulose 3-epimerase (DaeB) was cloned from a plant probiotic strain, Bacillus sp. KCTC 13219, and expressed in Bacillus subtilis cells. The purified protein exhibited substantial epimerization activity in a broad pH spectrum, 6.0-11.0. DaeB was able to catalyze D-fructose to D-allulose bioconversion at the temperature range of 35 °C to 70 °C, exhibiting at least 50 % activity. It displaced excessive heat stability, with the half-life of 25 days at 50 °C, and high turnover number (kcat 367 s- 1). The coupling of DaeB treatment and yeast fermentation of 700 g L- 1 D-fructose solution yielded approximately 200 g L- 1 D-allulose, and 214 g L- 1 ethanol. CONCLUSIONS: The novel D-allulose 3-epimerase of Bacillus sp. origin discerned a high magnitude of heat stability along with exorbitant epimerization ability. This biocatalyst has enormous potential for the large-scale production of D-allulose.


Asunto(s)
Bacillus/enzimología , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Fructosa/biosíntesis , Bacillus/genética , Biocatálisis , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/aislamiento & purificación , Estabilidad de Enzimas , Etanol/metabolismo , Fermentación , Calor , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Filogenia , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA