Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurosurg Focus ; 49(1): E3, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32610291

RESUMEN

OBJECTIVE: The goal of this study was to systematically review the feasibility and safety of minimally invasive neurovascular approaches to brain-machine interfaces (BMIs). METHODS: A systematic literature review was performed using the PubMed database for studies published between 1986 and 2019. All studies assessing endovascular neural interfaces were included. Additional studies were selected based on review of references of selected articles and review articles. RESULTS: Of the 53 total articles identified in the original literature search, 12 studies were ultimately selected. An additional 10 articles were included from other sources, resulting in a total of 22 studies included in this systematic review. This includes primarily preclinical studies comparing endovascular electrode recordings with subdural and epidural electrodes, as well as studies evaluating stent-electrode gauge and material type. In addition, several clinical studies are also included. CONCLUSIONS: Endovascular stent-electrode arrays provide a minimally invasive approach to BMIs. Stent-electrode placement has been shown to be both efficacious and safe, although further data are necessary to draw comparisons between subdural and epidural electrode measurements given the heterogeneity of the studies included. Greater access to deep-seated brain regions is now more feasible with stent-electrode arrays; however, further validation is needed in large clinical trials to optimize this neural interface. This includes the determination of ideal electrode material type, venous versus arterial approaches, the feasibility of deep brain stimulation, and more streamlined computational decoding techniques.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo/cirugía , Electrodos Implantados , Procedimientos Endovasculares , Estimulación Encefálica Profunda/métodos , Procedimientos Endovasculares/métodos , Humanos , Stents/efectos adversos
2.
Neurosurg Focus ; 49(1): E9, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32610295

RESUMEN

Schizophrenia is a psychiatric disorder associated with significant morbidity and mortality. Although antipsychotic medications and electroconvulsive therapy can be used to manage the clinical symptoms of schizophrenia, a substantial portion (10%-30%) of patients do not clinically respond to these treatments or cannot tolerate the side effects. Recently, deep brain stimulation (DBS) has emerged as a promising safe and effective therapeutic intervention for various psychiatric disorders. Here, the authors explore the utility of DBS of the habenula (HB) in the clinical management of 2 young adult male patients with severe, chronic, and treatment-resistant schizophrenia. After HB DBS surgery, both patients experienced improvements in clinical symptoms during the first 6 months of treatment. However, only 1 patient retained the clinical benefits and reached a favorable outcome at 12-month follow-up. The symptoms of the other patient subsequently worsened and became so profound that he needed to be hospitalized at 10-month follow-up and withdrawn from further study participation. It is tentatively concluded that HB DBS could ultimately be a relatively safe and effective surgical intervention for certain patients with treatment-resistant schizophrenia.


Asunto(s)
Estimulación Encefálica Profunda , Habénula/fisiopatología , Esquizofrenia/fisiopatología , Esquizofrenia/terapia , Encéfalo/fisiopatología , Encéfalo/cirugía , Estimulación Encefálica Profunda/efectos adversos , Humanos , Masculino , Núcleo Accumbens/fisiopatología , Proyectos Piloto , Esquizofrenia/diagnóstico
3.
Neurosurg Focus ; 48(4): E2, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32234983

RESUMEN

OBJECTIVE: Despite numerous imaging studies highlighting the importance of the thalamus in a patient's surgical prognosis, human electrophysiological studies involving the limbic thalamic nuclei are limited. The objective of this study was to evaluate the safety and accuracy of robot-assisted stereotactic electrode placement in the limbic thalamic nuclei of patients with suspected temporal lobe epilepsy (TLE). METHODS: After providing informed consent, 24 adults with drug-resistant, suspected TLE undergoing evaluation with stereoelectroencephalography (SEEG) were enrolled in the prospective study. The trajectory of one electrode planned for clinical sampling of the operculoinsular cortex was modified to extend it to the thalamus, thereby preventing the need for additional electrode placement for research. The anterior nucleus of the thalamus (ANT) (n = 13) and the medial group of thalamic nuclei (MED) (n = 11), including the mediodorsal and centromedian nuclei, were targeted. The postimplantation CT scan was coregistered to the preoperative MR image, and Morel's thalamic atlas was used to confirm the accuracy of implantation. RESULTS: Ten (77%) of 13 patients in the ANT group and 10 (91%) of 11 patients in the MED group had electrodes accurately placed in the thalamic nuclei. None of the patients had a thalamic hemorrhage. However, trace asymptomatic hemorrhages at the cortical-level entry site were noted in 20.8% of patients, who did not require additional surgical intervention. SEEG data from all the patients were interpretable and analyzable. The trajectories for the ANT implant differed slightly from those of the MED group at the entry point-i.e., the precentral gyrus in the former and the postcentral gyrus in the latter. CONCLUSIONS: Using judiciously planned robot-assisted SEEG, the authors demonstrate the safety of electrophysiological sampling from various thalamic nuclei for research recordings, presenting a technique that avoids implanting additional depth electrodes or compromising clinical care. With these results, we propose that if patients are fully informed of the risks involved, there are potential benefits of gaining mechanistic insights to seizure genesis, which may help to develop neuromodulation therapies.


Asunto(s)
Epilepsia Refractaria/cirugía , Electroencefalografía , Epilepsias Parciales/cirugía , Robótica , Adulto , Núcleos Talámicos Anteriores/cirugía , Estimulación Encefálica Profunda/métodos , Electroencefalografía/métodos , Femenino , Humanos , Imagenología Tridimensional/métodos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Técnicas Estereotáxicas/efectos adversos
4.
Neurosurg Focus ; 49(1): E8, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32610293

RESUMEN

The thalamic ventral intermediate nucleus (VIM) can be targeted for treatment of tremor by several procedures, including deep brain stimulation (DBS) and, more recently, MR-guided focused ultrasound (MRgFUS). To date, such targeting has relied predominantly on coordinate-based or atlas-based techniques rather than directly targeting the VIM based on imaging features. While general regional differences of features within the thalamus and some related white matter tracts can be distinguished with conventional imaging techniques, internal nuclei such as the VIM are not discretely visualized. Advanced imaging methods such as quantitative susceptibility mapping (QSM) and fast gray matter acquisition T1 inversion recovery (FGATIR) MRI and high-field MRI pulse sequences that improve the ability to image the VIM region are emerging but have not yet been shown to have reliability and accuracy to serve as the primary method of VIM targeting. Currently, the most promising imaging approach to directly identify the VIM region for clinical purposes is MR diffusion tractography.In this review and update, the capabilities and limitations of conventional and emerging advanced methods for evaluation of internal thalamic anatomy are briefly reviewed. The basic principles of tractography most relevant to VIM targeting are provided for familiarization. Next, the key literature to date addressing applications of DTI and tractography for DBS and MRgFUS is summarized, emphasizing use of direct targeting. This literature includes 1-tract (dentatorubrothalamic tract [DRT]), 2-tract (pyramidal and somatosensory), and 3-tract (DRT, pyramidal, and somatosensory) approaches to VIM region localization through tractography.The authors introduce a 3-tract technique used at their institution, illustrating the oblique curved course of the DRT within the inferior thalamus as well as the orientation and relationship of the white matter tracts in the axial plane. The utility of this 3-tract tractography approach to facilitate VIM localization is illustrated with case examples of variable VIM location, targeting superior to the anterior commissure-posterior commissure plane, and treatment in the setting of pathologic derangement of thalamic anatomy. Finally, concepts demonstrated with these case examples and from the prior literature are synthesized to highlight several potential advantages of tractography for VIM region targeting.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial/terapia , Enfermedad de Parkinson/terapia , Ultrasonografía , Estimulación Encefálica Profunda/métodos , Imagen de Difusión Tensora/métodos , Sustancia Gris/fisiopatología , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Tálamo/diagnóstico por imagen , Ultrasonografía/métodos , Sustancia Blanca/fisiopatología
5.
Neurosurg Focus ; 49(1): E6, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32610297

RESUMEN

The development of closed-loop deep brain stimulation (DBS) systems represents a significant opportunity for innovation in the clinical application of neurostimulation therapies. Despite the highly dynamic nature of neurological diseases, open-loop DBS applications are incapable of modifying parameters in real time to react to fluctuations in disease states. Thus, current practice for the designation of stimulation parameters, such as duration, amplitude, and pulse frequency, is an algorithmic process. Ideal stimulation parameters are highly individualized and must reflect both the specific disease presentation and the unique pathophysiology presented by the individual. Stimulation parameters currently require a lengthy trial-and-error process to achieve the maximal therapeutic effect and can only be modified during clinical visits. The major impediment to the development of automated, adaptive closed-loop systems involves the selection of highly specific disease-related biomarkers to provide feedback for the stimulation platform. This review explores the disease relevance of neurochemical and electrophysiological biomarkers for the development of closed-loop neurostimulation technologies. Electrophysiological biomarkers, such as local field potentials, have been used to monitor disease states. Real-time measurement of neurochemical substances may be similarly useful for disease characterization. Thus, the introduction of measurable neurochemical analytes has significantly expanded biomarker options for feedback-sensitive neuromodulation systems. The potential use of biomarker monitoring to advance neurostimulation approaches for treatment of Parkinson's disease, essential tremor, epilepsy, Tourette syndrome, obsessive-compulsive disorder, chronic pain, and depression is examined. Further, challenges and advances in the development of closed-loop neurostimulation technology are reviewed, as well as opportunities for next-generation closed-loop platforms.


Asunto(s)
Encéfalo/fisiopatología , Estimulación Encefálica Profunda , Enfermedades del Sistema Nervioso/terapia , Trastorno Obsesivo Compulsivo/terapia , Estimulación Encefálica Profunda/métodos , Temblor Esencial/terapia , Humanos , Enfermedad de Parkinson/terapia , Síndrome de Tourette/fisiopatología
6.
Neurosurg Focus ; 47(6): E11, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786552

RESUMEN

OBJECTIVE: Low registration errors are an important prerequisite for reliable navigation, independent of its use in cranial or spinal surgery. Regardless of whether navigation is used for trajectory alignment in biopsy or implant procedures, or for sophisticated augmented reality applications, all depend on a correct registration of patient space and image space. In contrast to fiducial, landmark, or surface matching-based registration, the application of intraoperative imaging allows user-independent automatic patient registration, which is less error prone. The authors' aim in this paper was to give an overview of their experience using intraoperative CT (iCT) scanning for automatic registration with a focus on registration accuracy and radiation exposure. METHODS: A total of 645 patients underwent iCT scanning with a 32-slice movable CT scanner in combination with navigation for trajectory alignment in biopsy and implantation procedures (n = 222) and for augmented reality (n = 437) in cranial and spine procedures (347 craniotomies and 42 transsphenoidal, 56 frameless stereotactic, 59 frame-based stereotactic, and 141 spinal procedures). The target registration error was measured using skin fiducials that were not part of the registration procedure. The effective dose was calculated by multiplying the dose length product with conversion factors. RESULTS: Among all 1281 iCT scans obtained, 1172 were used for automatic patient registration (645 initial registration scans and 527 repeat iCT scans). The overall mean target registration error was 0.86 ± 0.38 mm (± SD) (craniotomy, 0.88 ± 0.39 mm; transsphenoidal, 0.92 ± 0.39 mm; frameless, 0.74 ± 0.39 mm; frame-based, 0.84 ± 0.34 mm; and spinal, 0.80 ± 0.28 mm). Compared with standard diagnostic scans, a distinct reduction of the effective dose could be achieved using low-dose protocols for the initial registration scan with mean effective doses of 0.06 ± 0.04 mSv for cranial, 0.50 ± 0.09 mSv for cervical, 4.12 ± 2.13 mSv for thoracic, and 3.37 ± 0.93 mSv for lumbar scans without impeding registration accuracy. CONCLUSIONS: Reliable automatic patient registration can be achieved using iCT scanning. Low-dose protocols ensured a low radiation exposure for the patient. Low-dose scanning had no negative effect on navigation accuracy.


Asunto(s)
Encefalopatías/diagnóstico por imagen , Tomografía Computarizada Multidetector/métodos , Neuronavegación/métodos , Enfermedades de la Columna Vertebral/diagnóstico por imagen , Cirugía Asistida por Computador/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Encefalopatías/cirugía , Niño , Preescolar , Craneotomía , Femenino , Marcadores Fiduciales , Humanos , Masculino , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos , Enfermedades de la Columna Vertebral/cirugía , Técnicas Estereotáxicas , Adulto Joven
7.
Neurosurg Focus ; 45(2): E19, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30064310

RESUMEN

Neuromodulation and deep brain stimulation (DBS) have been increasingly used in many neurological ailments, including essential tremor, Parkinson's disease, epilepsy, and more. Yet for many patients and practitioners the desire to utilize these therapies is met with caution, given the need for craniotomy, lead insertion through brain parenchyma, and, at many times, bilateral invasive procedures. Currently endovascular therapy is a standard of care for emergency thrombectomy, aneurysm treatment, and other vascular malformation/occlusive disease of the cerebrum. Endovascular techniques and delivery catheters have advanced greatly in both their ability to safely reach remote brain locations and deliver devices. In this review the authors discuss minimally invasive endovascular delivery of devices and neural stimulating and recording from cortical and DBS targets via the neurovascular network.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia/terapia , Temblor Esencial/terapia , Enfermedad de Parkinson/terapia , Encéfalo/cirugía , Procedimientos Endovasculares/métodos , Humanos
8.
Neurosurg Focus ; 45(2): E16, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30064318

RESUMEN

OBJECTIVE The predator scent model of posttraumatic stress disorder (PTSD) produces prolonged abnormal anxiety and avoidance-like behaviors. Increased basolateral amygdala activity has been shown to correlate with severity of PTSD symptoms in human studies. Modulation of this increased amygdala activity by deep brain stimulation led to improved symptoms in prior studies that used a foot shock model of inducing PTSD. The predator scent model is a different technique that induces long-lasting avoidance behavioral responses by exposing the animal to an inescapable scent of one of its predators. The authors hypothesize that high-frequency stimulation of the bilateral basolateral amygdala will decrease avoidance and anxiety-like behaviors in a predator scent rodent model of PTSD. METHODS Rodents underwent cat urine exposure in a place preference protocol. Avoidance in the place preference paradigm and anxiety-like behavior in the elevated plus maze were measured before and after high-frequency stimulation. RESULTS Predator scent exposure resulted in long-term significant avoidance behavior in rodents. Bilateral stimulation significantly decreased avoidance behavior in rodents compared to no stimulation following predator scent exposure. There were no significant differences in anxiety behaviors on the elevated plus maze between stimulated and unstimulated cohorts. CONCLUSIONS Bilateral stimulation of the basolateral amygdala leads to decreased avoidance behavior compared to controls in a predator scent model of PTSD.


Asunto(s)
Amígdala del Cerebelo/cirugía , Reacción de Prevención/fisiología , Estimulación Encefálica Profunda , Trastornos por Estrés Postraumático/terapia , Animales , Ansiedad/terapia , Conducta Animal/fisiología , Gatos , Modelos Animales de Enfermedad , Odorantes , Trastornos por Estrés Postraumático/fisiopatología
9.
Neurosurg Focus ; 45(2): E20, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30064327

RESUMEN

OBJECTIVE The research required to establish that psychiatric treatments are effective often depends on collaboration between academic clinical researchers and industry. Some of the goals of clinical practice and those of commercial developers of psychiatric therapies overlap, such as developing safe and effective treatments. However, there might also be incompatible goals; physicians aim to provide the best care they can to their patients, whereas the medical industry ultimately aims to develop therapies that are commercially successful. In some cases, however, clinical research may be aiming both at improved patient care and commercial success. It is in these cases that a conflict of interest (COI) arises. The goal of this study was to identify differences and commonalities regarding COIs between 2 kinds of somatic psychiatric interventions: pharmacological and neurosurgical. METHODS The authors conducted a study focused on professional concerns regarding pharmacological and neurosurgical psychiatric interventions. They used medical and bioethics journal articles as an indicator of professionals' concerns and carried out a thematic content analysis of peer-reviewed articles published between 1960 and 2015, using PubMed and Google Scholar. RESULTS One hundred thirty-seven relevant articles were identified, of which 86 papers focused primarily on psychopharmacology and 51 on neurosurgery. The intervention most discussed in the psychiatric neurosurgery data set was deep brain stimulation (n = 42). While there were no significant differences at the level of categories, pharmacological and neurosurgical interventions differ in the underlying themes discussed. Two issues widely discussed in the articles on pharmaceutical interventions, but largely neglected in the neurosurgery articles, were medical professional issues and industry involvement. CONCLUSIONS COIs are a neglected issue in the discussion of ethics concerns regarding medical devices in psychiatry. Yet as these interventions become more common, it is important to address them in part through learning from the discussion regarding COIs in the pharmaceutical industry and by developing approaches to address those aspects of COIs that are unique to the medical device industry.


Asunto(s)
Investigación Biomédica , Conflicto de Intereses , Industria Farmacéutica , Médicos , Humanos , Neurocirugia , Procedimientos Neuroquirúrgicos
10.
Neurosurg Focus ; 44(2): E14, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29385924

RESUMEN

The understanding of brain function and the capacity to treat neurological and psychiatric disorders rest on the ability to intervene in neuronal activity in specific brain circuits. Current methods of neuromodulation incur a tradeoff between spatial focus and the level of invasiveness. Transcranial focused ultrasound (FUS) is emerging as a neuromodulation approach that combines noninvasiveness with focus that can be relatively sharp even in regions deep in the brain. This may enable studies of the causal role of specific brain regions in specific behaviors and behavioral disorders. In addition to causal brain mapping, the spatial focus of FUS opens new avenues for treatments of neurological and psychiatric conditions. This review introduces existing and emerging FUS applications in neuromodulation, discusses the mechanisms of FUS effects on cellular excitability, considers the effects of specific stimulation parameters, and lays out the directions for future work.


Asunto(s)
Encéfalo/diagnóstico por imagen , Trastornos Mentales/diagnóstico por imagen , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Ultrasonografía Intervencional/métodos , Humanos , Trastornos Mentales/terapia , Enfermedades del Sistema Nervioso/terapia
11.
Neurosurg Focus ; 45(2): E18, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30064312

RESUMEN

OBJECTIVE The aim of this study was to determine whether a modified registration method could reduce registration error and postoperative electrode vector error and to analyze the method's clinical significance in deep brain stimulation (DBS) surgery. METHODS The first part of the study involved a skull model, in which three registration methods were tested using the ROSA (robotic stereotactic assistance) system. In the second part, four registration methods were clinically tested in patients undergoing DBS surgery using the ROSA system. Thirty-three patients (65 sides, group I) underwent the conventional registration method 2E, and registration errors were recorded. Thirty-eight patients (75 sides, group II) underwent four types of modified registration methods including 2A, 2B, 2C, and 2D. Registration and electrode vector errors, intraoperative electrophysiological signal length (IESL), and DBS power-on voltage were recorded. The primary measure of efficacy was the change in the Unified Parkinson's Disease Rating Scale (UPDRS) and UPDRS Part III scores from baseline to 10 weeks after surgery. RESULTS In the skull model, the registration error (mean ± SD) was 0.56 ± 0.11 mm for method 1A, 0.35 ± 0.11 mm for method 1B (vs. 1A, p < 0.001), and 0.90 ± 0.15 mm for method 1C (vs. 1A, p < 0.001). In the clinical study, method 2C was selected for DBS surgery in group II since it had the smallest registration error among the four methods tested. The registration error was 0.62 ± 0.22 mm (mean ± SD) for group I and 0.27 ± 0.07 mm for group II (p < 0.001). Postoperative electrode vector error was 0.97 ± 0.31 mm for group I and 0.65 ± 0.23 mm for group II (p < 0.001). There was a positive correlation between registration error and electrode vector error in both groups (group I: r = 0.69, p < 0.001; group II: r = 0.71, p < 0.001). The mean IESL was 5.0 ± 0.9 mm in group I and 5.8 ± 0.7 mm in group II (p < 0.001). The mean DBS power-on voltage was 1.63 ± 0.44 V in group I and 1.48 ± 0.38 V in group II (p = 0.027). In the UPDRS score, group I showed 50% ± 16% improvement and group II showed 52% ± 18% improvement (p = 0.724); there was no statistically significant difference in improvement on the UPDRS. CONCLUSIONS In DBS surgery assisted by the ROSA system, registration error and electrode vector error showed a positive correlation. The modified registration method could reduce the registration error and electrode vector error, but the long-term effects need to be further observed and evaluated.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson/terapia , Núcleo Subtalámico , Adulto , Anciano , Estimulación Encefálica Profunda/métodos , Electrodos Implantados , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
12.
Neurosurg Focus ; 45(2): E5, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30064324

RESUMEN

OBJECTIVE The field of deep brain stimulation (DBS) for epilepsy has grown tremendously since its inception in the 1970s and 1980s. The goal of this review is to identify and evaluate all studies published on the topic of open-loop DBS for epilepsy over the past decade (2008 to present). METHODS A PubMed search was conducted to identify all articles reporting clinical outcomes of open-loop DBS for the treatment of epilepsy published since January 1, 2008. The following composite search terms were used: ("epilepsy" [MeSH] OR "seizures" [MeSH] OR "kindling, neurologic" [MeSH] OR epilep* OR seizure* OR convuls*) AND ("deep brain stimulation" [MeSH] OR "deep brain stimulation" OR "DBS") OR ("electric stimulation therapy" [MeSH] OR "electric stimulation therapy" OR "implantable neurostimulators" [MeSH]). RESULTS The authors identified 41 studies that met the criteria for inclusion. The anterior nucleus of the thalamus, centromedian nucleus of the thalamus, and hippocampus were the most frequently evaluated targets. Among the 41 articles, 19 reported on stimulation of the anterior nucleus of the thalamus, 6 evaluated stimulation of the centromedian nucleus of the thalamus, and 9 evaluated stimulation of the hippocampus. The remaining 7 articles reported on the evaluation of alternative DBS targets, including the posterior hypothalamus, subthalamic nucleus, ventral intermediate nucleus of the thalamus, nucleus accumbens, caudal zone incerta, mammillothalamic tract, and fornix. The authors evaluated each study for overall epilepsy response rates as well as adverse events and other significant, nonepilepsy outcomes. CONCLUSIONS Level I evidence supports the safety and efficacy of stimulating the anterior nucleus of the thalamus and the hippocampus for the treatment of medically refractory epilepsy. Level III and IV evidence supports stimulation of other targets for epilepsy. Ongoing research into the efficacy, adverse effects, and mechanisms of open-loop DBS continues to expand the knowledge supporting the use of these treatment modalities in patients with refractory epilepsy.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria/terapia , Epilepsia/terapia , Convulsiones/cirugía , Estimulación Encefálica Profunda/métodos , Hipocampo/cirugía , Humanos , Resultado del Tratamiento
13.
Neurosurg Focus ; 44(2): E13, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29385920

RESUMEN

OBJECTIVE Minimally invasive procedures may allow surgeons to avoid conventional open surgical procedures for certain neurological disorders. This paper describes the iterative process for development of a catheter-based ultrasound thermal therapy applicator. METHODS Using an ultrasound applicator with an array of longitudinally stacked and angularly sectored tubular transducers within a catheter, the authors conducted experimental studies in porcine liver, in vivo and ex vivo, in order to characterize the device performance and lesion patterns. In addition, they applied the technique in a rodent model of Parkinson's disease to investigate the feasibility of its application in brain. RESULTS Thermal lesions with multiple shapes and sizes were readily achieved in porcine liver. The feasibility of catheter-based focused ultrasound in the treatment of brain conditions was demonstrated in a rodent model of Parkinson's disease. CONCLUSIONS The authors show proof of principle of a catheter-based ultrasound system that can create lesions with concurrent thermode-based measurements.


Asunto(s)
Encéfalo/diagnóstico por imagen , Cateterismo/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Trastornos Parkinsonianos/diagnóstico por imagen , Ultrasonografía Intervencional/métodos , Animales , Encéfalo/cirugía , Trastornos Parkinsonianos/cirugía , Ratas , Porcinos
14.
Neurosurg Focus ; 45(2): E9, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30064311

RESUMEN

The mechanisms of appetite disorders, such as refractory obesity and anorexia nervosa, have been vigorously studied over the last century, and these studies have shown that the central nervous system has significant involvement with, and responsibility for, the pathology associated with these diseases. Because deep brain stimulation has been shown to be a safe, efficacious, and adjustable treatment modality for a variety of other neurological disorders, it has also been studied as a possible treatment for appetite disorders. In studies of refractory obesity in animal models, the ventromedial hypothalamus, the lateral hypothalamus, and the nucleus accumbens have all demonstrated elements of success as deep brain stimulation targets. Multiple targets for deep brain stimulation have been proposed for anorexia nervosa, with research predominantly focusing on the subcallosal cingulate, the nucleus accumbens, and the stria terminalis and medial forebrain bundle. Human deep brain stimulation studies that focus specifically on refractory obesity and anorexia nervosa have been performed but with limited numbers of patients. In these studies, the target for refractory obesity has been the lateral hypothalamus, ventromedial hypothalamus, and nucleus accumbens, and the target for anorexia nervosa has been the subcallosal cingulate. These studies have shown promising findings, but further research is needed to elucidate the long-term efficacy of deep brain stimulation for the treatment of appetite disorders.


Asunto(s)
Anorexia Nerviosa/terapia , Estimulación Encefálica Profunda , Trastornos de Alimentación y de la Ingestión de Alimentos/terapia , Obesidad/terapia , Humanos , Hipotálamo/cirugía , Resultado del Tratamiento
15.
Neurosurg Focus ; 45(2): E12, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30064314

RESUMEN

Alcohol use disorder (AUD) is a difficult to treat condition with a significant global public health and cost burden. The nucleus accumbens (NAc) has been implicated in AUD and identified as an ideal target for deep brain stimulation (DBS). There are promising preclinical animal studies of DBS for alcohol consumption as well as some initial human clinical studies that have shown some promise at reducing alcohol-related cravings and, in some instances, achieving long-term abstinence. In this review, the authors discuss the evidence and concepts supporting the role of the NAc in AUD, summarize the findings from published NAc DBS studies in animal models and humans, and consider the challenges and propose future directions for neuromodulation of the NAc for the treatment of AUD.


Asunto(s)
Alcoholismo/terapia , Estimulación Encefálica Profunda , Núcleo Accumbens/cirugía , Corteza Prefrontal/cirugía , Animales , Conducta/fisiología , Humanos , Resultado del Tratamiento
16.
Neurosurg Focus ; 45(2): E14, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30064315

RESUMEN

Traumatic brain injury (TBI) is a looming epidemic, growing most rapidly in the elderly population. Some of the most devastating sequelae of TBI are related to depressed levels of consciousness (e.g., coma, minimally conscious state) or deficits in executive function. To date, pharmacological and rehabilitative therapies to treat these sequelae are limited. Deep brain stimulation (DBS) has been used to treat a number of pathologies, including Parkinson disease, essential tremor, and epilepsy. Animal and clinical research shows that targets addressing depressed levels of consciousness include components of the ascending reticular activating system and areas of the thalamus. Targets for improving executive function are more varied and include areas that modulate attention and memory, such as the frontal and prefrontal cortex, fornix, nucleus accumbens, internal capsule, thalamus, and some brainstem nuclei. The authors review the literature addressing the use of DBS to treat higher-order cognitive dysfunction and disorders of consciousness in TBI patients, while also offering suggestions on directions for future research.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Cognición/fisiología , Estado de Conciencia/fisiología , Estimulación Encefálica Profunda , Animales , Epilepsia/terapia , Humanos , Tálamo/fisiopatología
17.
Neurosurg Focus ; 45(2): E11, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30064320

RESUMEN

Drug addiction represents a significant public health concern that has high rates of relapse despite optimal medical therapy and rehabilitation support. New therapies are needed, and deep brain stimulation (DBS) may be an effective treatment. The past 15 years have seen numerous animal DBS studies for addiction to various drugs of abuse, with most reporting decreases in drug-seeking behavior with stimulation. The most common target for stimulation has been the nucleus accumbens, a key structure in the mesolimbic reward pathway. In addiction, the mesolimbic reward pathway undergoes a series of neuroplastic changes. Chief among them is a relative hypofunctioning of the prefrontal cortex, which is thought to lead to the diminished impulse control that is characteristic of drug addiction. The prefrontal cortex, as well as other targets involved in drug addiction such as the lateral habenula, hypothalamus, insula, and subthalamic nucleus have also been stimulated in animals, with encouraging results. Although animal studies have largely shown promising results, current DBS studies for drug addiction primarily use stimulation during active drug use. More data are needed on the effect of DBS during withdrawal in preventing future relapse. The published human experience for DBS for drug addiction is currently limited to several promising case series or case reports that are not controlled. Further animal and human work is needed to determine what role DBS can play in the treatment of drug addiction.


Asunto(s)
Encéfalo/cirugía , Estimulación Encefálica Profunda , Trastornos Relacionados con Sustancias/terapia , Núcleo Subtalámico/cirugía , Animales , Estimulación Encefálica Profunda/métodos , Humanos , Procedimientos Neuroquirúrgicos/métodos , Resultado del Tratamiento
18.
Neurosurg Focus ; 45(2): E15, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30064325

RESUMEN

OBJECTIVE Deep brain stimulation (DBS) is a well-established, evidence-based therapy with FDA approval for Parkinson's disease and essential tremor. Despite the early successful use of DBS to target the sensory thalamus for intractable facial pain, subsequent studies pursuing various chronic pain syndromes reported variable efficacy, keeping DBS for pain as an investigational and "off-label" use. The authors report promising results for a contemporary series of patients with intractable facial pain who were treated with DBS. METHODS Pain outcomes for 7 consecutive patients with unilateral, intractable facial pain undergoing DBS of the ventral posteromedial nucleus of the thalamus (VPM) and the periaqueductal gray (PAG) were retrospectively reviewed. Pain was assessed preoperatively and at multiple postoperative time points using the visual analog scale (VAS), the Short-Form McGill Pain Questionnaire-2 (SF-MPQ-2), and the Pain Disability Index (PDI). RESULTS VAS scores significantly decreased from a mean ± SD of 9.0 ± 1.3 preoperatively to 2.6 ± 1.5 at 1 year postoperatively (p = 0.001). PDI scores decreased from a mean total of 48.5 to 28.5 (p = 0.01). SF-MPQ-2 scores decreased from a mean of 4.6 to 2.4 (p = 0.03). Notably, several patients did not experience maximum improvement until 6-9 months postoperatively, correlating with repeated programming adjustments. CONCLUSIONS DBS of the VPM and PAG is a potential therapeutic option for patients suffering from severe, intractable facial pain refractory to other interventions. Improved efficacy may be observed over time with close follow-up and active DBS programming adjustments.


Asunto(s)
Estimulación Encefálica Profunda , Dolor Facial/terapia , Neuralgia/terapia , Dolor Intratable/terapia , Enfermedad de Parkinson/terapia , Adulto , Anciano , Estimulación Encefálica Profunda/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dimensión del Dolor , Estudios Retrospectivos
19.
Neurosurg Focus ; 44(2): E4, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29385917

RESUMEN

OBJECTIVE Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel technique that uses high-intensity focused ultrasound to achieve target ablation. Like a lens focusing the sun's rays, the ultrasound waves are focused to generate heat. This therapy combines the noninvasiveness of Gamma Knife thalamotomy and the real-time ablation of deep brain stimulation with acceptable complication rates. The aim of this study was to analyze the overall outcomes and complications of MRgFUS in the treatment of essential tremor (ET). METHODS A meta-analysis in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was made by searching PubMed, Cochrane library database, Web of Science, and Cumulative Index to Nursing and Allied Health Literature (CINAHL). Patients with the diagnosis of ET who were treated with MRgFUS were included in the study. The change in the Clinical Rating Scale for Tremor (CRST) score after treatment was analyzed. The improvement in disability was assessed with the Quality of Life in Essential Tremor Questionnaire (QUEST) score. The pooled data were analyzed by the DerSimonian-Laird random-effects model. Tests for bias and heterogeneity were performed. RESULTS Nine studies with 160 patients who had ET were included in the meta-analysis. The ventral intermediate nucleus was the target in 8 of the studies. The cerebellothalamic tract was targeted in 1 study. There was 1 randomized controlled trial, 6 studies were retrospective, and 2 were prospective. The mean number of sonications given in various studies ranged from 11 ± 3.2 to 22.5 ± 7.5 (mean ± SD). The maximum delivered energy ranged from 10,320 ± 4537 to 14,497 ± 6695 Joules. The mean of peak temperature reached ranged from 53°C ± 2.3°C to 62.0°C ± 2.5°C. On meta-analysis with the random-effects model, the pooled percentage improvements in the CRST Total, CRST Part A, CRST Part C, and QUEST scores were 62.2%, 62.4%, 69.1%, and 46.5%, respectively. Dizziness was the most common in-procedure complication, occurring in 45.5%, followed by nausea and vomiting in 26.85% (pooled percentage). At 3 months, ataxia was the most common complication, occurring in 32.8%, followed by paresthesias in 25.1% of the patients. At 12 months posttreatment, the ataxia had significantly recovered and paresthesias became the most common persisting complication, at 15.3%. CONCLUSIONS The MRgFUS therapy for ET significantly improves the CRST scores and improves the quality of life in patients with ET, with an acceptable complication rate. Therapy with MRgFUS is a promising frontier in functional neurosurgery.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Imagen por Resonancia Magnética/métodos , Procedimientos Neuroquirúrgicos/métodos , Ultrasonografía Intervencional/métodos , Humanos , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Estudios Retrospectivos , Resultado del Tratamiento
20.
Neurosurg Focus ; 44(2): E8, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29385928

RESUMEN

OBJECTIVE Although neurosurgical procedures are effective treatments for controlling involuntary tremor in patients with essential tremor (ET), they can cause cognitive decline, which can affect quality of life (QOL). The purpose of this study is to assess the changes in the neuropsychological profile and QOL of patients following MR-guided focused ultrasound (MRgFUS) thalamotomy for ET. METHODS The authors prospectively analyzed 20 patients with ET who underwent unilateral MRgFUS thalamotomy at their institute in the period from March 2012 to September 2014. Patients were regularly evaluated with the Clinical Rating Scale for Tremor (CRST), neuroimaging, and cognition and QOL measures. The Seoul Neuropsychological Screening Battery was used to assess cognitive function, and the Quality of Life in Essential Tremor Questionnaire (QUEST) was used to evaluate the postoperative change in QOL. RESULTS The total CRST score improved by 67.3% (from 44.75 ± 9.57 to 14.65 ± 9.19, p < 0.001) at 1 year following MRgFUS thalamotomy. Mean tremor scores improved by 68% in the hand contralateral to the thalamotomy, but there was no significant improvement in the ipsilateral hand. Although minimal cognitive decline was observed without statistical significance, memory function was much improved (p = 0.031). The total QUEST score also showed the same trend of improving (64.16 ± 17.75 vs 27.38 ± 13.96, p < 0.001). CONCLUSIONS The authors report that MRgFUS thalamotomy had beneficial effects in terms of not only tremor control but also safety for cognitive function and QOL. Acceptable postoperative changes in cognition and much-improved QOL positively support the clinical significance of MRgFUS thalamotomy as a new, favorable surgical treatment in patients with ET.


Asunto(s)
Cognición/fisiología , Temblor Esencial/cirugía , Imagen por Resonancia Magnética/métodos , Calidad de Vida , Tálamo/cirugía , Ultrasonografía Intervencional/métodos , Anciano , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Calidad de Vida/psicología , Tálamo/diagnóstico por imagen , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA