Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.262
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 323, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561663

RESUMEN

BACKGROUND: Cow milk fat is an essential indicator for evaluating and measuring milk quality and cow performance. Growing research has identified the molecular functions of circular RNAs (circRNAs) necessary for mammary gland development and lactation in mammals. METHOD: The present study analyzed circRNA expression profiling data in mammary epithelial cells (MECs) from cows with highly variable milk fat percentage (MFP) using differential expression analysis and weighted gene co-expression network analysis (WGCNA). RESULTS: A total of 309 differentially expressed circRNAs (DE-circRNAs) were identified in the high and low MFP groups. WGCNA analysis revealed that the pink module was significantly associated with MFP (r = - 0.85, P = 0.007). Parental genes of circRNAs in this module were enriched mainly in lipid metabolism-related signaling pathways, such as focal adhesion, ECM-receptor interaction, adherens junction and AMPK. Finally, six DE-circRNAs were screened from the pink module: circ_0010571, circ_0007797, circ_0002746, circ_0003052, circ_0004319, and circ_0012840. Among them, circ_0002746, circ_0003052, circ_0004319, and circ_0012840 had circular structures and were highly expressed in mammary tissues. Subcellular localization revealed that these four DE-circRNAs may play a regulatory role in the mammary glands of dairy cows, mainly as competitive endogenous RNAs (ceRNAs). Seven hub target genes (GNB1, GNG2, PLCB1, PLCG1, ATP6V0C, NDUFS4, and PIGH) were obtained by constructing the regulatory network of their ceRNAs and then analyzed by CytoHubba and MCODE plugins in Cytoscape. Functional enrichment analysis revealed that these genes are crucial and most probable ceRNA regulators in milk fat metabolism. CONCLUSIONS: Our study identified several vital circRNAs and ceRNAs affecting milk fat synthesis, providing new research ideas and a theoretical basis for cow lactation, milk quality, and breed improvement.


Asunto(s)
MicroARNs , ARN Circular , Femenino , Bovinos , Animales , ARN Circular/genética , ARN Circular/metabolismo , Leche/metabolismo , ARN Endógeno Competitivo , Lactancia/genética , Metabolismo de los Lípidos/genética , Redes Reguladoras de Genes , MicroARNs/genética , Mamíferos/genética
2.
BMC Microbiol ; 24(1): 4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172685

RESUMEN

BACKGROUND: Uterine infections, primarily caused by bacterial pathogens, pose a significant problem for dairy farmers worldwide, leading to poor reproductive performance and economic losses. However, the bacteria responsible for uterine infections have not been adequately studied, nor has the antibiotic susceptibility of the causative bacteria been frequently tested in Ethiopia. This study aims to estimate the cumulative incidence of uterine infections in postpartum dairy cows, identify bacterial causes and determine antimicrobial susceptibility profile of the isolated bacteria. METHODS: A prospective cohort study was conducted in which 236 cows from 74 dairy farms were monitored biweekly from calving to 90 days postpartum for metritis, endometritis and other disorders. Aseptic uterine swab samples were collected from 40 cows with uterine infections. The samples were cultured, and the isolated bacteria were tested for antimicrobial susceptibility using the disk diffusion method. RESULTS: Out of 236 cows monitored during the postpartum phase, 45 (19.1%) were found to have contracted uterine infection. The cumulative incidence of metritis was 11.4% (n = 27), while the cumulative incidence of endometritis was 7.6% (n = 18). Of the 40 cultured swab samples, 29 (72.5%) had one or more bacteria isolated. The most commonly isolated bacteria were Escherichia coli (45%), coagulase-positive staphylococci (30%), and Klebsiella spp. (22.5%). Other bacterial spp, including Arcanobacterium pyogenes (12.5%), Fusobacterium spp. (12.5%), Enterobacter aerogenes (12.5%), coagulase-negative staphylococci (12.5%), Streptococcus spp. (7.5%), Salmonella spp, (5%) Proteus spp (5%) and Pasteurella spp (2.5%) were also isolated. All of the isolated bacteria demonstrated resistance to at least one of the antimicrobials tested. Multidrug resistance was observed in E. coli, Klebsiella spp., A. pyogenes, and Fusobacterium spp. Gentamicin was found to be the most effective antimicrobial against all bacteria tested, while tetracycline was the least effective of all. CONCLUSION: The study found that a significant proportion of cows in the population were affected by uterine infections and the isolated bacteria developed resistance to several antimicrobials. The study emphasizes the need for responsible use of antimicrobials to prevent the emergence of antimicrobial resistance. It also highlights the importance of raising awareness among dairy farmers to avoid the indiscriminate use of antibiotics and its consequences.


Asunto(s)
Enfermedades de los Bovinos , Endometritis , Humanos , Femenino , Bovinos , Animales , Endometritis/epidemiología , Endometritis/veterinaria , Endometritis/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Incidencia , Escherichia coli , Útero/microbiología , Estudios Prospectivos , Coagulasa , Etiopía/epidemiología , Enfermedades de los Bovinos/microbiología , Farmacorresistencia Bacteriana , Bacterias , Periodo Posparto
3.
Microb Pathog ; 187: 106509, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185451

RESUMEN

BACKGROUND: Mastitis is a serious disease which affects animal husbandry, particularly in cow breeding. The etiology of mastitis is complex and its pathological mechanism is not yet fully understood. Our previous research in clinical investigation has revealed that subclinical ketosis can increase the number of somatic cell counts (SCC) in milk, although the underlying mechanism remains unclear. Recent studies have further confirmed the significant role of mastitis. RESULTS: In this study, we aimed to examine the SCC, rumen microbiota, and metabolites in the milkmen of cows with subclinical ketosis. Additionally, we conducted a rumen microbiota transplant into mice to investigate the potential association between rumen microbiota disturbance and mastitis induced by subclinical ketosis in dairy cows. The study has found that cows with subclinical ketosis have a higher SCC in their milk compared to healthy cows. Additionally, there were significant differences in the rumen microbiota and the level of volatile fatty acid (VFA) between cows with subclinical ketosis and healthy cows. Moreover, transplanting the rumen microbiota from subclinical ketosis and mastitis cows into mice can induce mammary inflammation and liver function damage than transplanting the rumen flora from healthy dairy cows. CONCLUSIONS: In addition to the infection of mammary gland by pathogenic microorganisms, there is also an endogenous therapeutic pathway mediated by rumen microbiota. Targeted rumen microbiota modulation may be an effective way to prevent and control mastitis in dairy cows.


Asunto(s)
Cetosis , Mastitis Bovina , Microbiota , Femenino , Animales , Bovinos , Ratones , Humanos , Mastitis Bovina/patología , Rumen/metabolismo , Cetosis/metabolismo , Cetosis/veterinaria , Leche , Lactancia
4.
Vet Res ; 55(1): 6, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38217046

RESUMEN

Although the role of iron in bacterial infections has been well described for Staphylococcus (S.) aureus, iron acquisition in (bovine-associated) non-aureus staphylococci and mammaliicocci (NASM) remains insufficiently mapped. This study aimed at elucidating differences between four diverse bovine NASM field strains from two species, namely S. chromogenes and S. equorum, in regards to iron uptake (with ferritin and lactoferrin as an iron source) and siderophore production (staphyloferrin A and staphyloferrin B) by investigating the relationship between the genetic basis of iron acquisition through whole genome sequencing (WGS) with their observed phenotypic behavior. The four field strains were isolated in a previous study from composite cow milk (CCM) and bulk tank milk (BTM) in a Flemish dairy herd. Additionally, two well-studied S. chromogenes isolates originating from a persistent intramammary infection and from a teat apex were included for comparative purpose in all assays. Significant differences between species and strains were identified. In our phenotypical iron acquisition assay, while lactoferrin had no effect on growth recovery for all strains in iron deficient media, we found that ferritin served as an effective source for growth recovery in iron-deficient media for S. chromogenes CCM and BTM strains. This finding was further corroborated by analyzing potential ferritin iron acquisition genes using whole-genome sequencing data, which showed that all S. chromogenes strains contained hits for all three proposed ferritin reductive pathway genes. Furthermore, a qualitative assay indicated siderophore production by all strains, except for S. equorum. This lack of siderophore production in S. equorum was supported by a quantitative assay, which revealed significantly lower or negligible siderophore amounts compared to S. aureus and S. chromogenes. The WGS analysis showed that all tested strains, except for S. equorum, possessed complete staphyloferrin A (SA)-synthesis and export operons, which likely explains the phenotypic absence of siderophore production in S. equorum strains. While analyzing the staphyloferrin A and staphyloferrin B operon landscapes for all strains, we noticed some differences in the proteins responsible for iron acquisition between different species. However, within strains of the same species, the siderophore-related proteins remained conserved. Our findings contribute valuable insights into the genetic elements associated with bovine NASM pathogenesis.


Asunto(s)
Enfermedades de los Bovinos , Citratos , Mastitis Bovina , Ornitina/análogos & derivados , Infecciones Estafilocócicas , Femenino , Animales , Bovinos , Staphylococcus aureus/genética , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Lactoferrina/genética , Mastitis Bovina/microbiología , Staphylococcus , Leche , Hierro , Sideróforos , Ferritinas , Enfermedades de los Bovinos/microbiología
5.
Prostaglandins Other Lipid Mediat ; 171: 106814, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38280540

RESUMEN

Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.


Asunto(s)
Metabolismo Energético , Oxilipinas , Femenino , Humanos , Embarazo , Bovinos , Animales , Oxilipinas/metabolismo , Periodo Posparto , Lactancia/metabolismo , Inflamación/metabolismo , Dieta/veterinaria , Ácidos Grasos Insaturados/metabolismo , Antiinflamatorios , Leche/metabolismo
6.
BMC Vet Res ; 20(1): 229, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796437

RESUMEN

BACKGROUND: A thorough understanding of lameness prevalence is essential for evaluating the impact of this condition on the dairy industry and assessing the effectiveness of preventive strategies designed to minimize its occurrence. Therefore, this cross-sectional study aimed to ascertain the prevalence of lameness and identify potential risk factors associated with lameness in Holstein Friesian crossbred cows across both commercial and smallholder dairy production systems in Bengaluru Rural District of Karnataka, India. METHODS: The research encompassed six commercial dairy farms and 139 smallholder dairy farms, involving a total of 617 Holstein Friesian crossbred cattle. On-site surveys were conducted at the farms, employing a meticulously designed questionnaire. Lameness in dairy cattle was assessed subjectively using a locomotion scoring system. Both bivariate and binary logistic regression models were employed for risk assessment, while principal components analysis (PCA) was conducted to address the high dimensionality of the data and capture the underlying structure of the explanatory variables. RESULTS: The overall lameness prevalence of 21.9% in commercial dairy farms and 4.6% in smallholder dairy farms. Various factors such as age, body weight, parity, body condition score (BCS), floor type, hock and knee injuries, animal hygiene, provision of hoof trimming, and the presence of hoof lesions were found to be significantly associated with lameness. Binary logistic regression analysis indicated that the odds of lameness in crossbred cows increased with higher parity, decreased BCS, presence of hard flooring, poor animal hygiene, and the existence of hoof lesions. These factors were identified as potential risk factors for lameness in dairy cows. Principal component analysis unveiled five components explaining 71.32% of the total variance in commercial farms and 61.21% in smallholder dairy farms. The extracted components demonstrated higher loadings of housing and management factors (such as hoof trimming and provision of footbath) and animal-level factors (including parity, age, and BCS) in relation to lameness in dairy cows. CONCLUSIONS: The findings suggest that principal component analysis effectively reduces the dimensionality of risk factors. Addressing these identified risk factors for lameness is crucial for the strategic management of lameness in dairy cows. Future research in India should investigate the effectiveness of management interventions targeted at the identified risk factors in preventing lameness in dairy cattle across diverse environments.


Asunto(s)
Enfermedades de los Bovinos , Industria Lechera , Cojera Animal , Animales , Cojera Animal/epidemiología , Bovinos , Factores de Riesgo , Femenino , Enfermedades de los Bovinos/epidemiología , India/epidemiología , Prevalencia , Estudios Transversales , Crianza de Animales Domésticos/métodos
7.
J Reprod Dev ; 70(3): 169-176, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38644218

RESUMEN

Metabolic stress and subsequent hepatic dysfunction in high-producing dairy cows are associated with inflammatory diseases and declining fertility. Lipopolysaccharide (LPS)-binding protein (LBP) is produced by hepatocytes and controls the immune response, suggesting that it is involved in the pathophysiology of inflammation-related attenuation of reproductive functions during metabolic stress. This study investigated the effect of LBP on the inflammatory status, oocyte quality, and steroidogenesis in the follicular microenvironment of dairy cows. Using bovine ovaries obtained from a slaughterhouse, follicular fluid and granulosa cells were collected from large follicles to evaluate the follicular status of metabolism, inflammation, and steroidogenesis. Cumulus-oocyte complexes were aspirated from small follicles and subjected to in vitro embryo production. The results showed that follicular fluid LBP concentrations were significantly higher in cows with fatty livers and hepatitis than in those with healthy livers. Follicular fluid LBP and LPS concentrations were negatively correlated, whereas LPS concentration showed a positive correlation with the concentrations of non-esterified fatty acids (NEFA) and ß-hydroxybutyric acid in follicular fluid. The blastulation rate of oocytes after in vitro fertilization was impaired in cows in which coexisting large follicles had high NEFA levels. Follicular fluid NEFA concentration was negatively correlated with granulosa cell expression of the estradiol (E2) synthesis-related gene (CYP19A1). Follicular fluid LBP concentration was positively correlated with follicular fluid E2 concentration and granulosa cell CYP19A1 expression. In conclusion, follicular fluid LBP may be associated with favorable conditions in the follicular microenvironment, including low LPS levels and high E2 production by granulosa cells.


Asunto(s)
Proteínas de Fase Aguda , Proteínas Portadoras , Líquido Folicular , Células de la Granulosa , Inflamación , Glicoproteínas de Membrana , Folículo Ovárico , Animales , Femenino , Líquido Folicular/metabolismo , Bovinos , Células de la Granulosa/metabolismo , Proteínas de Fase Aguda/metabolismo , Proteínas Portadoras/metabolismo , Folículo Ovárico/metabolismo , Glicoproteínas de Membrana/metabolismo , Inflamación/metabolismo , Inflamación/veterinaria , Lipopolisacáridos/farmacología , Oocitos/metabolismo , Estradiol/metabolismo , Fertilización In Vitro/veterinaria , Ácidos Grasos no Esterificados/metabolismo , Enfermedades de los Bovinos/metabolismo , Aromatasa/metabolismo
8.
J Reprod Dev ; 70(1): 30-34, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38171736

RESUMEN

This study investigated the effects of timed artificial insemination (TAI) and equine chorionic gonadotropin (eCG) administration on lactating dairy cows under heat-stress conditions (average temperature-humidity index: 80). Timed artificial insemination was performed on the cows with (n = 57) or without (control, n = 41) supplementation with 500 IU of eCG at the day of PGF2α treatment using the CIDR-Ovsynch protocol. GnRH was administered, and a progesterone device (CIDR) was inserted on Day -10 of the treatment protocol. The CIDR was removed on Day -3, and the cows were treated with PGF2α. Two days later, a 2nd GnRH injection was administered. Subsequently, AI was performed on Day 0 (16-20 h after the 2nd GnRH injection), and pregnancy was diagnosed on Days 32 and 60. Plasma progesterone (P4) concentrations were measured after AI. Results showed that the eCG group had a higher pregnancy per AI (P/AI) than the control group (43.9 vs. 12.2%, P = 0.002), which was also accompanied by elevated P4 levels. Four cows in the eCG group had multiple calves, representing 7.0 and 16.0% of the group and pregnant cows, respectively. In conclusion, 500 IU of eCG combined with CIDR-Ovsynch in lactating dairy cows under severe heat stress conditions successfully improved fertility. However, the protocol may have a slight risk of multiple births.


Asunto(s)
Lactancia , Progesterona , Embarazo , Femenino , Bovinos , Animales , Caballos , Dinoprost/farmacología , Hormona Liberadora de Gonadotropina/farmacología , Sincronización del Estro/métodos , Inseminación Artificial/veterinaria , Inseminación Artificial/métodos , Gonadotropina Coriónica/farmacología
9.
Anim Biotechnol ; 35(1): 2307012, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38305036

RESUMEN

This study investigated the association of selected growth hormone receptor (GHR) gene SNPs with selected fertility and milk production-related phenotypes of cross-bred dairy cows (n = 153) reared on three National Livestock Development Board farms in Sri Lanka. Selected cows were genetically screened for SNPs in the exon 08 (n = 153) and 5' upstream (n = 118) regions of the GHR gene using the target sequencing method. The relationships between different genotypes and fertility traits (average calving interval, average number of services per conception, and age at first calving) and milk production-related traits (average total lactation yield, average lactation length, and average milk yield) were analyzed using the General Linear Model in SPSS. Among the identified Four GHR SNPs, rs1099014416 was significantly associated with average calving interval and age at first calving. Cows with GG genotype exhibited younger age at first calving (918.51 ± 113.42 days) and longer calving intervals (543.41 ± 43.29 days) compared to cows with GT (1275.18 ± 38.31, 515.09 ± 24.49 days) and TT (1212.89 ± 88.22, 364.52 ± 54.01 days) genotypes. Other SNPs did not show associations with the studied traits. SNP rs109014416 has the potential to be used as a genetic marker for fertility-related traits in the selection of cross-bred dairy cows in Sri Lanka which should be validated with a larger population.


Asunto(s)
Leche , Receptores de Somatotropina , Femenino , Bovinos/genética , Animales , Receptores de Somatotropina/genética , Prevalencia , Sri Lanka , Fertilidad/genética , Lactancia/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética
10.
J Dairy Sci ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908695

RESUMEN

Body-condition dynamics are known to affect the different steps of reproduction in cattle (cyclicity, estrus expression, fertilization, embryo development). This has led to a widespread idea that there is an ideal-target optimal body condition, but no clear profile has yet been identified. Here we investigated the relationships between body condition score (BCS) profiles and reproductive performance in dairy cows. Data were from Holstein or Normande herds in 6 French experimental farms. In the Holstein breed, we discriminated 4 BCS profiles based on combining BCS at calving (Low: around 2.6 points, or High: around 3.3 points) with BCS loss after calving (Moderate (M): ≤ 1.0 points, or Severe (S): > 1.0 points). The Low-M profile mostly included multiparous cows with higher milk yield and lower reproductive performance than cows in the 3 other profiles. Low-M cows that experienced abnormal ovarian activity had lower reproductive performance than their profile-mates. Moreover, 67% of Low-M cows kept the same profile at the following lactation. The High-S profile mostly included primiparous cows with lower milk yield and higher reproductive performance than cows in other profiles. In High-S cows, higher milk yields correlated to higher risk of failure to calf on first insemination. Moreover, 38% of High-S cows kept the same profile at the following lactation, and none changed to Low-M. The other 2 BCS profiles (Low-S and High-M) were intermediate in terms of milk yield and reproductive performance. In Normande, we discriminated 3 BCS profiles based on combining BCS at calving (Low: around 2.6 points, or High: around 3.5 points) with BCS loss after calving (Flat (F): flat with no loss, Moderate (M): around 0.5 points, or Severe (S): around 1.0 point). The Low-M and High-S profiles included cows with similar performance, even though High-S-profile cows showed better but not significantly different milk yield and reproduction performance. The High-F profile included cows that were more likely to experience abnormal ovarian activity and fail at first insemination than cows in other profiles. More than 50% of Normande cows with 2 successive lactations kept in the same BCS profile at the next lactation. Even though a low BCS at calving combined with severe BCS loss (more than 1 point) after calving was found to increase reproductive failure, there was no evidence of an optimal BCS profile for reproduction in dairy cows, and reproductive success or failure is multifactorial.

11.
J Dairy Sci ; 107(8): 5853-5868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38490557

RESUMEN

Methane emissions will be added to many national ruminant breeding programs in the coming years. Little is known about the covariance structure of CH4 traits over a lactation, which is important for optimizing recording strategies and establishing optimal genetic evaluation models. Our aim was to study CH4 over a lactation using random regression (RR) models, and to compare the accuracy to a fixed regression repeatability model under different phenotyping strategies. Data were available from repeated measurements of CH4 concentrations (ppm) recorded in the feed bins of milking robots on 52 commercial dairy farms in the Netherlands. In total, 36,370 averaged weekly records were available from 4,664 cows. Genetic parameters were estimated using a fixed regression model, and a RR model with first- to fifth-order Legendre polynomials for the additive genetic and within-lactation permanent environmental effect. The mean heritability (± SE) was 0.17 ± 0.04, and the mean within-lactation repeatability was 0.56 ± 0.03. The genetic correlations between DIM were high and ranged from 0.34 ± 0.36 to 1.00 ± <0.01. Permanent environmental correlations showed large deviations and ranged from -0.73 ± 0.08 to 1.00 ± <0.01. With a large number of full lactation daughter CH4 records per bull, the reliability was not sensitive to using the fixed versus the RR model. However, when shorter periods were recorded at the start and end of the lactation, the fixed regression model resulted in a loss of reliability up to 28% for bulls. Assuming the fixed model when the true (co)variance structure is reflected by the RR model, more than twice as long of a recording from the start of lactation was required to achieve maximum reliability for a bull. Thus, a too simplistic model could result in implementing too little recording, and in lower genetic gains than predicted from the reliability.


Asunto(s)
Lactancia , Metano , Lactancia/genética , Animales , Femenino , Bovinos/genética , Reproducibilidad de los Resultados , Cruzamiento , Leche/química
12.
J Dairy Sci ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245169

RESUMEN

The fecal microbiota of ruminants constitutes a diversified community that has been phenotypically associated with a variety of host phenotypes, such as production and health. To gain a better understanding of the complex and interconnected factors that drive the fecal bacterial community, we have aimed to estimate the genetic parameters of the diversity and composition of the fecal microbiota, including heritabilities, genetic correlations among taxa, and genetic correlations between fecal microbiota features and host phenotypes. To achieve this, we analyzed a large population of 1,875 Holstein cows originating from 144 French commercial herds and routinely recorded for production, somatic cell score, and fertility traits. Fecal samples were collected from the animals and subjected to 16S rRNA gene sequencing, with reads classified into Amplicon Sequence Variants (ASVs). The estimated α- and ß-diversity indices (i.e., Observed Richness, Shannon index, Bray-Curtis and Jaccard dissimilarity matrices) and the abundances of ASVs, genera, families and phyla, normalized by centered-log ratio (CLR), were considered as phenotypes. Genetic parameters were calculated using either univariate or bivariate animal models. Heritabilities estimates, ranging from 0.08 to 0.31 for taxa abundances and ß-diversity indices, highlight the influence of the host genetics on the composition of the fecal microbiota. Furthermore, genetic correlations estimated within the microbial community and between microbiota features and host traits reveal the complex networks linking all components of the fecal microbiota together and to their host, thus strengthening the holobiont concept. By estimating the heritabilities of microbiota-associated phenotypes, our study quantifies the impact of the host genetics on the fecal microbiota composition. In addition, genetic correlations between taxonomic groups and between taxa abundances and host performance suggest potential applications for selective breeding to improve host traits or promote a healthier microbiota.

13.
J Dairy Sci ; 107(6): 3780-3793, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38310955

RESUMEN

In recent years, research in animal breeding has increasingly focused on the topic of resilience, which is expected to continue in the future due to the need for high-yielding, healthy, and robust animals. In this context, an established approach is the calculation of resilience indicator traits with time series analyses. Examples are the variance and autocorrelation of daily milk yield in dairy cows. We applied this methodology to the German dairy cow population. Data from the 3 breeds (German Holstein, German Fleckvieh, and German Brown Swiss) were obtained, which included 13,949 lactations from 36 farms from the state Baden-Württemberg in Germany working with automatic milking systems. Using the milk yield data, the daily absolute milk yields, deviations between observed and expected daily milk yields, and relative proportions of daily milk yields in relation to lactation performance were calculated. We used the variance and autocorrelation of these data as phenotypes in our statistical analyses. We estimated a heritability of 0.047 for autocorrelation and heritabilities between 0.026 and 0.183 for variance-based indicator traits. Furthermore, significant breed differences could be observed, with a tendency of better resilience in Brown Swiss. The breed differences can be due to both genetic and environmental factors. A high value of a variance-based indicator trait indicates a low resilience. Performance traits were positively correlated with variance-based indicator traits calculated from absolute daily milk yields, but they were negatively correlated with variance-based indicators calculated from relative daily milk yields. Thus, they can be considered as different traits. Although variance-based indicators based on absolute daily milk yields were affected by the performance level, variance-based indicators based on relative daily milk yields were corrected for the performance level and also showed higher heritabilities. Thus, they seem to be more suitable for practical use. Further studies need to be conducted to calculate the correlations between resilience indicators, functional traits, and health traits.


Asunto(s)
Cruzamiento , Lactancia , Leche , Animales , Bovinos/genética , Lactancia/genética , Femenino , Fenotipo , Industria Lechera , Alemania
14.
J Dairy Sci ; 107(1): 301-316, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37709042

RESUMEN

Chromium (Cr) has been reported to modulate blood biochemistry in dairy cows. However, there is a discrepancy in the literature regarding the effects of dietary Cr supplementation on various blood parameters. This meta-analysis aimed to evaluate the effects of Cr supplementation in dairy cows on blood glucose, insulin, glucagon, nonesterified fatty acid (NEFA), cortisol, and serum total protein (STP) concentrations. Following relevant literature data extraction, a 3-level meta-analytical random effect model was fitted to the data expressed as standardized mean difference (SMD) of outcome measures of control versus Cr-supplemented cows (i.e., difference in mean between control and treatment group or pooled standard deviation). The SMD can be categorized as having a small effect (0.20), a moderate effect (0.50), and a large effect (0.80). The meta-regression identified the potential sources of heterogeneity, including the body weight of cows, experimental duration/duration of Cr supplementation, blood sampling time (3 wk before parturition until 4 wk after parturition categorized as the transition period, else as the nontransition period), and form of Cr complexes. Blood glucose did not differ significantly between control and Cr-supplemented cows with an estimated SMD of µ = 0.0071 (95% confidence interval [CI]: -0.212 to 0.226). The effect of Cr supplementation on blood insulin was also nonsignificant with an SMD of µ = 0.0007 (95% CI: -0.191 to 0.193). Cows receiving Cr supplements had significantly higher levels of glucagon than controls (95% CI: 0.116 to 0.489), with an estimated SMD = 0.303. Combined transition and nontransition data suggest Cr supplementation did not affect the concentration of NEFA. However, in transition cows, Cr supplementation significantly decreased blood NEFA levels as compared with controls (95% CI: -0.522 to -0.0039), with estimated SMD = -0.263. The estimated SMD was µ = -0.1983 (95% CI: -0.734 to 0.337) for cortisol and -0.0923 (95% CI: -0.316 to 0.131) for total protein. In summary, Cr supplementation in the transition cows decreased NEFA concentration. Blood glucose, insulin, cortisol, and STP concentrations were unaffected. However, Cr supplementation increased glucagon concentration.


Asunto(s)
Glucemia , Glucagón , Femenino , Bovinos , Animales , Glucemia/metabolismo , Suplementos Dietéticos , Lactancia , Hidrocortisona , Cromo/farmacología , Ácidos Grasos no Esterificados , Insulina , Dieta/veterinaria , Periodo Posparto
15.
J Dairy Sci ; 107(1): 383-397, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37709046

RESUMEN

Enteric methane (CH4) emissions of 3 genetic groups (GG) of dairy cows were recorded across the grazing season (early March to late October). The 3 GG were (1) high economic breeding index (EBI) Holstein-Friesian (HF) representative of the top 1% of dairy cows in Ireland at the time of the study (elite), (2) national average (NA) EBI, which were representative of the average HF dairy cow in Ireland, and (3) purebred Jersey (JE) cows. Enteric CH4 was recorded using GreenFeed technology. Seasonal variation in CH4 was observed, with the lowest daily CH4 emissions and CH4 expressed per unit of dry matter intake occurring in spring (253 g/d and 15.56 g/kg, respectively), intermediate in summer (303 g/d and 18.26 g/kg, respectively), and greatest in autumn (324 g/d and 19.80 g/kg, respectively). Seasonal variation was also observed in the proportion of gross energy intake converted to CH4 (Ym); in the spring the Ym was lowest at 0.046, increasing to 0.053 and 0.058 in the summer and autumn, respectively. There was no difference in daily CH4 between the elite and NA, whereas JE had lower CH4 emissions compared with the elite. When expressed per unit of milk solids (fat + protein yield; MS), the elite and JE produced 6.8% and 9.7% less CH4 per kilogram of MS, respectively, compared with NA. There was no difference between the GG for CH4 per unit of DMI or the Ym. This research emphasizes the variation in CH4 emissions across the grazing season and among cows of differing genetic merit for CH4 emission intensities but not for CH4 per unit of DMI or the Ym.


Asunto(s)
Lactancia , Leche , Femenino , Bovinos , Animales , Leche/metabolismo , Lactancia/genética , Dieta/veterinaria , Metano/metabolismo , Ingestión de Energía
16.
J Dairy Sci ; 107(1): 258-277, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37690708

RESUMEN

The legalization of industrial hemp by the 2018 Farm Bill in the United States has driven a sharp increase in its cultivation, including for cannabinoid extraction. Spent hemp biomass (SHB), produced from the extraction of cannabinoids, can potentially be used as feed for dairy cows; however, it is still illegal to do so in the United States, according to the US Food and Drug Administration Center for Veterinary Medicine, due to the presence of cannabinoids and the lack of data on the effect on animals. To assess the safety of this byproduct as feed for dairy cows, late-lactation Jersey cows (245 ± 37 d in milk; 483 ± 38 kg body weight; 10 multiparous and 8 primiparous) received a basal total mixed ration (TMR) diet plus 13% alfalfa pellet (CON) or 13% pelleted SHB for 4 wk (intervention period [IP]) followed by 4 wk of withdrawal period (WP), where all cows received only the basal TMR during WP. The dry matter intake (DMI), body weight, body condition score, milk yield, milk components, and fatty acid profile, blood parameters, N metabolism, methane emission, and activity were measured. Results indicated that feeding SHB decreased DMI mainly due to the low palatability of the SHB pellet, as the cows consumed only 7.4% of the total TMR with 13.0% SHB pellet offered in the ration. However, milk yield was not affected during the IP and was higher than CON during the WP, leading to higher milk yield/DMI. Milk components were not affected, except for a tendency in decreased fat percentage. Milk fat produced by cows fed SHB had a higher proportion of oleate and bacteria-derived fatty acids than CON. The activity of the cows was not affected, except for a shorter overall lying time in SHB versus CON cows during the IP. Blood parameters related to immune function were not affected. Compared with CON, cows fed SHB had a lower cholesterol concentration during the whole experiment and higher ß-hydroxybutyric acid during the WP, while a likely low-grade inflammation during the IP was indicated by higher ceruloplasmin and reactive oxidative metabolites. Other parameters related to liver health and inflammatory response were unaffected, except for a tendency for higher activity of alkaline phosphatase during IP and a lower activity of gamma-glutamyl transferase during WP in the SHB group versus CON. The bilirubin concentration was increased in cows fed SHB, suggesting a possible decrease in the clearance ability of the liver. Digestibility of the dry matter and protein and methane emission were not affected by feeding SHB. The urea, purine derivatives, and creatinine concentration in urine was unaffected, but cows fed SHB had higher N use efficiency and lower urine volume. Altogether, our data revealed a relatively low palatability of SHB affecting DMI with minimal biological effects, except for a likely low-grade inflammation, a higher N use efficiency, and a possible decrease in liver clearance. Overall, the data support the use of SHB as a safe feed ingredient for lactating dairy cows.


Asunto(s)
Cannabinoides , Cannabis , Enfermedades de los Bovinos , Femenino , Bovinos , Animales , Leche/metabolismo , Lactancia , Biomasa , Alimentación Animal/análisis , Digestión , Dieta/veterinaria , Ácidos Grasos/metabolismo , Peso Corporal , Cannabinoides/metabolismo , Cannabinoides/farmacología , Metano/metabolismo , Nitrógeno/metabolismo , Inflamación/veterinaria , Rumen/metabolismo , Enfermedades de los Bovinos/metabolismo
17.
J Dairy Sci ; 107(3): 1397-1412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37690724

RESUMEN

The considerable increase in the production capacity of individual cows owing to both selective breeding and innovations in the dairy sector has posed challenges to management practices in terms of maintaining the nutritional and metabolic health status of dairy cows. In this observational study, we investigated the associations between milk yield, composition, and technological traits and a set of 21 blood biomarkers related to energy metabolism, liver function or hepatic damage, oxidative stress, and inflammation or innate immunity in a population of 1,369 high-yielding Holstein-Friesian dairy cows. The milk traits investigated in this study included 4 production traits (milk yield, fat yield, protein yield, daily milk energy output), 5 traits related to milk composition (fat, protein, casein, and lactose percentages and urea), 11 milk technological traits (5 milk coagulation properties and 6 curd-firming traits). All milk traits (i.e., production, composition, and technological traits) were analyzed according to a linear mixed model that included the days in milk, the parity order, and the blood metabolites (tested one at a time) as fixed effects and the herd and date of sampling as random effects. Our findings revealed that milk yield and daily milk energy output were positively and linearly associated with total cholesterol, nonesterified fatty acids, urea, aspartate aminotransferase, γ-glutamyl transferase, total bilirubin, albumin, and ferric-reducing antioxidant power, whereas they were negatively associated with glucose, creatinine, alkaline phosphatase, total reactive oxygen metabolites, and proinflammatory proteins (ceruloplasmin, haptoglobin, and myeloperoxidase). Regarding composition traits, the protein percentage was negatively associated with nonesterified fatty acids and ß-hydroxybutyrate (BHB), while the fat percentage was positively associated with BHB, and negatively associated with paraoxonase. Moreover, we found that the lactose percentage increased with increasing cholesterol and albumin and decreased with increasing ceruloplasmin, haptoglobin, and myeloperoxidase. Milk urea increased with an increase in cholesterol, blood urea, nonesterified fatty acids, and BHB, and decreased with an increase in proinflammatory proteins. Finally, no association was found between the blood metabolites and milk coagulation properties and curd-firming traits. In conclusion, this study showed that variations in blood metabolites had strong associations with milk productivity traits, the lactose percentage, and milk urea, but no relationships with technological traits of milk. Specifically, increasing levels of proinflammatory and oxidative stress metabolites, such as ceruloplasmin, haptoglobin, myeloperoxidase, and total reactive oxygen metabolites, were shown to be associated with reductions in milk yield, daily milk energy output, lactose percentage, and milk urea. These results highlight the close connection between the metabolic and innate immunity status and production performance. This connection is not limited to specific clinical diseases or to the transition phase but manifests throughout the entire lactation. These outcomes emphasize the importance of identifying cows with subacute inflammatory and oxidative stress as a means of reducing metabolic impairments and avoiding milk fluctuations.


Asunto(s)
Ácidos Grasos no Esterificados , Leche , Embarazo , Femenino , Bovinos , Animales , Leche/metabolismo , Lactosa/metabolismo , Ceruloplasmina , Haptoglobinas/metabolismo , Biomarcadores/metabolismo , Urea/metabolismo , Colesterol/metabolismo , Peroxidasa/metabolismo , Albúminas/metabolismo , Oxígeno/metabolismo
18.
J Dairy Sci ; 107(3): 1413-1426, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37863294

RESUMEN

In this study we wanted to investigate the associations between naturally occurring subclinical intramammary infection (IMI) caused by different etiological agents (i.e., Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, and Prototheca spp.), in combination with somatic cell count (SCC), on the detailed milk protein profile measured at the individual mammary gland quarter. An initial bacteriological screening (time 0; T0) conducted on individual composite milk from 450 Holstein cows reared in 3 herds, was performed to identify cows with subclinical IMI. We identified 78 infected animals which were followed up at the quarter level at 2 different sampling times: T1 and T2, 2 and 6 wk after T0, respectively. A total of 529 quarter samples belonging to the previously selected animals were collected at the 2 sampling points and analyzed with a reversed phase HPLC (RP-HPLC) validated method. Specifically, we identified and quantified 4 caseins (CN), namely αS1-CN, αS2-CN, κ-CN, and ß-CN, and 3 whey protein fractions, namely ß-lactoglobulin, α-lactalbumin, and lactoferrin (LF), which were later expressed both quantitatively (g/L) and qualitatively (as a percentage of the total milk nitrogen content, % N). Data were analyzed with a hierarchical linear mixed model with the following fixed effects: days in milk (DIM), parity, herd, SCC, bacteriological status (BACT), and the SCC × BACT interaction. The random effect of individual cow, nested within herd, DIM and parity was used as the error term for the latter effects. Both IMI (i.e., BACT) and SCC significantly reduced the proportion of ß-CN and αS1-CN, ascribed to the increased activity of both milk endogenous and microbial proteases. Less evident alterations were found for whey proteins, except for LF, which being a glycoprotein with direct and undirect antimicrobial activity, increased both with IMI and SCC, suggesting its involvement in the modulation of both the innate and adaptive immune response. Finally, increasing SCC in the positive samples was associated with a more marked reduction of total caseins at T1, and αS1-CN at T2, suggesting a synergic effect of infection and inflammation, more evident at high SCC. In conclusion, our work helps clarify the behavior of protein fractions at quarter level in animals having subclinical IMI. The inflammation status driven by the increase in SCC, rather the infection, was associated with the most significant changes, suggesting that the activity of endogenous proteolytic enzymes related to the onset of inflammation might have a pivotal role in directing the alteration of the milk protein profile.


Asunto(s)
Enfermedades de los Bovinos , Proteínas de la Leche , Femenino , Embarazo , Bovinos , Animales , Caseínas , Leche , Proteína de Suero de Leche , Infecciones Asintomáticas , Inflamación/veterinaria , Péptido Hidrolasas
19.
J Dairy Sci ; 107(3): 1656-1668, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37806625

RESUMEN

Mastitis is one of the most significant diseases in dairy cows and causes several economic losses. Somatic cell count (SCC) is often used as an indirect diagnostic tool for mastitis, especially for subclinical mastitis (SCM) where no symptoms or signs can be detected. Streptococcus agalactiae is one of the main causes of contagious mastitis, and Prototheca spp. is an alga-inducing environmental mastitis that is not always correlated with increased milk SCC. The aim of this study was to evaluate the changes in the metabolomic profile of blood in relation to subclinical intramammary infection (IMI) in dairy cows. In addition, differences resulting from the etiologic agent causing mastitis were also considered. Forty Holstein-Friesian dairy cows in mid and late lactation were enrolled in this cross-sectional design study. Based on the bacteriological examination of milk, the animals were divided into 3 groups: group CTR (control group; n = 16), group A (affected by SCM with IMI caused by Strep. agalactiae; n = 17), and group P (affected by SCM with IMI caused by Prototheca spp.; n = 7). Blood samples from the jugular vein were collected in tubes containing clot activator; the serum aliquot was stored until metabolomic analysis by 1H-nuclear magnetic resonance spectroscopy. Statistical analysis was conducted by fitting a linear model with the group as the fixed effect and SCC as the covariate. Forty-two metabolites were identified, and among them 10 were significantly different among groups. Groups A and P showed greater levels of His and lactose and lower levels of acetate, Asn, and dimethylamine compared with group CTR. Group A showed high levels of Val, and group P showed high levels of Cit and methylguanidine, as well as lower levels of 3-hydroxybutyrate, acetone, allantoin, carnitine, citrate, and ethanol. These metabolites were related to ruminal fermentations, energy metabolism, urea synthesis and metabolism, immune and inflammatory response, and mammary gland permeability. These results suggest systemic involvement with subclinical IMI and that the metabolic profile of animals with SCM undergoes changes related to the etiological agent of mastitis.


Asunto(s)
Enfermedades de los Bovinos , Mastitis Bovina , Prototheca , Animales , Bovinos , Femenino , Streptococcus agalactiae , Estudios Transversales , Mastitis Bovina/diagnóstico , Leche/química , Metaboloma , Recuento de Células/veterinaria , Enfermedades de los Bovinos/metabolismo
20.
J Dairy Sci ; 107(7): 4537-4557, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38395403

RESUMEN

Lysine is one of the limiting AA in the diets of dairy cows and is typically fed as rumen-protected Lys (RPL). We hypothesized that supplementation of RPL during the postpartum period would improve the productive performance in dairy cows. Objectives were to use meta-analytic methods to explore the effects of feeding RPL on performance and blood AA profile in lactating dairy cows. An additional objective was to identify an optimal concentration (%) of Lys in MP (LYSMP) and determine if responses to LYSMP were associated with the concentration (%) of Met in MP (METMP). The literature was systematically reviewed, and 13 experiments, comprising 40 treatment means and 594 lactating cows, were included in the meta-analysis. All experiments had a nonsupplemental control (CON; n = 17 treatment means), or a group supplemented with RPL (n = 23 treatment means). Cows supplemented with RPL were supplied additionally with a mean (±standard deviation) 19.3 ± 10.3 g/d metabolizable Lys (5.1-40.6 g/d). Meta-analytical statistics were used to estimate the weighted mean difference in STATA. Mixed models were fitted to the data to investigate the linear and quadratic effects of LYSMP, METMP, and interactions between LYSMP and METMP. All models included the random effect of experiment and weighting by the inverse of the SE of the means squared. Cows that began receiving RPL in early lactation (≤90 DIM) or for an extended duration (≥70 DIM) produced 1.51 kg/d more milk compared with CON cows. Increasing digestible LYSMP from 6.5% to 8.5% linearly increased yields of milk, FCM, ECM, and milk fat by 1.8, 2.5, 2.4, and 0.10 kg/d, respectively, and tended to increase milk protein yield and body weight gain by 0.07 and 0.09 kg/d, respectively, without a concurrent increase in DMI. Interactions between the linear effects of LYSMP and METMP were observed for FCM/DMI or ECM/DMI. In a diet with low METMP (e.g., 1.82% of MP), a digestible supply of 7.40% LYSMP would result in 1.46 and 1.47 kg/kg FCM/DMI or ECM/DMI, respectively; however, with high digestible METMP (e.g., 2.91% of MP), supplying 7.40% of digestible LYSMP would result in 1.68 and 1.62 kg/kg FCM/DMI or ECM/DMI, respectively. Increasing digestible LYSMP from 6.5% to 8.5% linearly increased blood concentrations of Lys by 16.6 µM, whereas blood concentrations of Met and Ala decreased by 4.6 and 6.0 µM, respectively. Nevertheless, an interaction was also observed between LYSMP and METMP for blood concentrations of total EAA because as METMP increased, the positive response to LYSMP on total EAA was also increased, suggesting a competitive mobilization of AA and their utilization in various body tissues. Only 4 out of the 13 experiments in this meta-analysis involved primiparous cows; thus, insufficient data were available to understand the role of supplemental RPL in primiparous cows. Collectively, feeding RPL improved productive performance, and the increments were maximized up to 9.25% of LYSMP in multiparous dairy cows.


Asunto(s)
Aminoácidos , Alimentación Animal , Suplementos Dietéticos , Lactancia , Lisina , Leche , Rumen , Animales , Bovinos , Femenino , Aminoácidos/metabolismo , Dieta/veterinaria , Lactancia/efectos de los fármacos , Lisina/farmacología , Leche/química , Periodo Posparto , Rumen/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA