Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Br J Haematol ; 204(3): 759-773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253961

RESUMEN

Iron deficiency (ID) and iron-deficiency anaemia (IDA) are global public health concerns, most commonly afflicting children, pregnant women and women of childbearing age. Pathological outcomes of ID include delayed cognitive development in children, adverse pregnancy outcomes and decreased work capacity in adults. IDA is usually treated by oral iron supplementation, typically using iron salts (e.g. FeSO4 ); however, dosing at several-fold above the RDA may be required due to less efficient absorption. Excess enteral iron causes adverse gastrointestinal side effects, thus reducing compliance, and negatively impacts the gut microbiome. Recent research has sought to identify new iron formulations with better absorption so that lower effective dosing can be utilized. This article outlines emerging research on oral iron supplementation and focuses on molecular mechanisms by which different supplemental forms of iron are transported across the intestinal epithelium and whether these transport pathways are subject to regulation by the iron-regulatory hormone hepcidin.


Asunto(s)
Anemia Ferropénica , Deficiencias de Hierro , Sobrecarga de Hierro , Adulto , Niño , Femenino , Humanos , Embarazo , Hierro/metabolismo , Anemia Ferropénica/terapia , Sobrecarga de Hierro/tratamiento farmacológico
2.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656648

RESUMEN

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Asunto(s)
Astrocitos , Diferenciación Celular , Deficiencias de Hierro , Oligodendroglía , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Proteínas de Transporte de Catión/metabolismo , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Ratas , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Deferoxamina/farmacología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Hierro/metabolismo
3.
Brain Behav Immun ; 116: 370-384, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141840

RESUMEN

Neuroinflammation and microglial iron load are significant hallmarks found in several neurodegenerative diseases. In in vitro systems, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and it has been shown that iron can augment cellular inflammation, suggesting a feed-forward loop between mechanisms involved in iron import and inflammatory signaling. However, it is not understood how microglial iron import mechanisms contribute to inflammation in vivo, or whether altering a microglial iron-related gene affects the inflammatory response. These studies aimed to determine the effect of knocking down microglial iron import gene Slc11a2 on the inflammatory response in vivo. We generated a novel model of tamoxifen-inducible, microglial-specific Slc11a2 knockdown using Cx3cr1Cre-ERT2 mice. Transgenic male and female mice were administered intraperitoneal saline or lipopolysaccharide (LPS) and assessed for sickness behavior post-injection. Plasma cytokines and microglial bulk RNA sequencing (RNASeq) analyses were performed at 4 h post-LPS, and microglia were collected for gene expression analysis after 24 h. A subset of mice was assessed in a behavioral test battery following LPS-induced sickness recovery. Control male, but not female, mice significantly upregulated microglial Slc11a2 at 4 and 24 h following LPS. In Slc11a2 knockdown mice, we observed an improvement in the acute behavioral sickness response post-LPS in male, but not female, animals. Microglia from male, but not female, knockdown animals exhibited a significant decrease in LPS-provoked pro-inflammatory cytokine expression after 24 h. RNASeq data from male knockdown microglia 4 h post-LPS revealed a robust downregulation in inflammatory genes including Il6, Tnfα, and Il1ß, and an increase in anti-inflammatory and homeostatic markers (e.g., Tgfbr1, Cx3cr1, and Trem2). This corresponded with a profound decrease in plasma pro-inflammatory cytokines 4 h post-LPS. At 4 h, male knockdown microglia also upregulated expression of markers of iron export, iron recycling, and iron homeostasis and decreased iron storage and import genes, along with pro-oxidant markers such as Cybb, Nos2, and Hif1α. Overall, this work elucidates how manipulating a specific gene involved in iron import in microglia alters acute inflammatory signaling and overall cell activation state in male mice. These data highlight a sex-specific link between a microglial iron import gene and the pro-inflammatory response to LPS in vivo, providing further insight into the mechanisms driving neuroinflammatory disease.


Asunto(s)
Lipopolisacáridos , Microglía , Animales , Femenino , Masculino , Ratones , Citocinas/metabolismo , Inflamación/metabolismo , Hierro/metabolismo , Lipopolisacáridos/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Receptores Inmunológicos/metabolismo
4.
Asia Pac J Clin Nutr ; 33(2): 184-193, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38794978

RESUMEN

BACKGROUND AND OBJECTIVES: This study aimed to assess the associations of maternal iron status and placental iron transport proteins expression with the risk of pre-eclampsia (PE) in Chinese pregnant women. METHODS AND STUDY DESIGN: A total of 94 subjects with PE and 112 healthy pregnant women were enrolled. Fasting blood samples were collected to detect maternal iron status. The placenta samples were collected at delivery to detect the mRNA and protein expression of divalent metal transporter 1 (DMT1) and ferroportin-1 (FPN1). Logistic analysis was used to explore the associations of maternal iron status with PE risk. The associations of placental iron transport proteins with maternal iron status were explored. RESULTS: After adjusting for covariates, dietary total iron, non-heme iron intake and serum hepcidin were negatively associated with PE, with adjusted ORs (95%CIs) were 0.40 (0.17, 0.91), 0.42 (0.18, 0.94) and 0.02 (0.002, 0.13) for the highest versus lowest tertile, respectively. For the highest tertile versus lowest tertile, serum iron (4.08 (1.58, 10.57)) and ferritin (5.61 (2.36, 13.31)) were positively associated with PE. The mRNA expressions and protein levels of DMT1 and FPN1 in placenta were up-regulated in the PE group (p < 0.05). The mRNA expressions of DMT1 and FPN1 in placenta showed a negative correlation with the serum hepcidin (r = -0.71, p < 0.001; r = -0.49, p < 0.05). CONCLUSIONS: In conclusion, the maternal iron status were closely associated with PE risk, placental DMT1 and FPN1 were upregulated in PE which may be a promising target for the prevention of PE.


Asunto(s)
Proteínas de Transporte de Catión , Hierro , Placenta , Preeclampsia , Humanos , Femenino , Embarazo , Preeclampsia/epidemiología , Preeclampsia/sangre , Estudios de Casos y Controles , Adulto , Hierro/sangre , Hierro/metabolismo , Placenta/metabolismo , Proteínas de Transporte de Catión/genética , Hepcidinas/sangre , Factores de Riesgo , China/epidemiología , Estado Nutricional
5.
J Clin Biochem Nutr ; 74(1): 1-8, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38292117

RESUMEN

Mammalian cells contain thousands of metalloproteins and evolved systems to correctly incorporate metal cofactors into their designated sites. Among the transient metals in living cells, iron is the most abundant element that present as an iron sulfur cluster, mono- and dinuclear iron centers or heme for catalytic reactions. Iron homeostasis is tightly regulated by intestinal iron absorption in mammals owing to the lack of an iron excretive transport system, apart from superficial epithelial cell detachment and urinary outflow reabsorptive impairment. In mammals, the central site for iron absorption is in the duodenum, where the divalent metal transporter 1 is essential for iron uptake. The most notable manifestation of mutated divalent metal transporter 1 presents as iron deficiency anemia in humans. In contrast, the mutation of ferroportin, which exports iron, causes iron overload by either gain or loss of function. Furthermore, hepcidin secretion from the liver suppresses iron efflux by internalizing and degrading ferroportin; thus, the hepcidin/ferroportin axis is extensively investigated for its potential as a therapeutic target to treat iron overload. This review focuses on the divalent metal transporter 1-mediated intestinal iron uptake and hepcidin/ferroportin axis that regulate systemic iron homeostasis.

6.
Am J Physiol Cell Physiol ; 323(6): C1791-C1806, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342159

RESUMEN

Iron absorption is a complex and highly controlled process where DMT1 transports nonheme iron through the brush-border membrane of enterocytes to the cytoplasm but does not transport alkaline-earth metals such as calcium. However, it has been proposed that high concentrations of calcium in the diet could reduce iron bioavailability. In this work, we investigate the effect of intracellular and extracellular calcium on iron uptake by Caco-2 cells, as determined by calcein fluorescence quenching. We found that extracellular calcium inhibits iron uptake by Caco-2 cells in a concentration-dependent manner. Chelation of intracellular calcium with BAPTA did not affect iron uptake, which indicates that the inhibitory effect of calcium is not exerted through intracellular calcium signaling. Kinetic studies performed, provided evidence that calcium acts as a reversible noncompetitive inhibitor of the iron transport activity of DMT1. Based on these experimental results, a mathematical model was developed that considers the dynamics of noncompetitive inhibition using a four-state mechanism to describe the inhibitory effect of calcium on the DMT1 iron transport process in intestinal cells. The model accurately predicts the calcein fluorescence quenching dynamics observed experimentally after an iron challenge. Therefore, the proposed model structure is capable of representing the inhibitory effect of extracellular calcium on DMT1-mediated iron entry into the cLIP of Caco-2 cells. Considering the range of calcium concentrations that can inhibit iron uptake, the possible inhibition of dietary calcium on intestinal iron uptake is discussed.


Asunto(s)
Proteínas de Transporte de Catión , Hierro , Humanos , Hierro/metabolismo , Células CACO-2 , Calcio , Calcio de la Dieta , Proteínas de Transporte de Catión/metabolismo , Cinética , Absorción Intestinal , Modelos Teóricos
7.
J Biol Chem ; 296: 100418, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33837730

RESUMEN

The nicotianamine-iron chelate [NA-Fe2+], which is found in many plant-based foods, has been recently described as a new form of bioavailable iron in mice and chickens. How NA-Fe2+ is assimilated from the diet, however, remains unclear. The current investigation by Murata et al. has identified the proton-coupled amino acid transporter 1 (PAT1) as the main mechanism by which NA-Fe2+ is absorbed in the mammalian intestine. Discovery of this new form of dietary iron and elucidation of its pathway of intestinal absorption may lead to the development of improved iron supplementation approaches.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Quelantes del Hierro/metabolismo , Simportadores/metabolismo , Animales , Ácido Azetidinocarboxílico/metabolismo , Absorción Intestinal , Hierro de la Dieta/metabolismo , Ratones , Xenopus
8.
Biometals ; 35(6): 1325-1339, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36178540

RESUMEN

Vascular calcification (VC) has been associated with a risk of cardiovascular diseases. Iron may play a critical role in progressive VC. Therefore, we investigated the effects of iron overload on the aorta of rats. A rat model of iron overload was established by intraperitoneal injection of Iron-Dextran. The levels of iron, calcium, and ALP activity were detected. Von Kossa staining and Perl's staining were conducted. The expression of iron metabolism-related and calcification related factors were examined in the aortic tissue of rats. The results showed serum and aortic tissue iron were increased induced by iron overload and excessive iron induced hepatic and renal damage. In iron overload rats, the expression of divalent metal transporter 1 (DMT1) and hepcidin were higher, but ferroportin1 (FPN1) was lower. Von Kossa staining demonstrated calcium deposition in the aorta of iron overload rats. The calcium content and ALP activity in serum and aortic tissue were increased and iron level in aortic tissue highly correlated with calcium content and ALP activity. The expressions of the osteogenic markers were increased while a decrease of Alpha-smooth muscle actin (α-SMA) in the aortic tissue of iron overload rats. IL-24 was increased during the calcification process induced by iron. Overall, we demonstrated excessive iron accumulation in the aortic tissue and induced organs damage. The iron metabolism-related factors were significantly changed during iron overload. Moreover, we found that iron overload leads to calcium deposition in aorta, playing a key role in the pathological process of VC by mediating osteoblast differentiation factors.


Asunto(s)
Sobrecarga de Hierro , Calcificación Vascular , Ratas , Animales , Calcio/metabolismo , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Sobrecarga de Hierro/metabolismo , Aorta/metabolismo , Aorta/patología , Riñón/metabolismo , Hierro/metabolismo
9.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457224

RESUMEN

Divalent metal-iron transporter 1 (DMT1) is a mammalian iron transporter encoded by the SLC11A2 gene. DMT1 has a vital role in iron homeostasis by mediating iron uptake in the intestine and kidneys and by recovering iron from recycling endosomes after transferrin endocytosis. Mutations in SLC11A2 cause an ultra-rare hypochromic microcytic anemia with iron overload (AHMIO1), which has been described in eight patients so far. Here, we report two novel cases of this disease. The first proband is homozygous for a new SLC11A2 splicing variant (c.762 + 35A > G), becoming the first ever patient reported with a SLC11A2 splicing mutation in homozygosity. Splicing studies performed in this work confirm its pathogenicity. The second proband harbors the previously reported DMT1 G75R mutation in homozygosis. Functional studies with the G75R mutation in HuTu 80 cells demonstrate that this mutation results in improper DMT1 accumulation in lysosomes, which correlates with a significant decrease in DMT1 levels in patient-derived lymphoblast cell lines (LCLs). We also suggest that recombinant erythropoietin would be an adequate therapeutic approach for AHMIO1 patients as it improves their anemic state and may possibly contribute to mobilizing excessive hepatic iron.


Asunto(s)
Anemia Hipocrómica , Anemia , Sobrecarga de Hierro , Anemia/genética , Anemia Hipocrómica/genética , Animales , Humanos , Hierro/metabolismo , Sobrecarga de Hierro/metabolismo , Mamíferos/metabolismo , Mutación
10.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743233

RESUMEN

Macrophages are at the center of innate pathogen control and iron recycling. Divalent metal transporter 1 (DMT1) is essential for the uptake of non-transferrin-bound iron (NTBI) into macrophages and for the transfer of transferrin-bound iron from the endosome to the cytoplasm. As the control of cellular iron trafficking is central for the control of infection with siderophilic pathogens such as Salmonella Typhimurium, a Gram-negative bacterium residing within the phagosome of macrophages, we examined the potential role of DMT1 for infection control. Bone marrow derived macrophages lacking DMT1 (DMT1fl/flLysMCre(+)) present with reduced NTBI uptake and reduced levels of the iron storage protein ferritin, the iron exporter ferroportin and, surprisingly, of the iron uptake protein transferrin receptor. Further, DMT1-deficient macrophages have an impaired control of Salmonella Typhimurium infection, paralleled by reduced levels of the peptide lipocalin-2 (LCN2). LCN2 exerts anti-bacterial activity upon binding of microbial siderophores but also facilitates systemic and cellular hypoferremia. Remarkably, nifedipine, a pharmacological DMT1 activator, stimulates LCN2 expression in RAW264.7 macrophages, confirming its DMT1-dependent regulation. In addition, the absence of DMT1 increases the availability of iron for Salmonella upon infection and leads to increased bacterial proliferation and persistence within macrophages. Accordingly, mice harboring a macrophage-selective DMT1 disruption demonstrate reduced survival following Salmonella infection. This study highlights the importance of DMT1 in nutritional immunity and the significance of iron delivery for the control of infection with siderophilic bacteria.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Hierro , Infecciones por Salmonella , Animales , Hierro/metabolismo , Lipocalina 2/genética , Lipocalina 2/metabolismo , Macrófagos/metabolismo , Ratones , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Transferrina/metabolismo
11.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163558

RESUMEN

A subpopulation of neurons is less vulnerable against iron-induced oxidative stress and neurodegeneration. A key feature of these neurons is a special extracellular matrix composition that forms a perineuronal net (PN). The PN has a high affinity to iron, which suggests an adapted iron sequestration and metabolism of the ensheathed neurons. Highly active, fast-firing neurons-which are often ensheathed by a PN-have a particular high metabolic demand, and therefore may have a higher need in iron. We hypothesize that PN-ensheathed neurons have a higher intracellular iron concentration and increased levels of iron proteins. Thus, analyses of cellular and regional iron and the iron proteins transferrin (Tf), Tf receptor 1 (TfR), ferritin H/L (FtH/FtL), metal transport protein 1 (MTP1 aka ferroportin), and divalent metal transporter 1 (DMT1) were performed on Wistar rats in the parietal cortex (PC), subiculum (SUB), red nucleus (RN), and substantia nigra (SNpr/SNpc). Neurons with a PN (PN+) have higher iron concentrations than neurons without a PN: PC 0.69 mM vs. 0.51 mM, SUB 0.84 mM vs. 0.69 mM, SN 0.71 mM vs. 0.63 mM (SNpr)/0.45 mM (SNpc). Intracellular Tf, TfR and MTP1 contents of PN+ neurons were consistently increased. The iron concentration of the PN itself is not increased. We also determined the percentage of PN+ neurons: PC 4%, SUB 5%, SNpr 45%, RN 86%. We conclude that PN+ neurons constitute a subpopulation of resilient pacemaker neurons characterized by a bustling iron metabolism and outstanding iron handling capabilities. These properties could contribute to the low vulnerability of PN+ neurons against iron-induced oxidative stress and degeneration.


Asunto(s)
Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Nervios Periféricos/metabolismo , Animales , Apoferritinas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica , Masculino , Ratas , Ratas Wistar , Receptores de Transferrina/metabolismo , Transferrina/metabolismo
12.
Chimia (Aarau) ; 76(12): 996-1004, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38069794

RESUMEN

The TransCure project entitled 'Iron Transporters DMT1 and FPN1' took an interdisciplinary approach combining structural biology, chemistry and physiology to gain new insights into iron transport. Proteins studied included Divalent Metal Transporter 1 (DMT1, SLC11A2), enabling the import of Fe2+ into the cytoplasm, and the iron efflux transporter Ferroportin (FPN1, SLC40A1). The physiology and pathophysiology, and the mechanisms underlying iron transport in the gut, across the placenta and in bone were investigated. Small molecule high-throughput screening was used to identify improved modulators of DMT1. The characterization of DMT1 inhibitors have provided first detailed insights into the pharmacology of a human iron transport protein. In placental physiology, the identification of the expressional and functional alterations and underlying mechanisms in trophoblast cells clarified the association between placental iron transport by DMT1/FPN1 and gestational diabetes mellitus. In bone, iron metabolism was found to differ between cells of the monocyte/ macrophage lineages, including osteoclasts. Osteoclast development and activity depended on exogenous iron, the expression of high levels of the transferrin receptor (TFR) and low levels of FPN1 suggesting the expression of an "iron storage" phenotype by these cells. The principles and main findings of the TransCure studies on transmembrane iron  transport physiology are summarized in this review.

13.
Chimia (Aarau) ; 76(12): 1005-1010, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38069795

RESUMEN

The SLC11/NRAMP proteins constitute a conserved family of metal ion transporters that are expressed in all kingdoms of life. In humans, the two paralogs DMT1 and NRMP1 play an important role in iron homeostasis and the defense against pathogens. SLC11 transporters have evolved an exquisite selectivity for transition metal ions, which facilitates their efficient transport from a large background of Ca2+ and Mg2+. This is accomplished by the evolution of a conserved binding site, which contains besides promiscuous hard ligands, a methionine acting as soft ligand that exclusively coordinates transition metals and thus contributes to the exclusion of alkaline earth metal ions. This site is altered in a branch of prokaryotic family members, which are capable of transporting Mg2+, where the removal of the coordinating methionine and the accompanying expansion of the binding pocket captures this small ion in a hydrated state. The disposition of titratable residues in H+-coupled transition metal ion transporters, that are absent in uncoupled Mg2+ transporters, sheds light on potential coupling mechanisms. In combination, the discussed work has revealed detailed insight into transition metal ion transport and provides a basis for the development of inhibitors of DMT1 as strategy against iron overload disorders.

14.
J Biol Chem ; 295(5): 1212-1224, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31882536

RESUMEN

The natural resistance-associated macrophage protein (Nramp) family encompasses transition metal and proton cotransporters that are present in many organisms from bacteria to humans. Recent structures of Deinococcus radiodurans Nramp (DraNramp) in multiple conformations revealed the intramolecular rearrangements required for alternating access of the metal-binding site to the external or cytosolic environment. Here, using recombinant proteins and metal transport and cysteine accessibility assays, we demonstrate that two parallel cytoplasm-accessible networks of conserved hydrophilic residues in DraNramp, one lining the wide intracellular vestibule for metal release and the other forming a narrow proton transport pathway, are essential for metal transport. We further show that mutagenic or posttranslational modifications of transmembrane helix (TM) 6b, which structurally links these two pathways, impede normal conformational cycling and metal transport. TM6b contains two highly conserved histidines, His232 and His237 We found that different mutagenic perturbations of His232, just below the metal-binding site along the proton exit route, differentially affect DraNramp's conformational state, suggesting that His232 serves as a pivot point for conformational changes. In contrast, any replacement of His237, lining the metal exit route, locked the transporter in a transport-inactive outward-closed state. We conclude that these two histidines, and TM6b more broadly, help trigger the bulk rearrangement of DraNramp to the inward-open state upon metal binding and facilitate return of the empty transporter to an outward-open state upon metal release.


Asunto(s)
Proteínas de Transporte de Catión/química , Deinococcus/química , Histidina/química , Metales/metabolismo , Secuencia de Aminoácidos/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Cobalto/química , Cobalto/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Histidina/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Transporte Iónico , Manganeso/química , Manganeso/metabolismo , Metales/química , Modelos Moleculares , Mutación , Conformación Proteica , Procesamiento Proteico-Postraduccional/genética , Protones
15.
Glia ; 69(12): 2981-2998, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34460113

RESUMEN

How iron is delivered to the CNS for myelination is poorly understood. Astrocytes are the most abundant glial cells in the brain and are the only cells in close contact with blood vessels. Therefore, they are strategically located to obtain nutrients, such as iron, from circulating blood. To determine the importance of astrocyte iron uptake and storage in myelination and remyelination, we conditionally knocked-out the expression of the divalent metal transporter 1 (DMT1), the transferrin receptor 1 (Tfr1), and the ferritin heavy subunit (Fth) in Glast-1-positive astrocytes. DMT1 or Tfr1 ablation in astrocytes throughout early brain development did not significantly affects oligodendrocyte maturation or iron homeostasis. However, blocking Fth production in astrocytes during the first postnatal week drastically delayed oligodendrocyte development and myelin synthesis. Fth knockout animals presented an important decrease in the number of myelinating oligodendrocytes and a substantial reduction in the percentage of myelinated axons. This postnatal hypomyelination was accompanied by a decline in oligodendrocyte iron uptake and with an increase in brain oxidative stress. We also tested the relevance of astrocytic Fth expression in the cuprizone model of myelin damage and repair. Fth deletion in Glast1-positive astrocytes significantly reduced myelin production and the density of mature myelinating oligodendrocytes throughout the complete remyelination process. These results indicate that Fth iron storage in astrocytes is vital for early oligodendrocyte development as well as for the remyelination of the CNS.


Asunto(s)
Apoferritinas , Astrocitos , Animales , Apoferritinas/metabolismo , Astrocitos/metabolismo , Ratones , Ratones Noqueados , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
16.
FASEB J ; 34(6): 7311-7329, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32285992

RESUMEN

Clinical studies suggest that pregnant women with elevated iron levels are more vulnerable to develop gestational diabetes mellitus (GDM), but the causes and underlying mechanisms are unknown. We hypothesized that hyperglycemia induces cellular stress responses leading to dysregulated placental iron homeostasis. Hence, we compared the expression of genes/proteins involved in iron homeostasis in placentae from GDM and healthy pregnancies (n = 11 each). RT-qPCR and LC-MS/MS analyses revealed differential regulation of iron transporters/receptors (DMT1/FPN1/ZIP8/TfR1), iron sensors (IRP1), iron regulators (HEPC), and iron oxidoreductases (HEPH/Zp). To identify the underlying mechanisms, we adapted BeWo trophoblast cells to normoglycemic (N), hyperglycemic (H), and hyperglycemic-hyperlipidemic (HL) conditions and assessed Fe3+ -uptake, expression patterns, and cellular pathways involving oxidative stress (OS), ER-stress, and autophagy. H and HL induced alterations in cellular morphology, differential iron transporter expression, and reduced Fe3+ -uptake confirming the impact of hyperglycemia on iron transport observed in GDM patients. Pathway analysis and rescue experiments indicated that dysregulated OS and disturbed autophagy processes contribute to the reduced placental iron transport under hyperglycemic conditions. These adaptations could represent a protective mechanism preventing the oxidative damage for both fetus and placenta caused by highly oxidative iron. In pregnancies with risk for GDM, antioxidant treatment, and controlled iron supplementation could help to balance placental OS levels protecting mother and fetus from impaired iron homeostasis.


Asunto(s)
Diabetes Gestacional/metabolismo , Diabetes Gestacional/fisiopatología , Homeostasis/fisiología , Hierro/metabolismo , Placenta/metabolismo , Placenta/fisiopatología , Adulto , Antígenos CD/metabolismo , Antioxidantes/metabolismo , Autofagia/fisiología , Proteínas de Transporte de Catión/metabolismo , Cromatografía Liquida/métodos , Femenino , Ferritinas/metabolismo , Feto/metabolismo , Feto/fisiopatología , Humanos , Masculino , Estrés Oxidativo/fisiología , Embarazo , Receptores de Transferrina/metabolismo , Espectrometría de Masas en Tándem/métodos , Trofoblastos/metabolismo , Trofoblastos/fisiología
17.
J Exp Biol ; 224(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34882772

RESUMEN

Trace metals such as iron, copper, zinc and manganese play essential roles in various biological processes in fish, including development, energy metabolism and immune response. At embryonic stages, fish obtain essential metals primarily from the yolk, whereas in later life stages (i.e. juvenile and adult), the gastrointestine and the gill are the major sites for the acquisition of trace metals. On a molecular level, the absorption of metals is thought to occur at least in part via specific metal ion transporters, including the divalent metal transporter-1 (DMT1), copper transporter-1 (CTR1), and Zrt- and Irt-like proteins (ZIP). A variety of other proteins are also involved in maintaining cellular and systemic metal homeostasis. Interestingly, the expression and function of these metal transport- and metabolism-related proteins can be influenced by a range of trace metals and major ions. Increasing evidence also demonstrates an interplay between the gastrointestine and the gill for the regulation of trace metal absorption. Therefore, there is a complex network of regulatory and compensatory mechanisms involved in maintaining trace metal balance. Yet, an array of factors is known to influence metal metabolism in fish, such as hormonal status and environmental changes. In this Review, we summarize the physiological significance of iron, copper, zinc and manganese, and discuss the current state of knowledge on the mechanisms underlying transepithelial metal ion transport, metal-metal interactions, and cellular and systemic handling of these metals in fish. Finally, we identify knowledge gaps in the regulation of metal homeostasis and discuss potential future research directions.


Asunto(s)
Metales , Zinc , Animales , Cobre/metabolismo , Hierro/metabolismo , Manganeso , Zinc/metabolismo
18.
Arch Toxicol ; 95(8): 2719-2735, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34181029

RESUMEN

The liver hormone hepcidin regulates systemic iron homeostasis. Hepcidin is also expressed by the kidney, but exclusively in distal nephron segments. Several studies suggest hepcidin protects against kidney damage involving Fe2+ overload. The nephrotoxic non-essential metal ion Cd2+ can displace Fe2+ from cellular biomolecules, causing oxidative stress and cell death. The role of hepcidin in Fe2+ and Cd2+ toxicity was assessed in mouse renal cortical [mCCD(cl.1)] and inner medullary [mIMCD3] collecting duct cell lines. Cells were exposed to equipotent Cd2+ (0.5-5 µmol/l) and/or Fe2+ (50-100 µmol/l) for 4-24 h. Hepcidin (Hamp1) was transiently silenced by RNAi or overexpressed by plasmid transfection. Hepcidin or catalase expression were evaluated by RT-PCR, qPCR, immunoblotting or immunofluorescence microscopy, and cell fate by MTT, apoptosis and necrosis assays. Reactive oxygen species (ROS) were detected using CellROX™ Green and catalase activity by fluorometry. Hepcidin upregulation protected against Fe2+-induced mIMCD3 cell death by increasing catalase activity and reducing ROS, but exacerbated Cd2+-induced catalase dysfunction, increasing ROS and cell death. Opposite effects were observed with Hamp1 siRNA. Similar to Hamp1 silencing, increased intracellular Fe2+ prevented Cd2+ damage, ROS formation and catalase disruption whereas chelation of intracellular Fe2+ with desferrioxamine augmented Cd2+ damage, corresponding to hepcidin upregulation. Comparable effects were observed in mCCD(cl.1) cells, indicating equivalent functions of renal hepcidin in different collecting duct segments. In conclusion, hepcidin likely binds Fe2+, but not Cd2+. Because Fe2+ and Cd2+ compete for functional binding sites in proteins, hepcidin affects their free metal ion pools and differentially impacts downstream processes and cell fate.


Asunto(s)
Cadmio/toxicidad , Hepcidinas/genética , Hierro/toxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Unión Competitiva , Cadmio/administración & dosificación , Muerte Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Deferoxamina/farmacología , Femenino , Silenciador del Gen , Hierro/administración & dosificación , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
19.
Fetal Pediatr Pathol ; 40(6): 581-596, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32096669

RESUMEN

BackgroundDuring pregnancy, iron is transferred from mother to fetus with placental iron transport proteins (Transferrin receptor, Divalent metal transporter/DMT1, ferroportin/FPN1 and Zyklopen). The aim of the study was to evaluate the effect of maternal iron deficiency anemia on placental iron transporters. Study Design: Two hundred pregnant women, in third trimester of pregnancy were divided into anemic (Hemoglobin/Hb < 11g/dl) and non-anemic groups (Hb ≥ 11 g/dl). After delivery, placental expression of iron transport proteins were studied by immunohistochemistry and by mRNA analysis. Results: Of the 200 subjects, 59% were anemic. All 3 placental proteins showed statistically significant increase in immunohistochemical expression, proportionate to the severity of maternal anemia. The mRNA expression of DMT-1 gene was only significantly elevated in placentas of anemic mothers. Conclusion: Although in our study mRNA expression of only the DMT-1 gene was significantly high, immunohistochemically however all the 3 proteins showed significantly higher expression in placentas of anemic mothers.


Asunto(s)
Anemia Ferropénica , Femenino , Feto , Humanos , Hierro , Placenta , Embarazo , Tercer Trimestre del Embarazo
20.
J Neurosci ; 39(50): 9940-9953, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31676601

RESUMEN

Iron is an essential cofactor for many cellular enzymes involved in myelin synthesis, and iron homeostasis unbalance is a central component of peripheral neuropathies. However, iron absorption and management in the PNS are poorly understood. To study iron metabolism in Schwann cells (SCs), we have created 3 inducible conditional KO mice in which three essential proteins implicated in iron uptake and storage, the divalent metal transporter 1 (DMT1), the ferritin heavy chain (Fth), and the transferrin receptor 1 (Tfr1), were postnatally ablated specifically in SCs. Deleting DMT1, Fth, or Tfr1 in vitro significantly reduce SC proliferation, maturation, and the myelination of DRG axons. This was accompanied by an important reduction in iron incorporation and storage. When these proteins were KO in vivo during the first postnatal week, the sciatic nerve of all 3 conditional KO animals displayed a significant reduction in the synthesis of myelin proteins and in the percentage of myelinated axons. Knocking out Fth produced the most severe phenotype, followed by DMT1 and, last, Tfr1. Importantly, DMT1 as well as Fth KO mice showed substantial motor coordination deficits. In contrast, deleting these proteins in mature myelinating SCs results in milder phenotypes characterized by small reductions in the percentage of myelinated axons and minor changes in the g-ratio of myelinated axons. These results indicate that DMT1, Fth, and Tfr1 are critical proteins for early postnatal iron uptake and storage in SCs and, as a consequence, for the normal myelination of the PNS.SIGNIFICANCE STATEMENT To determine the function of the divalent metal transporter 1, the transferrin receptor 1, and the ferritin heavy chain in Schwann cell (SC) maturation and myelination, we created 3 conditional KO mice in which these proteins were postnatally deleted in Sox10-positive SCs. We have established that these proteins are necessary for normal SC iron incorporation and storage, and, as a consequence, for an effective myelination of the PNS. Since iron is indispensable for SC maturation, understanding iron metabolism in SCs is an essential prerequisite for developing therapies for demyelinating diseases in the PNS.


Asunto(s)
Apoferritinas/genética , Proteínas de Transporte de Catión/genética , Hierro/metabolismo , Vaina de Mielina/metabolismo , Receptores de Transferrina/genética , Células de Schwann/metabolismo , Animales , Apoferritinas/metabolismo , Axones/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proliferación Celular/fisiología , Ratones , Ratones Noqueados , Neurogénesis/fisiología , Receptores de Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA