Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sci Technol Adv Mater ; 23(1): 352-360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693890

RESUMEN

Recently, artificial intelligence (AI)-enabled de novo molecular generators (DNMGs) have automated molecular design based on data-driven or simulation-based property estimates. In some domains like the game of Go where AI surpassed human intelligence, humans are trying to learn from AI about the best strategy of the game. To understand DNMG's strategy of molecule optimization, we propose an algorithm called characteristic functional group monitoring (CFGM). Given a time series of generated molecules, CFGM monitors statistically enriched functional groups in comparison to the training data. In the task of absorption wavelength maximization of pure organic molecules (consisting of H, C, N, and O), we successfully identified a strategic change from diketone and aniline derivatives to quinone derivatives. In addition, CFGM led us to a hypothesis that 1,2-quinone is an unconventional chromophore, which was verified with chemical synthesis. This study shows the possibility that human experts can learn from DNMGs to expand their ability to discover functional molecules.

2.
Drug Discov Today Technol ; 32-33: 55-63, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33386095

RESUMEN

There has been a wave of generative models for molecules triggered by advances in the field of Deep Learning. These generative models are often used to optimize chemical compounds towards particular properties or a desired biological activity. The evaluation of generative models remains challenging and suggested performance metrics or scoring functions often do not cover all relevant aspects of drug design projects. In this work, we highlight some unintended failure modes in molecular generation and optimization and how these evade detection by current performance metrics.


Asunto(s)
Descubrimiento de Drogas , Modelos Moleculares , Humanos
3.
J Cheminform ; 16(1): 64, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816825

RESUMEN

Generative models are undergoing rapid research and application to de novo drug design. To facilitate their application and evaluation, we present MolScore. MolScore already contains many drug-design-relevant scoring functions commonly used in benchmarks such as, molecular similarity, molecular docking, predictive models, synthesizability, and more. In addition, providing performance metrics to evaluate generative model performance based on the chemistry generated. With this unification of functionality, MolScore re-implements commonly used benchmarks in the field (such as GuacaMol, MOSES, and MolOpt). Moreover, new benchmarks can be created trivially. We demonstrate this by testing a chemical language model with reinforcement learning on three new tasks of increasing complexity related to the design of 5-HT2a ligands that utilise either molecular descriptors, 266 pre-trained QSAR models, or dual molecular docking. Lastly, MolScore can be integrated into an existing Python script with just three lines of code. This framework is a step towards unifying generative model application and evaluation as applied to drug design for both practitioners and researchers. The framework can be found on GitHub and downloaded directly from the Python Package Index.Scientific ContributionMolScore is an open-source platform to facilitate generative molecular design and evaluation thereof for application in drug design. This platform takes important steps towards unifying existing benchmarks, providing a platform to share new benchmarks, and improves customisation, flexibility and usability for practitioners over existing solutions.

4.
J Cheminform ; 16(1): 77, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965600

RESUMEN

SMILES-based generative models are amongst the most robust and successful recent methods used to augment drug design. They are typically used for complete de novo generation, however, scaffold decoration and fragment linking applications are sometimes desirable which requires a different grammar, architecture, training dataset and therefore, re-training of a new model. In this work, we describe a simple procedure to conduct constrained molecule generation with a SMILES-based generative model to extend applicability to scaffold decoration and fragment linking by providing SMILES prompts, without the need for re-training. In combination with reinforcement learning, we show that pre-trained, decoder-only models adapt to these applications quickly and can further optimize molecule generation towards a specified objective. We compare the performance of this approach to a variety of orthogonal approaches and show that performance is comparable or better. For convenience, we provide an easy-to-use python package to facilitate model sampling which can be found on GitHub and the Python Package Index.Scientific contributionThis novel method extends an autoregressive chemical language model to scaffold decoration and fragment linking scenarios. This doesn't require re-training, the use of a bespoke grammar, or curation of a custom dataset, as commonly required by other approaches.

5.
J Cheminform ; 15(1): 89, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752561

RESUMEN

Computational molecular design can yield chemically unreasonable compounds when performed carelessly. A popular strategy to mitigate this risk is mimicking reference chemistry. This is commonly achieved by restricting the way in which molecules are constructed or modified. While it is well established that such an approach helps in designing chemically appealing molecules, concerns about these restrictions impacting chemical space exploration negatively linger. In this work we present a software library for constrained graph-based molecule manipulation and showcase its functionality by developing a molecule generator. Said generator designs molecules mimicking reference chemical features of differing granularity. We find that restricting molecular construction lightly, beyond the usual positive effects on drug-likeness and synthesizability of designed molecules, provides guidance to optimization algorithms navigating chemical space. Nonetheless, restricting molecular construction excessively can indeed hinder effective chemical space exploration.

6.
Expert Opin Drug Discov ; 17(10): 1071-1079, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216812

RESUMEN

INTRODUCTION: Deep learning approaches have become popular in recent years in de novo drug design. Generative models for molecule generation and optimization have shown promising results. Molecules trained on different chemical data could regenerate molecules that were similar to the query molecule, thus supporting lead optimization. Recurrent neural network-based generative models have demonstrated application in low-data drug discovery, fragment-based drug design and in lead optimization. AREAS COVERED: In this review, we have provided an overview of recurrent neural network models and their variants for molecule generation with recent examples. The input representation of molecules as SMILES and molecular graphs have been discussed. The evaluation benchmarks and metrics used in generative neural network models are also highlighted. For this, ScienceDirect, Web of Science, and Google Scholar databases were searched with the article's keywords and their combinations to retrieve the most relevant and up-to-date information. EXPERT OPINION: The simplicity of SMILES notation makes it suitable for training a sequence-based model such as a recurrent neural network. However, models that could be trained on molecular graphs to generate molecular structures which could be synthesized could open new possibility for valid molecule generation and synthetic feasibility.


Asunto(s)
Descubrimiento de Drogas , Redes Neurales de la Computación , Humanos , Estructura Molecular , Descubrimiento de Drogas/métodos , Diseño de Fármacos
7.
Methods Mol Biol ; 2390: 1-59, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34731463

RESUMEN

Artificial intelligence (AI) has undergone rapid development in recent years and has been successfully applied to real-world problems such as drug design. In this chapter, we review recent applications of AI to problems in drug design including virtual screening, computer-aided synthesis planning, and de novo molecule generation, with a focus on the limitations of the application of AI therein and opportunities for improvement. Furthermore, we discuss the broader challenges imposed by AI in translating theoretical practice to real-world drug design; including quantifying prediction uncertainty and explaining model behavior.


Asunto(s)
Inteligencia Artificial , Diseño de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA