Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Saudi Pharm J ; 30(6): 655-668, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35812139

RESUMEN

Most vaccines approved by regulatory bodies are administered via intramuscular or subcutaneous injections and have shortcomings, such as the risk of needle-associated blood infections, pain and swelling at the injection site. Orally administered vaccines are of interest, as they elicit both systemic and mucosal immunities, in which mucosal immunity would neutralize the mucosa invading pathogen before the onset of an infection. Hence, oral vaccination can eliminate the injection associated adverse effects and enhance the person's compliance. Conventional approaches to manufacturing oral vaccines, such as coacervation, spray drying, and membrane emulsification, tend to alter the structural proteins in vaccines that result from high temperature, organic and toxic solvents during production. Electrohydrodynamic processes, specifically electrospraying, could solve these challenges, as it also modulates antigen release and has a high loading efficiency. This review will highlight the mucosal immunity and biological basis of the gastrointestinal immune system, different oral vaccine delivery approaches, and the application of electrospraying in vaccines development.

2.
Biosci Biotechnol Biochem ; 82(4): 654-668, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29207919

RESUMEN

Certain food components possess immunomodulatory effects. The aim of this study was to elucidate the mechanism of the immunostimulatory activity of Brassica rapa L. We demonstrated an enhancement of natural killer (NK) activity and interferon (IFN)-γ production in mice that were orally administered an insoluble fraction of B. rapa L. The insoluble fraction of B. rapa L. significantly induced IFN-γ production in mouse spleen cells in an interleukin (IL)-12-dependent manner, and NK1.1+ cells were the main cells responsible for producing IFN-γ. Additionally, the results suggested that the active compounds in the insoluble fraction were recognized by Toll-like receptor (TLR) 2, TLR4, and C-type lectin receptors on dendritic cells, and they activated signaling cascades such as MAPK, NF-κB, and Syk. These findings suggest that B. rapa L. is a potentially promising immuno-improving material, and it might be useful for preventing immunological disorders such as infections and cancers by activating innate immunity.


Asunto(s)
Brassica rapa/metabolismo , Alimentos Funcionales , Interferón gamma/biosíntesis , Interleucina-12/fisiología , Células Asesinas Naturales/efectos de los fármacos , Extractos Vegetales/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Administración Oral , Animales , Citocinas/metabolismo , Femenino , Células Asesinas Naturales/inmunología , Lectinas Tipo C/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/administración & dosificación , Transducción de Señal , Bazo/efectos de los fármacos , Bazo/metabolismo , Quinasa Syk/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
3.
Heliyon ; 9(3): e14003, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36938461

RESUMEN

Cancer-associated fibroblasts (CAFs) can exert their immunosuppressive effects by secreting various effectors that are involved in the regulation of tumor-infiltrating immune cells as well as other immune components in the tumor immune microenvironment (TIME), thereby promoting tumorigenesis, progression, metastasis, and drug resistance. Although a large number of studies suggest that CAFs play a key regulatory role in the development of head and neck squamous cell carcinoma (HNSCC), there are limited studies on the relevance of CAFs to the prognosis of HNSCC. In this study, we identified a prognostic signature containing eight CAF-related genes for HNSCC by univariate Cox analysis, lasso regression, stepwise regression, and multivariate Cox analysis. Our validation in primary cultures of CAFs from human HNSCC and four human HNSCC cell lines confirmed that these eight genes are indeed characteristic markers of CAFs. Immune cell infiltration differences analysis between high-risk and low-risk groups according to the eight CAF-related genes signature hinted at CAFs regulatory roles in the TIME, further revealing its potential role on prognosis. The signature of the eight CAF-related genes was validated in different independent validation cohorts and all showed that it was a valid marker for prognosis. The significantly higher overall survival (OS) in the low-risk group compared to the high-risk group was confirmed by Kaplan-Meier (K-M) analysis, suggesting that the signature of CAF-related genes can be used as a non-invasive predictive tool for HNSCC prognosis. The low-risk group had significantly higher levels of tumor-killing immune cell infiltration, as confirmed by CIBERSORT analysis, such as CD8+ T cells, follicular helper T cells, and Dendritic cells (DCs) in the low-risk group. In contrast, the level of infiltration of pro-tumor cells such as M0 macrophages and activated Mast cells (MCs) was lower. It is crucial to delve into the complex mechanisms between CAFs and immune cells to find potential regulatory targets and may provide new evidence for subsequently targeted immunotherapy. These results suggest that the signature of the eight CAF-related genes is a powerful indicator for the assessment of the TIME of HNSCC. It may provide a new and reliable potential indicator for clinicians to predict the prognosis of HNSCC, which may be used to guide treatment and clinical decision-making in HNSCC patients. Meanwhile, CAF-related genes are expected to become tumor biomarkers and effective targets for HNSCC.

4.
PharmaNutrition ; 22: 100319, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36268528

RESUMEN

Background: vitamin D influences the immune system and the inflammatory response. It is known that vitamin D supplementation reduces the risk of acute respiratory tract infection. In the last two years, many researchers have investigated vitamin D's role in the pathophysiology of COVID-19 disease. Results: the findings obtained from clinical trials and systematic reviews highlight that most patients with COVID-19 have decreased vitamin D levels and low levels of vitamin D increase the risk of severe disease. This evidence seems to be also confirmed in the pediatric population. Conclusions: further studies (systematic review and meta-analysis) conducted on children are needed to confirm that vitamin D affects COVID-19 outcomes and to determine the effectiveness of supplementation and the appropriate dose, duration and mode of administration.

5.
Acta Pharm Sin B ; 12(1): 378-393, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127393

RESUMEN

The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using in vitro and in vivo experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate in vivo delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.

6.
Acta Pharm Sin B ; 12(1): 451-466, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127398

RESUMEN

The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.

7.
Acta Pharm Sin B ; 12(3): 1163-1185, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35530162

RESUMEN

Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.

8.
Acta Pharm Sin B ; 12(5): 2129-2149, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35646540

RESUMEN

Cardiometabolic disease (CMD), characterized with metabolic disorder triggered cardiovascular events, is a leading cause of death and disability. Metabolic disorders trigger chronic low-grade inflammation, and actually, a new concept of metaflammation has been proposed to define the state of metabolism connected with immunological adaptations. Amongst the continuously increased list of systemic metabolites in regulation of immune system, bile acids (BAs) represent a distinct class of metabolites implicated in the whole process of CMD development because of its multifaceted roles in shaping systemic immunometabolism. BAs can directly modulate the immune system by either boosting or inhibiting inflammatory responses via diverse mechanisms. Moreover, BAs are key determinants in maintaining the dynamic communication between the host and microbiota. Importantly, BAs via targeting Farnesoid X receptor (FXR) and diverse other nuclear receptors play key roles in regulating metabolic homeostasis of lipids, glucose, and amino acids. Moreover, BAs axis per se is susceptible to inflammatory and metabolic intervention, and thereby BAs axis may constitute a reciprocal regulatory loop in metaflammation. We thus propose that BAs axis represents a core coordinator in integrating systemic immunometabolism implicated in the process of CMD. We provide an updated summary and an intensive discussion about how BAs shape both the innate and adaptive immune system, and how BAs axis function as a core coordinator in integrating metabolic disorder to chronic inflammation in conditions of CMD.

9.
Acta Pharm Sin B ; 12(1): 92-106, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127374

RESUMEN

Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.

10.
Curr Res Immunol ; 2: 202-217, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35492402

RESUMEN

Neuroimmune communication plays a crucial role in maintaining homeostasis and promptly responding to any foreign insults. Sympathetic nerve fibres are innervated into all the lymphoid organs (bone marrow, thymus, spleen, and lymph nodes) and provide a communication link between the central nervous system (CNS) and ongoing immune response in the tissue microenvironment. Neurotransmitters such as catecholamines (epinephrine and norepinephrine) bind to adrenergic receptors present on most immune and non-immune cells, establish a local neuroimmune-communication system, and help regulate the ongoing immune response. The activation of these receptors varies with the type of receptor-activated, target cell, the activation status of the cells, and timing of activation. Activating adrenergic receptors, specifically ß-adrenergic signalling in immune cells leads to activation of the cAMP-PKA pathway or other non-canonical pathways. It predominantly leads to immune suppression such as inhibition of IL-2 secretion and a decrease in macrophages phagocytosis. This review discusses the expression of different adrenergic receptors in various immune cells, signalling, and how it modulates immune cell function and contributes to health and diseases. Understanding the neuroimmune communication through adrenergic receptor signalling in immune cells could help to design better strategies to control inflammation and autoimmunity.

11.
Acta Pharm Sin B ; 11(4): 1047-1055, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33996416

RESUMEN

Psoriasis is an autoimmune inflammatory disease, where dendritic cells (DCs) play an important role in its pathogenesis. In our previous work, we have demonstrated that topical delivery of curcumin-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) could treat Imiquimod (IMQ)-induced psoriasis-like mice. The objective of this study is to further elucidate biofate of PLGA NPs after intradermal delivery including DCs uptake, and their further trafficking in psoriasis-like mice model by using fluorescence probes. Two-sized DiO/DiI-loaded PLGA NPs of 50 ± 4.9 nm (S-NPs) and 226 ± 7.8 nm (L-NPs) were fabricated, respectively. In vitro cellular uptake results showed that NPs could be internalized into DCs with intact form, and DCs preferred to uptake larger NPs. Consistently, in vivo study showed that L-NPs were more captured by DCs and NPs were firstly transported to skin-draining lymph nodes (SDLN), then to spleens after 8 h injection, whereas more S-NPs were transported into SDLN and spleens. Moreover, FRET imaging showed more structurally intact L-NPs distributed in skins and lymph nodes. In conclusion, particle size can affect the uptake and trafficking of NPs by DCs in skin and lymphoid system, which needs to be considered in NPs tailing to treat inflammatory skin disease like psoriasis.

12.
JHEP Rep ; 3(4): 100295, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34159304

RESUMEN

BACKGROUND & AIMS: Current standard-of-care suppresses HBV replication, but does not lead to a functional cure. Treatment aiming to cure chronic hepatitis B (CHB) is believed to require the induction of strong cellular immune responses, such as by therapeutic vaccination. METHODS: We designed a therapeutic HBV vaccine candidate (YF17D/HBc-C) using yellow fever vaccine YF17D as a live-attenuated vector to express HBV core antigen (HBc). Its ability to induce potent cellular immune responses was assessed in a mouse model that supports flavivirus replication. RESULTS: Following a HBc protein prime, a booster of YF17D/HBc-C was found to induce vigorous cytotoxic T cell responses. In a direct head-to-head comparison, these HBc-specific responses exceeded those elicited by adenovirus-vectored HBc. Target-specific T cells were not only more abundant, but also showed a higher degree of polyfunctionality, with HBc-specific CD8+ T cells producing interferon γ and tumour necrosis factor α in addition to granzyme B. This immune phenotype translated into a superior cytotoxic effector activity toward HBc-positive cells in YF17D/HBc-C vaccinated animals in vivo. CONCLUSIONS: The results presented here show the potential of YF17D/HBc-C as a vaccine candidate to treat CHB, and warrant follow-up studies in preclinical animal models of HBV persistence in which other candidate vaccines have been unable to achieve a sustained virologic response. LAY SUMMARY: Resolution of CHB requires the induction of strong cellular immune responses. We used the yellow fever vaccine as a vector for HBV antigens and show that it is capable of inducing high levels of HBV-specific T cells that produce multiple cytokines simultaneously and are cytotoxic in vivo.

13.
Comput Struct Biotechnol J ; 19: 976-988, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33558827

RESUMEN

Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.

14.
Acta Pharm Sin B ; 11(9): 2798-2818, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589398

RESUMEN

Inflammatory bowel disease (IBD) is a chronic intestinal disease with painful clinical manifestations and high risks of cancerization. With no curative therapy for IBD at present, the development of effective therapeutics is highly advocated. Drug delivery systems have been extensively studied to transmit therapeutics to inflamed colon sites through the enhanced permeability and retention (EPR) effect caused by the inflammation. However, the drug still could not achieve effective concentration value that merely utilized on EPR effect and display better therapeutic efficacy in the inflamed region because of nontargeted drug release. Substantial researches have shown that some specific receptors and cell adhesion molecules highly expresses on the surface of colonic endothelial and/or immune cells when IBD occurs, ligand-modified drug delivery systems targeting such receptors and cell adhesion molecules can specifically deliver drug into inflamed sites and obtain great curative effects. This review introduces the overexpressed receptors and cell adhesion molecules in inflamed colon sites and retrospects the drug delivery systems functionalized by related ligands. Finally, challenges and future directions in this field are presented to advance the development of the receptor-mediated targeted drug delivery systems for the therapy of IBD.

15.
Phytomed Plus ; 1(3): 100043, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35399823

RESUMEN

Background: Several recent studies have stated that glycyrrhizin and licorice extract are present in most traditional Chinese medicine formulas used against SARS-CoV-2 in China. Significant data are showing that glycyrrhizin and licorice extract have multiple beneficial activities in combating most features of SARS-CoV-2. Purpose: The aim of current review was to highlight recent progresses in research that showed the evidence of the potential use of glycyrrhizin and licorice extract against COVID-19. Methodology: We have reviewed the information published from 1979 to October 2020. These studies demonstrated the effects , use and safety of glycyrrhizin and icorice extract against viral infections,bacterial infections, inflammatory disorders of lung ( in vitro and in vivo).  These studies were collated through online electronic databases research (Academic libraries as PubMed, Scopus, Web of Science and Egyptian Knowledge Bank). Results: Pooled effect size of articles provides information about the rationale for using glycyrrhizin and licorice extract to treat COVID-19. Fifty studies demonstrate antiviral activity of glycyrrhizin and licorice extract. The most frequent mechanism of the antiviral activity is due to disrupting viral uptake into the host cells and disrupting the interaction between receptor- binding domain (RBD) of SARS-COV2 and ACE2 in recent articles. Fifty studies indicate that glycyrrhizin and licorice extract have significant antioxidant, anti-inflammatory and immunomodulatory effects. Twenty five studies provide evidence for the protective effect of glycyrrhizin and licorice extract against inflammation-induced acute lung injury and cardiovascular disorders. Conclusion: The current study showed several evidence regarding the beneficial effects of glycyrrhizin and licorice extract in combating COVID-19. More randomized clinical trials are needed to obtain a precise conclusion.

16.
JHEP Rep ; 3(5): 100324, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34381984

RESUMEN

The recently identified novel cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) activates the downstream adaptor protein stimulator of interferon genes (STING) by catalysing the synthesis of cyclic GMP-AMP. This in turn initiates an innate immune response through the release of various cytokines, including type I interferon. Foreign DNA (microbial infection) or endogenous DNA (nuclear or mitochondrial leakage) can serve as cGAS ligands and lead to the activation of cGAS-STING signalling. Therefore, the cGAS-STING pathway plays essential roles in infectious diseases, sterile inflammation, tumours, and autoimmune diseases. In addition, cGAS-STING signalling affects the progression of liver inflammation through other mechanisms, such as autophagy and metabolism. In this review, we summarise recent advances in our understanding of the role of cGAS-STING signalling in the innate immune modulation of different liver diseases. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING pathway in the treatment of liver diseases.

17.
Acta Pharm Sin B ; 11(10): 3244-3261, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34729313

RESUMEN

Major challenges for cancer treatment are how to effectively eliminate primary tumor and sufficiently induce immunogenic cell death (ICD) to provoke a robust immune response for metastasis control. Here, a self-assembled cascade bioreactor was developed to improve cancer treatment with enhanced tumor penetration and synergistic therapy of starvation, chemodynamic (CDT) and photothermal therapy. Ultrasmall FeS-GOx nanodots were synthesized with glucose oxidase (GOx) as template and induced by paclitaxel (PTX) to form self-assembling FeS-GOx@PTX (FGP) via hydrophobic interaction. After accumulated at tumor sites, FGP disassembles to smaller FeS-GOx for enhanced deep tumor penetration. GOx maintains high enzymatic activity to catalyze glucose with assistant of oxygen to generate hydrogen peroxide (H2O2) as starvation therapy. Fenton reaction involving the regenerated H2O2 in turn produced more hydroxyl radicals for enhanced CDT. Following near-infrared laser at 808 nm, FGPs displayed pronounced tumor inhibition in vitro and in vivo by the combination therapy. The consequent increased exposure to calreticulin amplified ICD and promoted dendritic cells maturation. In combination with anti-CTLA4 checkpoint blockade, FGP can absolutely eliminate primary tumor and avidly inhibit distant tumors due to the enhanced intratumoral infiltration of cytotoxic T lymphocytes. Our work presents a promising strategy for primary tumor and metastasis inhibition.

18.
Acta Pharm Sin B ; 11(8): 2416-2448, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34522593

RESUMEN

Proteins and peptides (PPs) have gradually become more attractive therapeutic molecules than small molecular drugs due to their high selectivity and efficacy, but fewer side effects. Owing to the poor stability and limited permeability through gastrointestinal (GI) tract and epithelia, the therapeutic PPs are usually administered by parenteral route. Given the big demand for oral administration in clinical use, a variety of researches focused on developing new technologies to overcome GI barriers of PPs, such as enteric coating, enzyme inhibitors, permeation enhancers, nanoparticles, as well as intestinal microdevices. Some new technologies have been developed under clinical trials and even on the market. This review summarizes the history, the physiological barriers and the overcoming approaches, current clinical and preclinical technologies, and future prospects of oral delivery of PPs.

19.
Bioact Mater ; 6(7): 1973-1987, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33426371

RESUMEN

The tumor development and metastasis are closely related to the structure and function of the tumor microenvironment (TME). Recently, TME modulation strategies have attracted much attention in cancer immunotherapy. Despite the preliminary success of immunotherapeutic agents, their therapeutic effects have been restricted by the limited retention time of drugs in TME. Compared with traditional delivery systems, nanoparticles with unique physical properties and elaborate design can efficiently penetrate TME and specifically deliver to the major components in TME. In this review, we briefly introduce the substitutes of TME including dendritic cells, macrophages, fibroblasts, tumor vasculature, tumor-draining lymph nodes and hypoxic state, then review various nanoparticles targeting these components and their applications in tumor therapy. In addition, nanoparticles could be combined with other therapies, including chemotherapy, radiotherapy, and photodynamic therapy, however, the nanoplatform delivery system may not be effective in all types of tumors due to the heterogeneity of different tumors and individuals. The changes of TME at various stages during tumor development are required to be further elucidated so that more individualized nanoplatforms could be designed.

20.
Acta Pharm Sin B ; 11(4): 941-960, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33996408

RESUMEN

The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA