Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Arch Microbiol ; 206(9): 374, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127775

RESUMEN

Pythium sensu lato (s.l.) is a pathogenic oomycete. The present study was conducted to isolate and identify Pythium s.l. species associated with the rhizosphere and roots of greenhouse-growing cucumbers showing damping-off symptoms in 10 Omani governorates (provinces). A total of 166 isolates were recovered from 276 rhizosphere soil and root samples and were identified based on the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region and the cytochrome c oxidase subunit I (COX I) gene region. Pythium aphanidermatum, P. myriotylum, Globisporangium spinosum, Globisporangium sp.1 (isolates Kb003/PySyCu-1 and Kb004/PySyCu-2), and Globisporangium sp.2 (isolate Ib002R) were identified. Among these species, P. aphanidermatum was the most abundant species, represented by 143 isolates (86.1%), followed by G. spinosum with 18 isolates (10.8%), Globisporangium sp.1 and P. myriotylum each with 2 isolates (2.4%), and Globisporangium sp.2 with 1 isolate (0.6%). Pathogenicity tests were also conducted for 38 isolates, including P. aphanidermatum (25), P. myriotylum (2), Globisporangium sp.2 (1), G. spinosum (8), and Globisporangium sp.1 (2). Among the tested isolates, only Globisporangium sp.2 isolate was avirulent, and none of the seeds were rotted at the end of the treatment. However, the other species induced the symptoms of seed decay with the incidence ranged from 86.7 to 100%. Phylogenetic analyses were conducted based on 222 ITS and 53 COX I sequences, and confirmed morphological identification. In addition, the genetic diversity of 93 P. aphanidermatum isolates was assessed via the amplified fragment length polymorphism (AFLP) method. The analysis produced 93 genotypes and 449 polymorphic loci. Pythium aphanidermatum populations were found to have moderate levels of genetic diversity (H = 0.2) and a moderate Shannon information index (I = 0.3793). Analysis of molecular variance (FST = 0.1, P = 0.0) revealed a moderate level of genetic differentiation among P. aphanidermatum isolates between Oman governorates. The sensitivity of 15 P. aphanidermatum isolates was evaluated against hymexazol at different concentrations (10, 100, and 1000 ppm). The results revealed that P. aphanidermatum could grow well at concentrations of up to 100 ppm hymexazol. However, hymexazol at 1000 ppm retarded the growth of P. aphanidermatum. This study showed that P. aphanidermatum is the most prevalent species in greenhouses in Oman and exhibited a moderate level of genetic diversity. Most of the isolates exhibited differences in tolerance to hymexazol but showed no resistance.


Asunto(s)
Cucumis sativus , Filogenia , Enfermedades de las Plantas , Pythium , Rizosfera , Microbiología del Suelo , Pythium/genética , Pythium/aislamiento & purificación , Pythium/clasificación , Enfermedades de las Plantas/microbiología , Cucumis sativus/microbiología , Omán , Semillas/microbiología , Raíces de Plantas/microbiología , ADN Espaciador Ribosómico/genética
2.
Plant Dis ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654536

RESUMEN

Hylocereus megalanthus (family Cactaceae), commonly known as bird's nest fruit (Yanwo fruit), was a new tropical plant cultivated commercially in south China because of its high nutritional content and sweet taste. In August 2023, damping-off disease of approximately 60% of seedlings was observed at a nursery in Zhanjiang, Guangdong Province (E110°17'46″ N21°9'2″). Stems of infected seedlings exhibited symptoms of water-soaked tissue which caused collapse at the base of the stem and sloughing of necrotic root cortex tissue was observed (Figure 1). White aerial mycelia were visible on the surface of the stem and soil at a high relative humidity. Diseased tissues about 0.5 cm2 were taken from the infected roots and stems, surface disinfected with 75% ethanol and 3% hydrogen peroxide solution, each for 1 min, subsequently rinsed in sterile water, and placed on potato dextrose agar (PDA). Plates were incubated at 25 to 28℃ in the dark for 3 days. Coenocytic hyphae grew from all infected roots and stems. Hyphal tip transfers were completed twice, and twelve isolates with the same morphological characteristics were obtained. The colony growth on PDA was ample. Main hyphae are up to 9.5 µm wide. Sporangia were terminal, inflated, branched or unbranched. Encysted zoospores were 7.5 µm in diameter. Oogonia were terminal, globose, smooth and of 16.8 to 27.4 µm (average 21.5 µm) diameter. Oospores were typically spherical, thick-walled, yellowish, 19.7 to 26.3 µm (average 21.1 µm) diameter, wall 1 to 2 µm thick. Antheridia were mostly intercalary, sometimes terminal, broadly sac-shaped, 15.0×19.0 µm (Figure 2). The morphological features were very similar to those of Pythium spp. (Toporek and Keinath 2021). For further identification, the LSU and ITS regions of isolate CCAS-YWGCD (stored in Agricultural Culture Collection of China, ACCC 35633) were amplified and sequenced with using primer pairs LROR/LR7 and ITS1/ITS4, respectively (Gao et al. 2017; White et al. 1990). The resulting sequences were deposited in GenBank (ITS: OR775664; LSU: OR775667). BLASTn results showed 100% sequence similarity with reference sequences of Pythium aphanidermatum (AY598622 for ITS and HQ665084 for LSU). Phylogenetic tree generated from maximum likelihood analysis based on combined LSU and ITS sequence data with MEGA 10.1.8, clustered the oomycete in P. aphanidermatum clade with 100% bootstrap support (Figure 3). Therefore, the oomycete was identified as P. aphanidermatum. To confirm Koch's postulates, six three-month-old seedlings of H. megalanthus (height about 15 cm) were transplanted to 15 cm pots. Six-mm-diameter mycelial plugs obtained from 7-day-old cultures at 25℃ in the dark were buried adjacent to the stem of three unwounded healthy seedlings. Another three seedlings inoculated with PDA agar served as controls. The plants were covered with plastic bags, kept at about 30℃, and watered regularly to keep the soil moisture content high. All inoculated seedlings exhibited symptoms of stems rot and damping-off, Symptoms did not develop on the control seedlings. P. aphanidermatum by morphological and molecular analysis was reisolated from the stems. P. aphanidermatum had been reported worldwide causing disease in many agricultural crops (Qi et al. 2021; Kim et al. 2020), but this is the first report causing damping-off of H. megalanthus seedling in China as well as worldwide, and this disease should be monitored in nursery seedlings.

3.
Plant Dis ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640429

RESUMEN

Spinach (Spinacia oleracea) is a commonly used green vegetable. During September and October in both 2022 and 2023, a vegetable nursery company located among paddy rice fields in Taichung City, Taiwan, reported significant failures in spinach seedling production in net-houses with mean outdoor temperatures of 28.7℃. Abnormal growth was observed in approximately 30% of the spinach seedlings in each batch (n = 2,000 to 3,000), with aboveground tissues showing stunting, yellowing, and wilt, and underground tissues displaying root rot. The symptoms resembled the spinach damping-off documented in Taiwan in extension articles but which lacked complete pathogen identification. A total of 110 plants from two batches were used for pathogen isolation by placing roots on water agar incubated at 25℃ or were examined for the presence of oospores in diseased roots. Eighty-one percent of these plants were associated with Pythium. Nine Pythium isolates were used in subsequent analyses. Genomic DNA from these isolates was subjected to amplification of ITS, ß-tubulin gene (TUB2), and cytochrome C oxidase subunit Ⅱ (COXII) gene with primer pairs ITS1 / ITS4, BT5 / BT6, and FM58 / FM66 (Villa et al. 2006). Sequences of ITS (PP209187-PP209195), TUB2 (PP212864-PP212872), and COXII (PP212855-PP212863) were deposited in GenBank. Four isolates (sp01, sp02, sp03, and sp04) were 100% identical to the neotype strain (CBS 118.80) of Pythium aphanidermatum (Edson) Fitzp. for the ITS (761 bp), TUB2 (583 bp), and COXII (547 bp). Five isolates (2sp, 3sp, ND2-4sp, D3-4sp, and ND3-3sp) were 99.87%, 100%, and 99% identical to the reference strain (CBS 254.70) of Pythium myriotylum Drechsler for the ITS (762 bp), TUB2 (602 bp), and COXII (556 bp), respectively. Phylogenetic analysis of Pythium isolates inferred from concatenated sequences of the three genes (LéVesque and De Cock 2004; Villa et al. 2006) revealed that the same four isolates grouped with the neotype strain of P. aphanidermatum, and the five isolates clustered with the reference strain of P. myriotylum, each with a 100% bootstrap support. Morphological features of isolates ND3-3sp and sp01 were used for identification. Isolate ND3-3sp produced inflated lobulate sporangia and aplerotic and smooth oospores (16.3 to 25.1 um; n = 30) attached with three to five antheridia, consistent with identification as P. myriotylum. Isolate sp01 produced inflated lobulate sporangia and aplerotic and smooth oospores (17.0 to 24.0 um; n= 30) attached with a single intercalary antheridium, agreeing with the morphology of P. aphanidermatum (Van der Plaats-Niterink 1981). To investigate the pathogenicity of the nine Pythium isolates on spinach, 20 mycelial agar discs (4 mm in diameter) from a 2-day-old V8 culture of each isolate were used to induce sporangia and zoospores in 20 ml sterilized water at 25℃ with a 12 h light / dark regime. A 1.5 ml zoospore suspension (6 × 103 zoospores / ml) was dropped into BVB growth substrate of two spinach seedlings in 2-week-old at 25℃ with 12 h light / dark regime, resulting in symptoms resembling those observed in commercial nurseries at 7 days post-inoculation (dpi). Each Pythium isolate inoculated 20 seedlings in 10 cells of a planting tray. At 14 dpi, disease incidences were 95 to 100% for P. myriotylum isolates and 60 to 85% for P. aphanidermatum isolates, while control plants treated with water showed no symptoms. Re-isolated pathogens from the inoculated plants were morphologically identical to the inoculated isolates, completing Koch's postulates. Results of the pathogenicity assay, along with molecular and morphological identification, conclude that the root rot of spinach was caused by P. myriotylum and P. aphanidermatum. The two oomycetes were not formally documented to cause spinach diseases in Taiwan. Although P. myriotylum has been isolated from spinach (Wang et al. 2003), its pathogenicity to spinach was not documented worldwide. Root rot of spinach caused by P. aphanidermatum has been reported in the United States (Bates and Stanghellini 1984), Korea (Cho and Shin 2004), and Italy (Garibaldi et al. 2015). These pathogens thrive in humid and hot weather (Littrell and McCarter, 1970). Producing spinach in cooler weather or in a temperature-controlled environment may help prevent severe occurrence of the disease.

4.
Mol Divers ; 27(1): 281-297, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35441971

RESUMEN

Botrytis cinerea, Rhizoctonia solani and Hemileia vastatrix are three species of phytopathogenic fungi behind major crop losses worldwide. These have been selected as target models for testing the fungicide potential of a series of bis(ylidene) cyclohexanones. Although some compounds of this chemical class are known to have inhibitory activity against human pathogens, they have never been explored for the control of phytopathogens until now. In the present work, bis(ylidene) cyclohexanones were synthesized through simple, fast and low-cost base- or acid-catalyzed aldol condensation reaction and tested in vitro against B. cinerea, R. solani and H. vastatrix. bis(pyridylmethylene) cyclohexanones showed the highest activity against the target fungi. When tested at 200 nmol per mycelial plug against R. solani., these compounds completely inhibited the mycelial growth, and the most active bis(pyridylmethylene) cyclohexanone compound had an IC50 of 155.5 nmol plug-1. Additionally, bis(pyridylmethylene) cyclohexanones completely inhibited urediniospore germination of H. vastatrix, at 125 µmol L-1. The most active bis(pyridylmethylene) cyclohexanone had an IC50 value of 4.8 µmol L-1, which was estimated as approximately 2.6 times lower than that found for the copper oxychloride-based fungicide, used as control. Additionally, these substances had a low cytotoxicity against the mammalian Vero cell line. Finally, in silico calculations indicated that these compounds present physicochemical parameters regarded as suitable for agrochemicals. Bis(ylidene) cyclohexanones may constitute promising candidates for the development of novel antifungal agents for the control of relevant fungal diseases in agriculture.


Asunto(s)
Antifúngicos , Fungicidas Industriales , Humanos , Ciclohexanonas , Enfermedades de las Plantas/microbiología , Hongos , Plantas
5.
Plant Dis ; 107(12): 3975-3983, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37415355

RESUMEN

Pythium spp. cause damping-off of soybean, especially when soil conditions at or shortly after planting are cool and wet. Soybean planting dates continue to shift to earlier dates, so germinating seed and seedlings are exposed to periods of cold stress at a time which favors infection by Pythium, and seedling disease occurs. The objective of this study was to assess infection timing and cold stress on soybean seedling disease severity caused by four Pythium spp. prevalent in Iowa, namely P. lutarium, P. oopapillum, P. sylvaticum, and P. torulosum. Each species was used individually to inoculate soybean cultivar 'Sloan' using a rolled towel assay. Two temperature treatments (continuous 18°C [C18]; a 48-h cold stress period at 10°C [CS]) were applied. Soybean seedling age was divided into five growth stages (GS1 to GS5). Root rot severity and root length were assessed at 2, 4, 7, and 10 days after inoculation (DAI). At C18, root rot was greatest when soybean was inoculated with P. lutarium or P. sylvaticum at GS1 (seed imbibes water) and with P. oopapillum or P. torulosum at GS1, GS2 (radicle elongation), and GS3 (hypocotyl emergence). After CS, soybean susceptibility to P. lutarium and P. sylvaticum was reduced compared to C18 for inoculation at all GSs except GS5 (unifoliate leaf emergence). Conversely, root rot by P. oopapillum and P. torulosum was greater after CS compared to C18. Data from this study demonstrate that greater root rot, and consequently more damping-off, is likely if infection occurs at early germination stages before seedling emergence.


Asunto(s)
Pythium , Glycine max , Respuesta al Choque por Frío , Enfermedades de las Plantas , Frío , Plantones
6.
Plant Dis ; 107(4): 1159-1165, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36194734

RESUMEN

Rhizoctonia solani anastomosis group (AG) 2-1 is an ubiquitous soilborne pathogen causing severe damping-off of oilseed rape (OSR). In the absence of varietal resistance to AG2-1, there are limited methods for integrated disease management. The objectives of these field studies were to quantify yield losses due to AG2-1 and to determine the effectiveness of integrated control using sedaxane, fludioxonil, and metalaxyl-M applied as seed treatment on two OSR genotypes at a sowing rate of 40 (low) or 80 (high) seeds m-2. Crop assessments of green area index (GAI), vigor, and cabbage stem flea beetle (CSFB) Psylliodes chrysocephala damage were carried out at GS16, while pathogen DNA in soil was quantified using real-time PCR at GS32. Yield and seed weight losses of 41 and 18%, respectively, were associated with reduced establishment, GAI, vigor, and delayed development and flowering of OSR. Seed treatment reduced AG2-1 DNA in soil by 80%, resulting in a 94, 16, and 64% increase of establishment, thousand seed weight (TSW), and yield, respectively. Seed treatment also mitigated the effects of AG2-1 on delaying plant development, resulting in increased uniformity of crop flowering. OSR plants infected with AG2-1 suffered 27% more damage by the CSFB, indicating positive pathogen-pest interaction at the expense of the OSR host. Optimum control of AG2-1 infection was achieved by integrating low sowing rate and seed treatment. However, under dual pest and pathogen attack, high sowing rates should be combined with the use of seed treatment to mitigate seedling death and delayed development caused by AG2-1 and CSFB damage.


Asunto(s)
Brassica napus , Semillas , Plantas , Suelo
7.
Arch Microbiol ; 204(10): 629, 2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36115881

RESUMEN

This work aims at exploring an antagonistic actinobacterial strain isolated from the roots of Ziziphus lotus in bioformulation processes and the biocontrol of Rhizoctonia solani damping-off of tomato seedlings. The strain Streptomyces caeruleatus ZL-2 was investigated for the principal in vitro biocontrol mechanisms and then formulated in three different biofungicides: wettable talcum powder (WTP), sodium alginate propagules (SAP) and clay sodium alginate propagules (CAP). Compared to a marketed control products (Serenade® and Acil 060FS®), the formulated biofungicides were investigated against the R. solani damping-off of tomato cv. Aïcha seedlings. The strain ZL-2 produced chitinases, cellulases, ß-1,3-glucanases, cyanhydric acid and siderophores. It also showed strong antagonistic effect on the mycelial growth of R. solani. Bioautographic and HPLC analysis revealed the production of a single or several co-migrating antifungal compounds. The biofungicide WTP presented an attractive biocontrol effect by significantly reducing the disease severity index (DSI) compared to untreated seeds. No significant differences were obtained compared to the chemical treatment with Acil 060FS®. The viability of spores and biocontrol efficacy of the WTP were confirmed after 1-year storage. Strain ZL-2 has never been reported in the bioformulation of active biofungicides against Rhizoctonia solani damping-off and this work opens up very attractive prospects in the fields of biocontrol and crop improvement.


Asunto(s)
Celulasas , Quitinasas , Solanum lycopersicum , Alginatos , Antifúngicos/farmacología , Arcilla , Solanum lycopersicum/microbiología , Nitrazepam , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rhizoctonia , Plantones/microbiología , Sideróforos , Esporas Fúngicas , Streptomyces , Talco
8.
Plant Dis ; 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36324207

RESUMEN

In the years 2020-2021 as part of the activity of the Campania region hemp fiber project, variety comparison trials were carried out on 7 hemp varieties among those relevant for bast fiber production. During the trials, in particular on the cv. Fibrante, a consistent problem was noted: a noticeable germination failure (80-90%) occurred during the emergence of seedlings. Therefore, experiments were conducted to ascertain the possible presence of seed-borne pathogens. Tests were carried out on 100 seeds that were surface disinfected with 2% sodium hypochlorite solution for 3 min, rinsed in sterile distilled water three times and dried on sterile filter paper. The seeds were plated on potato dextrose agar (PDA Oxoid™) amended with 100 mg L-1 of streptomycin sulphate, kept at 24°C in the dark and observed daily. Growing colonies were subcultured on PDA for 10 days and, subsequently, twenty purified fungal isolates were obtained by single spore isolation. Colonies of these isolates on PDA were initially grayish-white and then turned dark olive green with abundant cotton-like aerial hyphae. On potato carrot agar (PCA) medium, these isolates produced light brown and solitary conidiophore with septum. Conidia were obclavate or pyriform, brown, with 1-3 transverse septa and 0-3 longitudinal septa, and measured 12.5 to 28.5 × 5 to 15 µm (n=50). The morphological characteristics observed under the light microscope were consistent with that of Alternaria spp. (Simmons 2007). In order to characterize the representative isolate, total DNA was extracted using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and 3 genes were PCR-amplified: the ITS spacer using the primer pair ITS1-ITS4 (White et al., 1990), the transcription elongation factor 1- using the primer pair EF1-983F/ EF1-2218R (Rehner and Buckley., 2005) and the RNA polymerase II second largest subunit (RPB2) using the primer pair RPB2-5F2/fRPB2-7cR (Sung et al 2007; Liu et al 1999). The size-expected amplicons were purified and sequenced at the BMR Genomics (Padova, Italy) and the resulting sequences were deposited in GenBank under the accession numbers ON556507, ON601003, ON601004. BLAST-n analysis revealed 98 to 99% nucleotide identity with some representative isolates of Alternaria rosae E.G. Simmons & C.F. Hill (KU375630.1, XM_046169884.1, XM_046168987.1). To fulfill Koch's postulates, 100 hemp-certified seed were disinfected as mentioned above, left to germinate on the water-agar to discard potentially infected seeds and finally sowed in sterile peat-soil mix (1:1 v/v). The inoculum consisted of 10 mL of 105 conidial suspension obtained by the representative isolate (Ar_H1). Negative control seeds were inoculated with sterile water. After 5-7 days 100% of inoculated seedlings showed weak germinative vigor with yellowing of the epicotyls and dark areas on the root. The tissue narrowed and turned necrotic with abundant white mycelium covering the entire seedling. Small pieces of necrotic roots were plated on PDA and the same Alternaria-like colonies grew in 10 days. DNA sequencing confirmed the presence of A. rosae. Alternaria spp. are fungi that produce a wide range of toxic metabolites, harmful to food safety in the food uses of the seed. This finding further highlights that the quality of the hemp seed must be considered as a priority aspect in the entire hemp supply chain. To the best of our knowledge, this is the first report of A. rosae as seed-borne fungus on hemp.

9.
Plant Dis ; 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35822890

RESUMEN

Guayule (Parthenium argentatum A. Gray) is known for producing low-allergenic latex that is used in high end rubber products for medical use such as rubber gloves, catheters, and condoms. Currently, there are growing efforts from tire industry to commercialize guayule for rubber production in Arizona. During May 2019, wilting and death of c. 25% of seedling plants were observed in direct-seeded guayule fields in central Arizona. Symptoms of root rots and hypocotyl constriction were observed on affected seedling plants. To identify the causal agent, four symptomatic plants were collected to isolate the putative pathogen. Small pieces of symptomatic root (2-5 mm) were surface sterilized in 0.6% sodium hypochlorite for 1 min, rinsed copiously in sterile distilled water, blotted dry, and plated on 10% clarified V8-PARP (Jeffers and Martin 1986). Four oomycete-like isolates with abundant hyphal swellings were purified by transferring tips of single hypha onto new 20% CV8 plates and incubating at 23°C for one week. Sporangia were formed abundantly, globose or lemon-shaped (average 20 ± 4 × 20 ± 4 µm, n = 15). Isolates did not produce oospores (heterothallic). Genomic DNA was extracted from the mycelia of two isolates using DNeasy Plant Pro Kit (Qiagen Inc., Valencia, CA) according to the manufacturer's instructions. The internal transcribed spacer (ITS) region of rDNA and mitochondrially encoded cytochrome c oxidase 1 (cox 1) gene were amplified with primers ITS1/ITS4 (White et al., 1990) and OomCoxI-Levup/OomCoxI-Levlo (Martin and Tooley, 2003; Robideau et al., 2011) and the resulting amplicons were sequenced (GenBank Accession No. OL514636 and OL539842). A BLASTn search of 808-bp amplicon (OL514636) revealed 100% match with ITS sequences MT039880 which was G. heterothallicum causing root and crown rot of pepper in Turkey. BLAST analysis of the 658-bp amplicon (OL539842) showed 99.39 % identity with the COX 1 sequence of G. heterothallicum from tomato in Australia (MT981128). To fulfill Koch's postulates, pathogenicity tests were conducted twice on 2-week-old 'Az 2' guayule plants grown in 1.9-liter pots filled with a steam-disinfested potting mix. Pots were placed in a plastic container and watered three times a week by flooding, to create waterlogged conditions. Plants were maintained in a greenhouse and fertilized weekly with a 20-20-20 fertilizer at 1mg/ml. Twenty plants in 5 pots (4 plants/pot) were challenged with a G. heterothallicum isolate by drenching pot with 50 ml of a 1×106 zoospore/ml suspension. Twenty plants in 5 pots, serving as a control, received each 50 ml of distilled water. Symptoms of wilting and water-soaked root rot, and plant death were observed 2 weeks afterward, whereas control plants remained asymptomatic. G. heterothallicum was reisolated from necrotic roots of inoculated plants but not from control plants. G. heterothallicum has been increasingly reported as a pathogen of damping-off or root and crown rot on hosts such as alfalfa in Minnesota (Berg et al., 2017), soybean in Pennsylvania (Coffua et al., 2016), spinach in Sweden (Larsson, 1994), corn in China (Gan, et al., 2010), pepper in Turkey (Dervis, et al., 2020). To our knowledge, this is the first report of G. heterothallicum causing guayule seedling diseases in the United States. The presence of broad-host-range pathogen G. heterothallicum suggests that new strategies are needed for managing this pathogen to increase stands in direct-seeded guayule production system.

10.
Plant Dis ; 106(10): 2689-2700, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35285264

RESUMEN

Rhizoctonia and Rhizoctonia-like species of fungi that cause disease are known to have varying host ranges and aggressiveness. Accurate identification of these species causing disease is important for soybean disease management that relies upon crop rotation. The anamorphic genus Rhizoctonia contains several diverse species and anastomosis groups (AGs) including some known soybean pathogens, such as Rhizoctonia solani, whereas for others the ability to cause disease on soybean has not been well described. The present study was conducted to identify the predominant species and AG of Rhizoctonia from soybean, corn, and wheat fields that are pathogenic on soybean and characterize cross-pathogenicity to common rotational crops, corn and wheat. We surveyed for Rhizoctonia spp. in Nebraska; isolates were identified to species and AG, and aggressiveness was assessed. A total of 59 R. zeae isolates, 49 R. solani, nine binucleate Rhizoctonia, three R. circinata, and two R. oryzae isolates were collected in 2016 and 2017 from a total of 29 fields in 15 counties. The most abundant R. solani AGs were AG-4, AG-1 IB, AG-2-1, AG-3, and AG-5. R. solani AG-4 and R. zeae were found in all three regions of the state (west, central, and eastern). Some isolates that were most aggressive to soybean seedlings were cross-pathogenic on both wheat and corn. In addition, R. zeae was pathogenic on soybean when evaluated at 25°C, which is warmer than temperatures used previously, and isolates were identified that were aggressive on soybean and cross-pathogenic on both corn and wheat.


Asunto(s)
Fabaceae , Rhizoctonia , Nebraska , Enfermedades de las Plantas/microbiología , Rhizoctonia/genética , Glycine max , Triticum , Virulencia , Zea mays
11.
Plant Dis ; 106(10): 2730-2740, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36094426

RESUMEN

As the excessive use of chemical fertilizers harms organisms and adversely affects the soil environment, the replacement of chemical fertilizers with biological fertilizers has attracted widespread attention as an environmental protection strategy. In this study, the effects of rhizosphere bacteria inoculation on growth of Pinus sylvestris var. mongolica seedlings, soil parameters, soil microbial community structure, and the biocontrol of damping-off were studied by pot experiments. The results showed that all three rhizosphere bacteria (Pseudomonas chlororaphis, Pseudomonas extremaustralis, and Acinetobacter lwoffii A07) tested exhibited growth-promoting properties, such as the production of indole-3-acetic acid, hydrolase, siderophores, and hydrogen cyanide; nitrogen fixation; and phosphorus solubilization. The application of the three bacteria increased plant biomass, root structure, and nutrient content and also increased soil nutrient content and enzyme activity. Bacterial inoculation promoted the growth of beneficial bacteria and antagonistic bacteria by adjusting the physicochemical properties of the soil, thereby improving the bacterial community structure. Among the soil features, available nitrogen, total nitrogen, available potassium, and urease activity were the main influencing factors. In addition, it was also found that bacterial inoculation significantly increased the activities of plant superoxide dismutase, catalase, peroxidase, and other defense enzymes; enhanced plant disease resistance; effectively inhibited damping-off; and promoted plant growth. In summary, the application of three rhizosphere bacteria systematically affected the interaction between plants, soil parameters, and soil microbial communities. These results provide a basis for understanding how rhizosphere bacteria promote the growth of P. sylvestris var. mongolica, thereby offering a promising sustainable alternative to chemical fertilizers.


Asunto(s)
Microbiota , Pinus sylvestris , Bacterias , Catalasa , Fertilizantes , Cianuro de Hidrógeno , Nitrógeno/análisis , Fósforo , Potasio , Rhizoctonia , Plantones/química , Sideróforos , Suelo/química , Superóxido Dismutasa , Ureasa
12.
Plant Dis ; 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34156269

RESUMEN

Forests of Jordan are located in the northern and southern parts of the country with 60% and 40%, respectively. Natural forests constitute about 75% in the northern part and 25% in the southern part. There are many types of forest trees in Jordan including pines (Pinus spp.), juniper (Juniperus), cypress (Cupressus), oak (Querus), acacia (Acacia), and Christ's thorn jujube (Ziziphus). There are three species of Pinus: P. halopensis (native), P. pinea (introduced), and P. canariensis (introduced) (Ministry of Agriculture, 2013). P. pinea is considered one of the most important components of Jordan's natural forests. Due to its adaptability, lack of environmental requirements and ease of cultivation, its cultivation has been expanded in all parts of Jordan. P. pinea cultivation prevent soil erosion and combating desertification. P. pinea seeds are used in making sweets and many popular foods. In the end of 2019, wilting and damping-off symptoms were noticed in 50 % of P. pinea seedlings nurseries (personal communication, November 2019). Six-month old P. pinea seedlings with visible symptoms of damping-off were collected between May and July 2020 from a pine nursery located in Amman Province, Jordan (32° 0' 40.4316″ N, 135° 52' 20.3628″ E). Thirty-two seedlings with different severities of the disease were selected for the isolation of root pathogens. Two root samples from each seedling were surface-sterilized using 1% sodium hypochlorite for 3 - 5 minutes and then rinsed with sterile distilled water. Root samples were subsequently cut into small pieces (1- to 2 cm long sections) and then placed on potato dextrose agar (PDA) supplemented with 5 mg/L streptomycin sulphate. Petri dishes were incubated in a growth chamber at 25±2°C for seven days and sub-cultured by hyphal tipping. The cultural and conidial morphology of 7-day old mycelia were observed for the isolates using an optical microscope (LEICA, ICC50 HD, Switzerland). For morphological identification of Fusarium, 200 measurements of microconidia, macroconidia and chlamydospores were conducted. The Fusarium isolates had a color of purple-violet mycelium growth in a PDA culture medium (Figure 1 A and B). Macroconidia had 3-5 septa with a foot- shaped basal cell. They were sickle-shaped, hyaline, and thin-walled with dimensions of 20-42 x 3.2-5.5 µm (Figure 1C). Microconidia were short, elliptic to oval unicellular, and with sharp unbranched monophyalides with an average dimension of 5.0-17.0×2.3-5.1 µm (Figure 1D, 1E). Older mycelia developed a large number of terminal chlamydospores (7.2 to 14.1 µm) that were intercalary and rough-walled (Figure 1F). All the characteristics agreed with those recorded by Leslie et al. (2006) and Nelson et al. (1983) for Fusarium oxysporum. Representative isolate (FoxypineJO2020-01) was selected for molecular identification. The DNA was extracted, amplified using the translation elongation factor 1-α (EF1α) gene (EF1/EF2) (O'Donnell et al., 1998), and sequenced at Macrogen Inc, South Korea. Forward and reverse sequences were received, assembled and consensus sequence was produced using BioEdit sequence alignment editor (Hall, 1999). The consensus sequence was BLASTn on the NCBI website (https://www.ncbi.nlm.nih.gov) and was 100% similar with F. oxysporum accession KC622308.1. Phylogenetic analysis was conducted using MEGA 7.0.26 (Kumar et al. 2016) with 1000 bootstrap values and correlated the representative isolate with the accession KC622308.1 (Figure 2). The isolated sequence was deposited in the GenBank and accession number was assigned (MW057934). Koch's postulates were fulfilled using FoxypineJO2020-01 isolate to confirm the Fusarium oxysporum as the causal agent of Pinus pinea damping-off. One-month-old seedlings of P. pinea were soaked in spore suspension of 1 × 106 spores/ml for 10 minutes. Seedlings were placed in 25cm x 20cm deep plastic pots filled with a sterile mixture of peat moss, perlite, and vermiculite (60:20:20). Controlled by thirty seedlings of P. pinea soaked in distilled water. Planted seedlings were incubated at 25 ± 2°C with a 12: 12 hrs light/dark period. Seedlings of P. pinea inoculated with spores gradually showed symptoms similar to those of naturally diseased infected plants (Figure 3, 4). The inoculated pathogen was successfully re-isolated from roots of the diseased seedlings. The uppermost leaves began to wilt (Figure 4c), and the roots had darkened at 25 days after inoculation (Figure 4d). By 40 days after inoculation, the entire seelings were discolored and dead (Figure 4e). Furthermore, the roots became dark and peeled (Figure 4f). These symptoms matched those described by (Machón et al., 2009) and (Luo and Yu 2020). Control P. pinea seedlings remained asymptomatic (Figure 4a, b). To our knowledge, this is the first report of F. oxysporum on P. pinea in Jordan. No previous disease notes were reported on P. pinea seedlings in Jordan. The pathogen can cause significant economic losses to P. pinea as well as to other types of Pinus spp. whether in nurseries or forests in Jordan. Therefore, for disease control in nurseries, it is extremely important to determine the onset time, decrease the incidence (Gordon et al. 2015) and identify the infection source (Morales-Rodriguezv et al. 2018). Future surveys need to be conducted on forest trees in selected forest and biosphere reserves that show tree decline to identify major forest fungal pathogens in Jordanian forests.

13.
Plant Dis ; 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34152206

RESUMEN

In South Korea, ovate-leaf atractylodes (OLA) (Atractylodes ovata) is cultivated for herbal medicine. During May to June 2019, a disease with damping off symptoms on OLA seedlings were observed at three farmer fields in Mungyeong, South Korea. Disease incidence was estimated as approximately 20% based on calculating the proportion of symptomatic seedlings in three randomly selected fields. Six randomly selected seedlings (two from each field) showing damping off symptoms were collected. Small pieces (1 cm2) were cut from infected roots, surface-sterilized (1 minute in 0.5% sodium hypochlorite), rinsed twice with sterile water, air-dried and then plated on potato dextrose agar (PDA, Difco, and Becton Dickinson). Hyphal tips were excised and transferred to fresh PDA. Six morphologically similar isolates were obtained from six samples. Seven-day-old colonies, incubated at 25 °C in the dark on PDA, were whitish with light purple mycelia on the upper side and white with light purple at the center on the reverse side. Macroconidia were 3-5 septate, curved, both ends were pointed, and were 19.8-36.62 × 3.3-4.7 µm (n= 30). Microconidia were cylindrical or ellipsoid and 5.5-11.6 × 2.5-3.8 µm (n=30). Chlamydospores were globose and 9.6 -16.3 × 9.4 - 15.0 µm (n=30). The morphological characteristics of present isolates were comparable with that of Fusarium species (Maryani et al. 2019). Genomic DNA was extracted from 4 days old cultures of each isolate of SRRM 4.2, SRRH3, and SRRH5, EF-1α and rpb2 region were amplified using EF792 + EF829, and RPB2-5f2 + RPB2-7cr primer sets, respectively (Carbone and Kohn, 1999; O'Donnell et al. 2010) and sequenced (GenBank accession number: LC569791- LC569793 and LC600806- LC600808). BLAST query against Fusarium loci sampled and multilocus sequence typing database revealed that 99-100% identity to corresponding sequences of the F. oxysporum species complex (strain NRRL 28395 and 26379). Maximum likelihood phylogenetic analysis with MEGA v. 6.0 using the concatenated sequencing data for EF-1α and rpb2 showed that the isolates belonged to F. oxysporum species complex. Each three healthy seedlings with similar sized (big flower sabju) were grown for 20 days in a plastic pot containing autoclaved peat soil was used for pathogenicity tests. Conidial suspensions (106 conidia mL-1) of 20 days old colonies per isolate (two isolates) were prepared in sterile water. Three pots per strain were inoculated either by pouring 50 ml of the conidial suspension or by the same quantity of sterile distilled water as control. After inoculation, all pots were incubated at 25 °C with a 16-hour light/8-hour dark cycle in a growth chamber. This experiment repeated twice. Inoculated seedlings were watered twice a week. Approximately 60% of the inoculated seedlings per strain wilted after 15 days of inoculation and control seedlings remained asymptomatic. Fusarium oxysporum was successfully isolated from infected seedling and identified based on morphology and EF-1α sequences data to confirm Koch's postulates. Fusarium oxysporum is responsible for damping-off of many plant species, including larch, tomato, melon, bean, banana, cotton, chickpea, and Arabidopsis thaliana (Fourie et al. 2011; Hassan et al.2019). To the best of our knowledge, this is the first report on damping-off of ovate-leaf atractylodes caused by F. oxysporum in South Korea. This finding provides a basis for studying the epidemic and management of the disease.

14.
Plant Dis ; 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33754861

RESUMEN

During August and September 2020, symptoms of leaf chlorosis, stunting, and wilting were observed on indoor hemp plants (Cannabis sativa L. cv. 'Wedding Cake') in a commercial indoor facility located in Coolidge, Arizona. Plants were grown in soilless coconut coir growing medium (Worm Factory COIR250G10), watered with 1.5 to 2.1 liters every 24 h through drip irrigation, and supplemented with 18 h of lighting. About 35% of plants displayed symptoms as described above and many symptomatic plants collapsed. To identify the causal agent, crown and root tissues from four symptomatic plants were harvested and rinsed with tap water. Tissue fragments (approx. 2 to 4 mm in size) were excised from the margins of the stem and root lesions, surface sterilized in 0.6% sodium hypochlorite for 1 min, rinsed well in sterile distilled water, blotted dry, and plated on potato dextrose agar (PDA) and on oomycete-selective clarified V8 media containing pimaricin, ampicillin, rifampicin, and pentachloronitrobenzene (PARP). Plates were incubated at room temperature (21-24 oC). Five isolates resembling Pythium were transferred after 3 days and maintained on clarified V8 media. Morphological characteristics were observed on grass blade cultures (Waterhouse 1967). Grass blades were placed on CV8 inoculated with the isolate. After a 1-day incubation at 25°C, the colonized blades were transferred to 8 ml of soil water extract in a Petri dish. Ten sporangia and oogonia were selected randomly and their diameters were measured under the microscope. Sporangia were mostly filamentous, undifferentiated or inflated lobulate, ranging from 7 to 17 µm in diameter. Knob-like appressoria were observed on branching clusters. Bulbous-like antheridia were formed on branched stalk with 1-8 antheridia per oogonium. Globose oogonia were terminal or intercalary and ranged from 21 to 33 µm in diameter. Globose oospores were mostly aplerotic and ranged from 15 to 21 µm in diameter. Based on these morphological characteristics, isolates were tentatively identified as Pythium myriotylum (Watanabe, 2002). Genomic DNA was extracted from mycelial mats of two isolates using DNeasy Plant Pro Kit (Qiagen Inc., Valencia, CA) according to the manufacturer's instructions. The internal transcribed spacer (ITS) region of rDNA was amplified with primers ITS1/ITS4 and two identical nucleotide sequences were obtained and deposited under accession number MW380925. A BLASTn search revealed ≥ 98% query coverage and 100% match with sequences HQ237488.1, KY019264.1, and KM434129, which were isolates of P. myriotylum from palm, tobacco, and ginger, respectively. To fulfill Koch's postulates, pathogenicity tests were conducted with 2 isolates using plants of 'Wedding Cake' grown in 12 1.9-liter pots filled with a steam-disinfested potting mix (Sungro Professional Growing Mix). Pots were placed in a plastic container and watered to flooding three times a week. Plants were maintained in a greenhouse with 18 h/10 h day/night supplemental light cycle (15-28 oC). Plants were fertilized weekly with Peters Professional fertilizer at 1mg/ml. Four plants were inoculated with each isolate at three weeks after seed sowing by placing two 5-mm mycelial plugs from active growing 4 days-old cultures on PDA media adjacent to the main root mass at an approximately 3 cm depth. Four plants were inoculated with blank PDA plugs as controls. Symptoms of leaf chlorosis, crown rot and wilting were observed after four weeks while control plants remained symptomless. P. myriotylum was re-isolated from necrotic roots of inoculated plants after surface-sterilization, but not from control plants. The pathogenicity test was repeated once. While P. myriotylum often occurs in warmer regions and has a wide host range of >100 host plant species including numerous economically important crops (Wang et al., 2003), there are only two reports of this pathogen on indoor hemp plants in a greenhouse in Connecticut (McGehee et al., 2019) and in Canada (Punja et al., 2019). This is the first report of P. myriotylum causing root and crown rot of indoor hemp in Arizona. A more careful water management in soilless growth medium to reduce periods of saturation would minimize the risk of Pythium root rot in indoor hemp production.

15.
Plant Dis ; 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33673769

RESUMEN

During July and August 2020, symptoms of leaf yellowing and browning, sudden wilting, and death were observed on industrial hemp plants (Cannabis sativa L.) in several drip-irrigated fields in Yuma and Graham county, Arizona. About 85% of plants showed severe crown and root rot symptoms. A high percentage of affected plants collapsed under intensive heat stress. Shriveled stem tissue with necrotic lesions can often be seen at the base of the plant, extending upwards more than 5 cm. Internal tissue of main stem and branches was darkened or pinkish brown. Outer cortex of root bark was often completely rotten, exposing the white core. Cottony aerial mycelium was visible on the surface of stalk of some of the infected plants in two fields in Yuma. To identify the causal agent, a total of twenty symptomatic plants were collected from several fields across the state. Crown and root tissues from affected plants were harvested and rinsed in tap water to remove soils. Approximately 2 to 4 mm tissue fragments were excised from the margins of the affected stem and root lesions, surface sterilized in 0.6% sodium hypochlorite for 1 min, rinsed copiously in sterile distilled water, blotted dry, and plated on potato dextrose agar (PDA), and on oomycete-selective clarified V8 medium containing pimaricin, ampicillin, rifampicin, and pentachloronitrobenzene (PARP). Plates were incubated at room temperature for 2 days. Sixteen isolates were recovered and their mycelial colonies resembled the morphology of Pythium. Based on the culture morphology on V8 medium, all isolates were tentatively identified as P. aphanidermatum with fast-growing, aseptate hyphae ranging from 3 to 7 µm in width, globose oogonia ranging from 25 to 31 µm in diameter, barrel-shaped antheridia, globose oospores ranging from 15 to 21 µm in diameter (10 measurements) (Watanabe, 2002). Genomic DNA was extracted from mycelial mats of three isolates using DNeasy Plant Pro Kit (Qiagen Inc., Valencia, CA) according to the manufacturer's instructions. The internal transcribed spacer (ITS) region of rDNA was amplified with primers ITS1/ITS4 and three nucleotide sequences were obtained. All three sequences were identical and deposited under accession number MW380253 in GenBank. A BLASTn search revealed that MW380253 had a 100% query coverage and 100% match with sequences MK611609.1, KJ162355.1, and AY598622.2, obtained from isolates of P. aphanidermatum. To fulfill Koch's postulates, pathogenicity tests were conducted with 2 isolates using 12 seeds of a hemp line 14 sown in 12 1.9-liter pots filled with a steam-disinfested potting mix. Pots were placed in a plastic container and watered three times a week by flooding, to create waterlogged conditions. Plants were maintained in a greenhouse supplemented with artificial lighting of 14 h/10 h day/night light cycle. Plants were fertilized weekly with a 20-20-20 fertilizer at 1mg/ml. Three weeks after sowing, four plants were inoculated with each isolate by drenching each plant with 200 ml of a 1×105 zoospore/ml suspension. Four plants, serving as control, received each 200 ml of distilled water. Symptoms of leaf chlorosis, crown and root rot, and wilting were observed 3 weeks afterwards, while control plants remained asymptomatic. P. aphanidermatum were re-isolated from necrotic roots of inoculated plants, but not from control plants. P. aphanidermatum was previously detected on industrial hemp in a research plot in Indiana (Beckerman et al., 2017) and is also known to affect other crops in Arizona during the summer months as well (Olsen & Nischwitz, 2011). This report is the first publication documenting P. aphanidermatum on field grown hemp in Arizona. Industrial hemp (Cannabis sativa) is an emerging crop in Arizona. The first plantings of hemp were in June of 2019, where 5,430 acres of hemp was planted in thirteen counties in Arizona before the end of the year. The Arizona Department of Agriculture Industrial Hemp Program, 2019 Year End Report confirms that nearly one-quarter of all hemp planted in 2019 did not receive a final state inspection due to crop loss. This disease is a potential constraint to hemp production in hot, arid climates, where copious water is used in combination with plastic mulch and/or drainage is poor.

16.
Plant Dis ; 105(4): 1019-1025, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32976076

RESUMEN

Damping-off and crown and root rot of sugar beet caused by Rhizoctonia solani anastomosis group 2-2 (AG 2-2) are important soilborne diseases in Minnesota and North Dakota. Management involves an integrated approach, including crop rotation, use of resistant cultivars, and timely fungicide application. Our objectives were to evaluate the role of inoculum density and cultivar susceptibility on the onset and development of Rhizoctonia diseases and on yield and quality in sugar beet. Three cultivars varying in susceptibility were sown in field plots inoculated with 0, 20, 40, or 60 kg/ha of R. solani AG 2-2 IIIB infested barley during 2013 and 2015. In both years, there was a significant linear effect of inoculum density with decreasing area under the stand establishment curve (AUSEC), root yield, and sucrose quality as inoculum density increased. Cultivar susceptibility significantly affected AUSEC as well as sucrose quality in both years and root yield in 2013. In both years, there was an inoculum density by cultivar interaction on disease ratings, with the partially resistant cultivar resulting in lower ratings than the moderate and susceptible cultivars, especially as inoculum density increased. These results have implications for cultivar selection and for use and timing of postemergence fungicide application based on field history of inoculum pressure.


Asunto(s)
Beta vulgaris , Rhizoctonia , Minnesota , North Dakota , Enfermedades de las Plantas , Azúcares
17.
Plant Dis ; 105(6): 1692-1701, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32940579

RESUMEN

Pulse crops such as chickpeas, lentils, and dry peas are grown widely for human and animal consumption. Major yield- and quality-limiting constraints include diseases caused by fungi and oomycetes. The environmental and health concerns of synthetic fungicides used for disease management, emergence of fungicide-resistant pathogens, and demand for organic pulse crop products necessitate the search for effective alternatives. Safe and environmentally friendly plant-derived essential oils (EOs) have been reported effective against some pathogenic fungi. Growth on EO-amended growth medium and an inverted Petri plate assay were used to determine the effects of 38 oils and their volatiles on mycelial growth and spore germination of important pathogenic fungi and oomycetes: Aphanomyces euteiches, Botrytis cinerea, Colletotrichum lentis, Didymella pisi, D. rabiei, D. lentis, Fusarium avenaceum, Stemphylium beticola, Sclerotinia sclerotiorum, and Pythium sylvaticum. Palmarosa, oregano, clove, cinnamon, lemongrass, citronella, and thyme oils incorporated in media inhibited mycelial growth of all the pathogens by 100% at 1:1,000 to 1:4,000 dilution. In addition, thyme oil (1:500 dilution) showed complete inhibition of conidial germination (0% germination) of F. avenaceum and D. pisi. All seven EO volatiles inhibited mycelial growth of all pathogens by 50 to 100% except for B. cinerea and S. sclerotiorum. EO effects on mycelial growth were fungistatic, fungicidal, or both and varied by EO. EOs show potential for management of major crop diseases in organic and conventional production systems.


Asunto(s)
Aceites Volátiles , Antifúngicos/farmacología , Ascomicetos , Botrytis , Colletotrichum , Fusarium , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología
18.
Plant Dis ; 105(11): 3573-3579, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33835827

RESUMEN

Rhizoctonia solani causes root and stem diseases on soybean and sugar beet, and fungicides are commonly used to manage these diseases. Quinone outside inhibitor (QoI) fungicides (pyraclostrobin and azoxystrobin) have been used for in-furrow and postemergence application since 2000. Succinate dehydrogenase inhibitor (SDHI) fungicides (sedaxane, penthiopyrad, and fluxapyroxad) became popular seed treatments after their registration in Minnesota and North Dakota between 2012 and 2016. Periodic monitoring of sensitivity to these fungicides in R. solani anastomosis group (AG) 2-2 is important to detect potential shifts in sensitivity over time. R. solani AG 2-2 isolates (n = 35) collected from soybean and sugar beet in Minnesota and North Dakota were evaluated in vitro for sensitivity. Isolates were considered as baseline or nonbaseline for the above-mentioned fungicides based on previous potential exposure. The effective concentration (EC50) required to suppress radial fungal growth by 50% was determined. The mean EC50 values for sedaxane, penthiopyrad, fluxapyroxad, and pyraclostrobin were 0.1, 0.15, 0.16, and 0.25 (µg ml-1), respectively. The mean EC50 value for azoxystrobin for 22 isolates was 0.76 to 1.56 µg ml-1; and EC50 could not be determined for 13 isolates because of <50% inhibition at the highest concentrations used. The EC50 values for the QoI fungicides did not differ significantly between baseline and nonbaseline isolates. EC50 values for SDHI fungicides were significantly higher for isolates collected from soybean than from sugar beet, and isolates collected from both crops had similar EC50 values for pyraclostrobin. All SDHI fungicides and pyraclostrobin effectively suppressed R. solani isolates from soybean and sugar beet at low concentrations in vitro.


Asunto(s)
Beta vulgaris , Fungicidas Industriales , Anastomosis Quirúrgica , Fungicidas Industriales/farmacología , Enfermedades de las Plantas , Quinonas , Rhizoctonia , Glycine max , Succinato Deshidrogenasa , Ácido Succínico , Azúcares
19.
Plant Dis ; 105(10): 3111-3117, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34752135

RESUMEN

Rhizoctonia solani anastomosis group (AG) 2-2 can cause seedling damping-off in sugar beets and substantial losses may occur in all regions where beets are grown. Sugar beets are planted early in the season when soil temperatures are low in order to maximize the length of the growing season and minimize the risk of damping-off. However, predictive models that indicate there is little to no risk of Rhizoctonia damping-off at temperatures <15°C may not be entirely reliable. We tested this possibility by inoculating sugar beet seedlings in a growth chamber at 11°C with 35 R. solani AG 2-2 isolates that were representative of the genetic diversity present in AG 2-2. Although disease progress and growth rate were greatly reduced at 11°C, considerable disease symptoms did develop in inoculated plants. Three weeks after inoculation, 16% of the plants were dead and 77% of the isolates tested had average disease severity scores that were significantly greater than those of the mock inoculated control. This confirms our concern about the possibility for low-temperature infection of sugar beets and indicates that waiting until the soil warms up to above 15°C to apply fungicide could leave the crop at risk. Aggressiveness does not appear to be related to subgroup or growth rate but rather depends on the response of the specific isolate to low temperature.


Asunto(s)
Beta vulgaris , Rhizoctonia , Anastomosis Quirúrgica , Enfermedades de las Plantas , Plantones , Azúcares , Temperatura
20.
Zhongguo Zhong Yao Za Zhi ; 46(12): 3102-3105, 2021 Jun.
Artículo en Zh | MEDLINE | ID: mdl-34467701

RESUMEN

Trollius chinensis is a traditional Chinese medicinal material in China, the wild resource of T. chinensis are now exhausted, and commercial medicinal T. chinensis mainly depends on artificial cultivation. As one of the most severely happened diseases at the seedling period, damping off has been a serious threaten to the breeding of T. chinensis seedlings. However, no related research have been reported so far. So, the authors collected damping-off samples of T. chinensis in 2018 from seedling breeding nursery in Guyuan, Hebei province, and carried out study on taxonomic identification of the pathogen. Damping off occurs in the T. chinensis production area from mid-May to late June every year. At the beginning, brown lesions were observed on the basal stem, then the lesions circumferential expanded and constricted, and finally resulted in the fall and death of T. chinensis seedlings. Pathogenic isolate was growing rapidly on the PDA medium, well developed aerial mycelia were grey white at first, then turned brown gradually, and a great number of small dark brown sclerotia were developed in the middle and periphery of the colony. Mycelial diameter of the pathogen was about 7 to 10 µm, near right angle or acute angle branches, near branches with septa, branches and septa with constriction. After the healthy T. chinensis seedlings were inoculated by pathogenic isolate, damping-off was observed soon, and the symptom was as same as those observed in the field. Through homogenous blast, the rDNA-ITS sequence of the pathogenic isolate shown 99.49% to 99.84% homology with Rhizoctonia solani, R. solani AG-1 IC mycelium anastomosis group and Thanatephorus cucumeris, the sexual type of Rhizoctonia. Furthermore, obvious mycelial anastomosis phenomena were observed when the pathogenic isolate and R. solani AG-1 IC strain were confronting cultured. Based on the results above, the pathogenic isolate causing damping off of T. chinensis was identified as R. solani AG-1 IC mycelial anastomosis group. RESULTS:: in the present work have important significance for further research on basic biology of the pathogen and integrated control of damping off causing by it on T. chinensis.


Asunto(s)
Enfermedades de las Plantas , Plantones , Basidiomycota , Fitomejoramiento , Rhizoctonia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA