Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 92: 299-332, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001140

RESUMEN

According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Animales , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Inmunidad Innata/genética , Envejecimiento/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Mamíferos/genética
2.
Immunity ; 56(2): 272-288.e7, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36724787

RESUMEN

Self-nonself discrimination is vital for the immune system to mount responses against pathogens while maintaining tolerance toward the host and innocuous commensals during homeostasis. Here, we investigated how indiscriminate DNA sensors, such as cyclic GMP-AMP synthase (cGAS), make this self-nonself distinction. Screening of a small-molecule library revealed that spermine, a well-known DNA condenser associated with viral DNA, markedly elevates cGAS activation. Mechanistically, spermine condenses DNA to enhance and stabilize cGAS-DNA binding, optimizing cGAS and downstream antiviral signaling. Spermine promotes condensation of viral, but not host nucleosome, DNA. Deletion of viral DNA-associated spermine, by propagating virus in spermine-deficient cells, reduced cGAS activation. Spermine depletion subsequently attenuated cGAS-mediated antiviral and anticancer immunity. Collectively, our results reveal a pathogenic DNA-associated molecular pattern that facilitates nonself recognition, linking metabolism and pathogen recognition.


Asunto(s)
ADN Viral , Espermina , ADN Viral/metabolismo , Inmunidad Innata , Antivirales , Nucleotidiltransferasas/metabolismo
3.
Mol Cell ; 84(13): 2410-2422, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38936362

RESUMEN

Innate immunity is essential for the host against pathogens, cancer, and autoimmunity. The innate immune system encodes many sensor, adaptor, and effector proteins and relies on the assembly of higher-order signaling complexes to activate immune defense. Recent evidence demonstrates that many of the core complexes involved in innate immunity are organized as liquid-like condensates through a mechanism known as phase separation. Here, we discuss phase-separated condensates and their diverse functions. We compare the biochemical, structural, and mechanistic details of solid and liquid-like assemblies to explore the role of phase separation in innate immunity. We summarize the emerging evidence for the hypothesis that phase separation is a conserved mechanism that controls immune responses across the tree of life. The discovery of phase separation in innate immunity provides a new foundation to explain the rules that govern immune system activation and will enable the development of therapeutics to treat immune-related diseases properly.


Asunto(s)
Inmunidad Innata , Transducción de Señal , Humanos , Animales , Separación de Fases
4.
Immunity ; 54(4): 632-647.e9, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33667382

RESUMEN

Aging is associated with DNA accumulation and increased homeostatic proliferation of circulating T cells. Although these attributes are associated with aging-related autoimmunity, their direct contributions remain unclear. Conventionally, KU complex, the regulatory subunit of DNA-dependent protein kinase (DNA-PK), together with the catalytic subunit of DNA-PK (DNA-PKcs), mediates DNA damage repair in the nucleus. Here, we found KU complex abundantly expressed in the cytoplasm, where it recognized accumulated cytoplasmic DNA in aged human and mouse CD4+ T cells. This process enhanced T cell activation and pathology of experimental autoimmune encephalomyelitis (EAE) in aged mice. Mechanistically, KU-mediated DNA sensing facilitated DNA-PKcs recruitment and phosphorylation of the kinase ZAK. This activated AKT and mTOR pathways, promoting CD4+ T cell proliferation and activation. We developed a specific ZAK inhibitor, which dampened EAE pathology in aged mice. Overall, these findings demonstrate a KU-mediated cytoplasmic DNA-sensing pathway in CD4+ T cells that potentiates aging-related autoimmunity.


Asunto(s)
Envejecimiento/inmunología , Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Citoplasma/inmunología , Proteína Quinasa Activada por ADN/inmunología , ADN/inmunología , Inflamación/inmunología , Animales , Línea Celular , Línea Celular Tumoral , Núcleo Celular/inmunología , Proliferación Celular/fisiología , Reparación del ADN/inmunología , Células HEK293 , Humanos , Células Jurkat , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Células U937
5.
Trends Immunol ; 45(6): 454-469, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762334

RESUMEN

Intrinsic and innate immune responses are essential lines of defense in the body's constant surveillance of pathogens. The discovery of liquid-liquid phase separation (LLPS) as a key regulator of this primal response to infection brings an updated perspective to our understanding of cellular defense mechanisms. Here, we review the emerging multifaceted role of LLPS in diverse aspects of mammalian innate immunity, including DNA and RNA sensing and inflammasome activity. We discuss the intricate regulation of LLPS by post-translational modifications (PTMs), and the subversive tactics used by viruses to antagonize LLPS. This Review, therefore, underscores the significance of LLPS as a regulatory node that offers rapid and plastic control over host immune signaling, representing a promising target for future therapeutic strategies.


Asunto(s)
Inmunidad Innata , Inflamasomas , Humanos , Animales , Inflamasomas/metabolismo , Inflamasomas/inmunología , Procesamiento Proteico-Postraduccional , Transducción de Señal , Extracción Líquido-Líquido , Separación de Fases
6.
Immunity ; 49(3): 490-503.e4, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30170810

RESUMEN

The NF-κB pathway plays a crucial role in supporting tumor initiation, progression, and radioresistance of tumor cells. However, the role of the NF-κB pathway in radiation-induced anti-tumor host immunity remains unclear. Here we demonstrated that inhibiting the canonical NF-κB pathway dampened the therapeutic effect of ionizing radiation (IR), whereas non-canonical NF-κB deficiency promoted IR-induced anti-tumor immunity. Mechanistic studies revealed that non-canonical NF-κB signaling in dendritic cells (DCs) was activated by the STING sensor-dependent DNA-sensing pathway. By suppressing recruitment of the transcription factor RelA onto the Ifnb promoter, activation of the non-canonical NF-κB pathway resulted in decreased type I IFN expression. Administration of a specific inhibitor of the non-canonical NF-κB pathway enhanced the anti-tumor effect of IR in murine models. These findings reveal the potentially interactive roles for canonical and non-canonical NF-κB pathways in IR-induced STING-IFN production and provide an alternative strategy to improve cancer radiotherapy.


Asunto(s)
Neoplasias del Colon/radioterapia , Células Dendríticas/inmunología , Melanoma/radioterapia , FN-kappa B/metabolismo , Neoplasias Experimentales/radioterapia , Radioterapia/métodos , Receptores de Reconocimiento de Patrones/metabolismo , Animales , Neoplasias del Colon/inmunología , ADN/inmunología , Modelos Animales de Enfermedad , Humanos , Inmunidad Celular , Melanoma/inmunología , Melanoma Experimental , Proteínas de la Membrana/metabolismo , Ratones , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Tolerancia a Radiación , Radiación Ionizante , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
EMBO J ; 41(14): e109217, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35670106

RESUMEN

Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co-localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell-free system and phase-separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.


Asunto(s)
Herpesvirus Humano 3 , Interferón Tipo I , Nucleotidiltransferasas , Proteínas Virales , ADN/metabolismo , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/inmunología , Humanos , Inmunidad Innata , Interferón Tipo I/inmunología , Proteínas de la Membrana/inmunología , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/inmunología , Proteínas Virales/inmunología
8.
Trends Biochem Sci ; 46(10): 822-831, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34215510

RESUMEN

Recognition of DNA is an evolutionarily highly conserved mechanism of immunity. In mammals, the cGAS-STING pathway plays a central role in coupling DNA sensing to the execution of innate immune mechanisms, both in contexts of infection as well as in noninfectious settings of cellular stress and injury. The indiscriminate ability of double-stranded DNA (dsDNA) to activate cGAS challenges our understanding on how engagement of this pathway is prevented on genomic self-DNA under homeostatic conditions. Here, we review recent discoveries on the regulation of cGAS on chromatin and we discuss implications for cGAS-dependent inflammatory phenotypes. We close by highlighting emerging developments on the role of nuclear cGAS and related open questions for future research.


Asunto(s)
Cromatina , Proteínas de la Membrana , Animales , ADN , Proteínas de la Membrana/genética , Nucleotidiltransferasas/genética
9.
EMBO J ; 40(16): e108293, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34250619

RESUMEN

cGAS, an innate immune sensor of cellular stress, recognizes double-stranded DNA mislocalized in the cytosol upon infection, mitochondrial stress, DNA damage, or malignancy. Early models suggested that cytosolic localization of cGAS prevents autoreactivity to nuclear and mitochondrial self-DNA, but this paradigm has shifted in light of recent findings of cGAS as a predominantly nuclear protein tightly bound to chromatin. This has raised the question how nuclear cGAS is kept inactive while being surrounded by chromatin, and what function nuclear localization of cGAS may serve in the first place? Cryo-EM structures have revealed that cGAS interacts with nucleosomes, the minimal units of chromatin, mainly via histones H2A/H2B, and that these protein-protein interactions block cGAS from DNA binding and thus prevent autoreactivity. Here, we discuss the biological implications of nuclear cGAS and its interaction with chromatin, including various mechanisms for nuclear cGAS inhibition, release of chromatin-bound cGAS, regulation of different cGAS pools in the cell, and chromatin structure/chromatin protein effects on cGAS activation leading to cGAS-induced autoimmunity.


Asunto(s)
Nucleotidiltransferasas/inmunología , Animales , Autoinmunidad , Núcleo Celular/inmunología , Cromatina , Citosol/inmunología , ADN , Humanos
10.
J Virol ; 98(3): e0148523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38412044

RESUMEN

Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE: Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.


Asunto(s)
Filaminas , Virus Vaccinia , Proteínas Virales , Humanos , Línea Celular , ADN/metabolismo , Filaminas/genética , Filaminas/metabolismo , FN-kappa B/metabolismo , Vaccinia/virología , Virus Vaccinia/patogenicidad , Virus Vaccinia/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Animales
11.
EMBO Rep ; 24(5): e56275, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36970882

RESUMEN

HIV-1 uses inositol hexakisphosphate (IP6) to build a metastable capsid capable of delivering its genome into the host nucleus. Here, we show that viruses that are unable to package IP6 lack capsid protection and are detected by innate immunity, resulting in the activation of an antiviral state that inhibits infection. Disrupting IP6 enrichment results in defective capsids that trigger cytokine and chemokine responses during infection of both primary macrophages and T-cell lines. Restoring IP6 enrichment with a single mutation rescues the ability of HIV-1 to infect cells without being detected. Using a combination of capsid mutants and CRISPR-derived knockout cell lines for RNA and DNA sensors, we show that immune sensing is dependent upon the cGAS-STING axis and independent of capsid detection. Sensing requires the synthesis of viral DNA and is prevented by reverse transcriptase inhibitors or reverse transcriptase active-site mutation. These results demonstrate that IP6 is required to build capsids that can successfully transit the cell and avoid host innate immune sensing.


Asunto(s)
Cápside , Infecciones por VIH , Humanos , Cápside/metabolismo , Interacciones Huésped-Patógeno , Inmunidad Innata , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(32): e2119514119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914158

RESUMEN

Deregulation of cell cycle is a typical feature of cancer cells. Normal cells rely on the strictly coordinated spindle assembly checkpoint (SAC) to maintain the genome integrity and survive. However, cancer cells could bypass this checkpoint mechanism. In this study, we showed the clinical relevance of threonine tyrosine kinase (TTK) protein kinase, a central regulator of the SAC, in hepatocellular carcinoma (HCC) and its potential as therapeutic target. Here, we reported that a newly developed, orally active small molecule inhibitor targeting TTK (CFI-402257) effectively suppressed HCC growth and induced highly aneuploid HCC cells, DNA damage, and micronuclei formation. We identified that CFI-402257 also induced cytosolic DNA, senescence-like response, and activated DDX41-STING cytosolic DNA sensing pathway to produce senescence-associated secretory phenotypes (SASPs) in HCC cells. These SASPs subsequently led to recruitment of different subsets of immune cells (natural killer cells, CD4+ T cells, and CD8+ T cells) for tumor clearance. Our mass cytometry data illustrated the dynamic changes in the tumor-infiltrating immune populations after treatment with CFI-402257. Further, CFI-402257 improved survival in HCC-bearing mice treated with anti-PD-1, suggesting the possibility of combination treatment with immune checkpoint inhibitors in HCC patients. In summary, our study characterized CFI-402257 as a potential therapeutic for HCC, both used as a single agent and in combination therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inhibidores de Proteínas Quinasas , Pirazoles , Pirimidinas , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células Asesinas Naturales/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Ratones , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas/metabolismo , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico
13.
Retrovirology ; 21(1): 10, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778414

RESUMEN

BACKGROUND: Detection of viruses by host pattern recognition receptors induces the expression of type I interferon (IFN) and IFN-stimulated genes (ISGs), which suppress viral replication. Numerous studies have described HIV-1 as a poor activator of innate immunity in vitro. The exact role that the viral capsid plays in this immune evasion is not fully understood. RESULTS: To better understand the role of the HIV-1 capsid in sensing we tested the effect of making HIV-1 by co-expressing a truncated Gag that encodes the first 107 amino acids of capsid fused with luciferase or GFP, alongside wild type Gag-pol. We found that unlike wild type HIV-1, viral particles produced with a mixture of wild type and truncated Gag fused to luciferase or GFP induced a potent IFN response in THP-1 cells and macrophages. Innate immune activation by Gag-fusion HIV-1 was dependent on reverse transcription and DNA sensor cGAS, suggesting activation of an IFN response by viral DNA. Further investigation revealed incorporation of the Gag-luciferase/GFP fusion proteins into viral particles that correlated with subtle defects in wild type Gag cleavage and a diminished capacity to saturate restriction factor TRIM5α, likely due to aberrant particle formation. We propose that expression of the Gag fusion protein disturbs the correct cleavage and maturation of wild type Gag, yielding viral particles that are unable to effectively shield viral DNA from detection by innate sensors including cGAS. CONCLUSIONS: These data highlight the crucial role of capsid in innate evasion and support growing literature that disruption of Gag cleavage and capsid formation induces a viral DNA- and cGAS-dependent innate immune response. Together these data demonstrate a protective role for capsid and suggest that antiviral activity of capsid-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.


Asunto(s)
VIH-1 , Inmunidad Innata , Nucleotidiltransferasas , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , VIH-1/inmunología , VIH-1/genética , VIH-1/fisiología , Humanos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Factores de Restricción Antivirales , Macrófagos/inmunología , Macrófagos/virología , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Células THP-1 , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/inmunología , Evasión Inmune , Cápside/metabolismo , Cápside/inmunología , Replicación Viral , Virión/metabolismo , Virión/genética , Virión/inmunología , Interacciones Huésped-Patógeno/inmunología , ADN Viral/genética , Línea Celular
14.
EMBO J ; 39(20): e103958, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32852081

RESUMEN

Detection of viral DNA by cyclic GMP-AMP synthase (cGAS) is a first line of defence leading to the production of type I interferon (IFN). As HIV-1 replication is not a strong inducer of IFN, we hypothesised that an intact capsid physically cloaks viral DNA from cGAS. To test this, we generated defective viral particles by treatment with HIV-1 protease inhibitors or by genetic manipulation of gag. These viruses had defective Gag cleavage, reduced infectivity and diminished capacity to saturate TRIM5α. Importantly, unlike wild-type HIV-1, infection with cleavage defective HIV-1 triggered an IFN response in THP-1 cells that was dependent on viral DNA and cGAS. An IFN response was also observed in primary human macrophages infected with cleavage defective viruses. Infection in the presence of the capsid destabilising small molecule PF-74 also induced a cGAS-dependent IFN response. These data demonstrate a protective role for capsid and suggest that antiviral activity of capsid- and protease-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.


Asunto(s)
ADN Viral/inmunología , Infecciones por VIH/inmunología , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/inmunología , Macrófagos/metabolismo , Nucleotidiltransferasas/metabolismo , Replicación Viral/genética , Inmunidad Adaptativa , Factores de Restricción Antivirales , Sistemas CRISPR-Cas , Cápside/metabolismo , Línea Celular , ADN Viral/genética , Edición Génica , Productos del Gen gag/genética , Infecciones por VIH/enzimología , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , VIH-1/patogenicidad , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Indoles/farmacología , Interferones/metabolismo , Interferones/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Transducción de Señal/inmunología , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
15.
BMC Med ; 21(1): 507, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124139

RESUMEN

BACKGROUND: Adult-onset Still's disease (AOSD) is a systemic autoinflammatory disease characterized by innate immune system activation, with a high risk for macrophage activation syndrome (MAS). MAS development is associated with monocyte/macrophage activation and cytokine storm. Monocytes consist of three different subsets, classical monocytes (CMs, CD14brightCD16 -), intermediate monocytes (IMs, CD14brightCD16 +), and non-classical monocytes (NCMs, CD14dimCD16 +), each has distinct roles in inflammatory regulation. However, the frequencies and regulatory mechanism of monocyte subsets in AOSD patients have not been identified. METHODS: We performed flow cytometry, RNA sequencing, phagocytosis analysis, and enzyme-linked immunosorbent assay to evaluate monocyte subsets, cell functions, and potential biomarkers. The effect of neutrophil extracellular traps (NETs) on monocytes was determined by evaluating mRNA levels of DNA sensors, surface CD16 expression, and inflammasome pathway activation. RESULTS: Higher proportions of intermediate monocytes (IMs) were identified in active AOSD patients. IMs displayed higher expression of CD80, CD86, HLA-DR, and CD163 than CMs and NCMs. CD163 upregulation was noted on AOSD IMs, accompanied by increased phagocytic activity and elevated cytokine/chemokine production, including IL-1ß, IL-6, CCL8, and CXCL10. The frequencies of IMs were correlated with disease activity and higher in AOSD patients with MAS (AOSD-MAS). CCL8 and CXCL10 were highly expressed in RNA sequencing of monocytes from AOSD-MAS patients and plasma CXCL10 level could serve as a potential biomarker for AOSD-MAS. Moreover, DNA-sensing pathway was activated in monocytes from AOSD-MAS patients. Stimulation with NETs derived from AOSD induced DNA sensor expression, the expansion of IMs, and inflammasome pathway activation. These effects can be abrogated by DNase I treatment. CONCLUSIONS: Our results demonstrated that the proportions of IMs were elevated in AOSD and associated with MAS. The DNA component in NETs from AOSD plays an important role in the formation of IMs, shedding new light for the therapeutic target.


Asunto(s)
Trampas Extracelulares , Síndrome de Activación Macrofágica , Enfermedad de Still del Adulto , Adulto , Humanos , Enfermedad de Still del Adulto/complicaciones , Enfermedad de Still del Adulto/tratamiento farmacológico , Monocitos/metabolismo , Trampas Extracelulares/metabolismo , Síndrome de Activación Macrofágica/complicaciones , Inflamasomas/metabolismo , Biomarcadores , ADN/metabolismo , ADN/uso terapéutico
16.
Chembiochem ; 24(10): e202300147, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37041126

RESUMEN

Phase separation is a crucial biophysical process that governs cellular signaling and function. This process allows biomolecules to separate and form membraneless compartments in response to both extra- and intra-cellular stimuli. Recently, the identification of phase separation in different immune signaling pathways, including the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway, has shed light on its tight association with pathological processes such as viral infections, cancers, and inflammatory diseases. In this review, we present the phase separation in cGAS-STING signaling, along with its related cellular regulatory functions. Furthermore, we discuss the introduction of therapeutics targeting cGAS-STING signaling, which plays a pivotal role in cancer progression.


Asunto(s)
ADN , Transducción de Señal , ADN/metabolismo , Transducción de Señal/genética , Nucleotidiltransferasas/metabolismo , Inmunidad Innata
17.
J Virol ; 96(24): e0157822, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36448809

RESUMEN

Cyclic GMP-AMP synthase (cGAS), a key DNA sensor, detects cytosolic viral DNA and activates the adaptor protein stimulator of interferon genes (STING) to initiate interferon (IFN) production and host innate antiviral responses. Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality in waterfowl. In the present study, we found that DEV inhibits host innate immune responses during the late phase of viral infection. Furthermore, we screened DEV proteins for their ability to inhibit the cGAS-STING DNA-sensing pathway and identified multiple viral proteins, including UL41, US3, UL28, UL53, and UL24, which block IFN-ß activation through this pathway. The DEV tegument protein UL41, which exhibited the strongest inhibitory effect, selectively downregulated the expression of interferon regulatory factor 7 (IRF7) by reducing its mRNA accumulation, thereby inhibiting the DNA-sensing pathway. Ectopic expression of UL41 markedly reduced viral DNA-triggered IFN-ß production and promoted viral replication, whereas deficiency of UL41 in the context of DEV infection increased the IFN-ß response to DEV and suppressed viral replication. In addition, ectopic expression of IRF7 inhibited the replication of the UL41-deficient virus, whereas IRF7 knockdown facilitated its replication. This study is the first report identifying multiple viral proteins encoded by a duck DNA virus, which inhibit the cGAS-STING DNA-sensing pathway. These findings expand our knowledge of DNA sensing in ducks and reveal a mechanism through which DEV antagonizes the host innate immune response. IMPORTANCE Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality, resulting in substantial economic losses in the commercial waterfowl industry. The evasion of DNA-sensing pathway-mediated antiviral innate immunity is essential for the persistent infection and replication of many DNA viruses. However, the mechanisms used by DEV to modulate the DNA-sensing pathway remain poorly understood. In the present study, we found that DEV encodes multiple viral proteins to inhibit the cGAS-STING DNA-sensing pathway. The DEV tegument protein UL41 selectively diminished the accumulation of interferon regulatory factor 7 (IRF7) mRNA, thereby inhibiting the DNA-sensing pathway. Loss of UL41 potently enhanced the IFN-ß response to DEV and impaired viral replication in ducks. These findings provide insights into the host-virus interaction during DEV infection and help develop new live attenuated vaccines against DEV.


Asunto(s)
Alphaherpesvirinae , Patos , Inmunidad Innata , Nucleotidiltransferasas , Proteínas Virales , Animales , ADN Viral/genética , ADN Viral/metabolismo , Enteritis/inmunología , Enteritis/virología , Inmunidad Innata/genética , Factor 7 Regulador del Interferón/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Proteínas Virales/genética , Proteínas Virales/metabolismo , Evasión Inmune/genética , Alphaherpesvirinae/genética , Alphaherpesvirinae/inmunología
18.
Trends Analyt Chem ; 1592023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36744100

RESUMEN

Digital CRISPR (dCRISPR) assays are an emerging platform of molecular diagnostics. Digital platforms introduce absolute quantification and increased sensitivity to bulk CRISPR assays. With ultra-specific targeting, isothermal operation, and rapid detection, dCRISPR systems are well-prepared to lead the field of molecular diagnostics. Here we summarized the common Cas proteins used in CRISPR detection assays. The methods of digital detection and critical performance factors are examined. We formed three strategies to frame the landscape of dCRISPR systems: (1) amplification free, (2) in-partition amplification, and (3) two-stage amplification. We also compared the performance of all systems through the limit of detection (LOD), testing time, and figure of merit (FOM). This work summarizes the details of digital CRISPR platforms to guide future development. We envision that improvements to LOD and dynamic range will position dCRISPR as the leading platform for the next generation of molecular biosensing.

19.
Sensors (Basel) ; 23(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37430675

RESUMEN

The assembling of thiacalix[4]arene-based dendrimers in cone, partial cone, and 1,3-alternate configuration on the surface of a glassy carbon electrode coated with carbon black or multiwalled carbon nanotubes has been characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Native and damaged DNA were electrostatically accumulated on the modifier layer. The influence of the charge of the redox indicator and of the macrocycle/DNA ratio was quantified and the roles of the electrostatic interactions and of the diffusional transfer of the redox indicator to the electrode interface indicator access were established. The developed DNA sensors were tested on discrimination of native, thermally denatured, and chemically damaged DNA and on the determination of doxorubicin as the model intercalator. The limit of detection of doxorubicin established for the biosensor based on multi-walled carbon nanotubes was equal to 1.0 pM with recovery from spiked human serum of 105-120%. After further optimization of the assembling directed towards the stabilization of the signal, the developed DNA sensors can find application in the preliminary screening of antitumor drugs and thermal damage of DNA. They can also be applied for testing potential drug/DNA nanocontainers as future delivery systems.


Asunto(s)
Dendrímeros , Nanoestructuras , Nanotubos de Carbono , Humanos , ADN , Doxorrubicina
20.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769349

RESUMEN

The cGAS-STING signaling axis can be activated by cytosolic DNA, including both non-self DNA and self DNA. This axis is used by the innate immune system to monitor invading pathogens and/or damage. Increasing evidence has suggested that the cGAS-STING pathway not only facilitates inflammatory responses and the production of type I interferons (IFN), but also activates other cellular processes, such as apoptosis. Recently, many studies have focused on analyzing the mechanisms of apoptosis induced by the cGAS-STING pathway and their consequences. This review gives a detailed account of the interplay between the cGAS-STING pathway and apoptosis. The cGAS-STING pathway can induce apoptosis through ER stress, NLRP3, NF-κB, IRF3, and IFN signals. Conversely, apoptosis can feed back to regulate the cGAS-STING pathway, suppressing it via the activation of caspases or promoting it via mitochondrial DNA (mtDNA) release. Apoptosis mediated by the cGAS-STING pathway plays crucial roles in balancing innate immune responses, resisting infections, and limiting tumor growth.


Asunto(s)
Inmunidad Innata , Nucleotidiltransferasas , Apoptosis , ADN , Inmunidad Innata/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal/genética , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA