Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 954
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(4): 865-876.e16, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28965762

RESUMEN

Environmental illumination spans many log units of intensity and is tracked for essential functions that include regulation of the circadian clock, arousal state, and hormone levels. Little is known about the neural representation of light intensity and how it covers the necessary range. This question became accessible with the discovery of mammalian photoreceptors that are required for intensity-driven functions, the M1 ipRGCs. The spike outputs of M1s are thought to uniformly track intensity over a wide range. We provide a different understanding: individual cells operate over a narrow range, but the population covers irradiances from moonlight to full daylight. The range of most M1s is limited by depolarization block, which is generally considered pathological but is produced intrinsically by these cells. The dynamics of block allow the population to code stimulus intensity with flexibility and efficiency. Moreover, although spikes are distorted by block, they are regularized during axonal propagation.


Asunto(s)
Retina/fisiología , Animales , Axones/metabolismo , Relojes Circadianos , Fenómenos Electrofisiológicos , Luz , Fototransducción , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Ganglionares de la Retina/citología
2.
Plant J ; 118(6): 2219-2232, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602250

RESUMEN

Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.


Asunto(s)
Beta vulgaris , Glucosa , Proteínas de Plantas , Raíces de Plantas , Sacarosa , Animales , Beta vulgaris/citología , Beta vulgaris/genética , Beta vulgaris/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Oocitos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Protones , Sacarosa/metabolismo , Xenopus laevis
3.
Brain ; 147(2): 680-697, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37831655

RESUMEN

Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.


Asunto(s)
Depresión de Propagación Cortical , Epilepsia , Trastornos Migrañosos , Migraña con Aura , Ratones , Animales , Migraña con Aura/genética , Ratones Transgénicos , Canales de Calcio Tipo N/genética , Calcio/metabolismo , Trastornos Migrañosos/genética , Mutación/genética , Depresión de Propagación Cortical/fisiología
4.
Proc Natl Acad Sci U S A ; 119(39): e2207052119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122217

RESUMEN

Understanding the physiological mechanisms that limit animal thermal tolerance is crucial in predicting how animals will respond to increasingly severe heat waves. Despite their importance for understanding climate change impacts, these mechanisms underlying the upper thermal tolerance limits of animals are largely unknown. It has been hypothesized that the upper thermal tolerance in fish is limited by the thermal tolerance of the brain and is ultimately caused by a global brain depolarization. In this study, we developed methods for measuring the upper thermal limit (CTmax) in larval zebrafish (Danio rerio) with simultaneous recordings of brain activity using GCaMP6s calcium imaging in both free-swimming and agar-embedded fish. We discovered that during warming, CTmax precedes, and is therefore not caused by, a global brain depolarization. Instead, the CTmax coincides with a decline in spontaneous neural activity and a loss of neural response to visual stimuli. By manipulating water oxygen levels both up and down, we found that oxygen availability during heating affects locomotor-related neural activity, the neural response to visual stimuli, and CTmax. Our results suggest that the mechanism limiting the upper thermal tolerance in zebrafish larvae is insufficient oxygen availability causing impaired brain function.


Asunto(s)
Encéfalo , Oxígeno , Termotolerancia , Pez Cebra , Animales , Encéfalo/patología , Encéfalo/fisiología , Calcio/metabolismo , Larva , Oxígeno/metabolismo , Termotolerancia/fisiología , Agua/química
5.
Proc Natl Acad Sci U S A ; 119(13): e2119636119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35333647

RESUMEN

SignificanceIt is now established that many neurons can release multiple transmitters. Recent studies revealed that fast-acting neurotransmitters, glutamate and GABA, are coreleased from the same presynaptic terminals in some adult brain regions. The dentate gyrus (DG) granule cells (GCs) are innervated by the hypothalamic supramammillary nucleus (SuM) afferents that corelease glutamate and GABA. However, how these functionally opposing neurotransmitters contribute to DG information processing remains unclear. We show that glutamatergic, but not GABAergic, cotransmission exhibits long-term potentiation (LTP) at SuM-GC synapses. By the excitatory selective LTP, the excitation/inhibition balance of SuM inputs increases, and GC firing is enhanced. This study provides evidence that glutamatergic/GABAergic cotransmission balance is rapidly changed in an activity-dependent manner, and such plasticity may modulate DG activity.


Asunto(s)
Giro Dentado , Potenciación a Largo Plazo , Giro Dentado/fisiología , Ácido Glutámico , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Neurotransmisores , Sinapsis/fisiología , Ácido gamma-Aminobutírico
6.
J Neurosci ; 43(33): 5975-5985, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37487740

RESUMEN

Cortical spreading depolarization (CSD) is a key pathophysiological event that underlies visual and sensory auras in migraine. CSD is also thought to drive the headache phase in migraine by promoting the activation and mechanical sensitization of trigeminal primary afferent nociceptive neurons that innervate the cranial meninges. The factors underlying meningeal nociception in the wake of CSD remain poorly understood but potentially involve the parenchymal release of algesic mediators and damage-associated molecular patterns, particularly ATP. Here, we explored the role of ATP-P2X purinergic receptor signaling in mediating CSD-evoked meningeal afferent activation and mechanical sensitization. Male rats were subjected to a single CSD episode. In vivo, extracellular single-unit recording was used to measure meningeal afferent ongoing activity changes. Quantitative mechanical stimuli using a servomotor force-controlled stimulator assessed changes in the afferent's mechanosensitivity. Manipulation of meningeal P2X receptors was achieved via local administration of pharmacological agents. Broad-spectrum P2X receptor inhibition, selective blockade of the P2X7 receptor, and its related Pannexin 1 channel suppressed CSD-evoked afferent mechanical sensitization but did not affect the accompanying afferent activation response. Surprisingly, inhibition of the pronociceptive P2X2/3 receptor did not affect the activation or sensitization of meningeal afferents post-CSD. P2X7 signaling underlying afferent mechanosensitization was localized to the meninges and did not affect CSD susceptibility. We propose that meningeal P2X7 and Pannexin 1 signaling, potentially in meningeal macrophages or neutrophils, mediates the mechanical sensitization of meningeal afferents, which contributes to migraine pain by exacerbating the headache during normally innocuous physical activities.SIGNIFICANCE STATEMENT Activation and sensitization of meningeal afferents play a key role in migraine headache, but the underlying mechanisms remain unclear. Here, using a rat model of migraine with aura involving cortical spreading depolarization (CSD), we demonstrate that meningeal purinergic P2X7 signaling and its related Pannexin 1 pore, but not nociceptive P2X2/3 receptors, mediate prolonged meningeal afferent sensitization. Additionally, we show that meningeal P2X signaling does not contribute to the increased afferent ongoing activity in the wake of CSD. Our finding points to meningeal P2X7 signaling as a critical mechanism underlying meningeal nociception in migraine, the presence of distinct mechanisms underlying the activation and sensitization of meningeal afferents in migraine, and highlight the need to target both processes for effective migraine therapy.


Asunto(s)
Trastornos Migrañosos , Nociceptores , Ratas , Masculino , Animales , Meninges , Cefalea , Adenosina Trifosfato/farmacología
7.
J Physiol ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279931

RESUMEN

Migraine, a common neurological disorder, impacts over a billion individuals globally. Its complex aetiology involves various signalling cascades. Hypoxia causes headaches such as high-altitude headache and acute mountain sickness which share phenotypical similarities with migraine. Epidemiological data indicate an increased prevalence of migraine with and without aura in high-altitude populations. Experimental studies have further shown that hypoxia can induce migraine attacks. This review summarizes evidence linking hypoxia to migraine, delves into potential pathophysiological mechanisms and highlights research gaps.

8.
J Neurophysiol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39015079

RESUMEN

The effectiveness of activated Ia afferents to discharge ᵯC-motoneurons is decreased during passive muscle lengthening compared with static and shortening muscle conditions. Evidence suggests that these regulations are explained by (1) greater post-activation depression induced by homosynaptic post-activation depression (HPAD) and (2) primary afferent depolarization (PAD). It remains uncertain whether muscle length impacts the muscle lengthening-related aspect of regulation of the effectiveness of activated Ia afferents to discharge ᵯC-motoneurons, HPAD, PAD and heteronymous Ia facilitation (HF). We conducted a study involving 15 healthy young individuals. We recorded conditioned or non-conditioned soleus Hoffmann (H) reflex with electromyography (EMG) to estimate the effectiveness of activated Ia afferents to discharge ᵯC-motoneurons, HPAD, PAD and HF during passive lengthening, shortening and static muscle conditions at short, intermediate and long lengths. Our results show that the decrease of effectiveness of activated Ia afferents to discharge ᵯC-motoneurons and increase of post-activation depression during passive muscle lengthening occur at all muscle lengths. For PAD and HF, we found that longer muscle length increases the magnitude of regulation related to muscle lengthening. To conclude, our findings support an inhibitory effect (resulting from increased post-activation depression) of muscle lengthening and longer muscle length on the effectiveness of activated Ia afferents to discharge α-motoneurons. The increase in post-activation depression associated with muscle lengthening can be attributed to the amplification of Ia afferents discharge.

9.
J Neurochem ; 168(5): 443-449, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613180

RESUMEN

This Preface introduces the Special Issue entitled, "Energy Substrates and Microbiome Govern Brain Bioenergetics and Cognitive Function with Aging", which is comprised of manuscripts contributed by invited speakers and program/organizing committee members who participated in the 14th International Conference on Brain Energy Metabolism (ICBEM) held on October 24-27, 2022 in Santa Fe, New Mexico, USA. The conference covered the latest developments in research related to neuronal energetics, emerging roles for glycogen in higher brain functions, the impact of dietary intervention on aging, memory, and Alzheimer's disease, roles of the microbiome in gut-brain signaling, astrocyte-neuron interactions related to cognition and memory, novel roles for mitochondria and their metabolites, and metabolic neuroimaging in aging and neurodegeneration. The special issue contains 25 manuscripts on these topics plus three tributes to outstanding scientists who have made important contributions to brain energy metabolism and participated in numerous ICBEM conferences. In addition, two of the manuscripts describe important directions and the rationale for future research in many thematic areas covered by the conference.


Asunto(s)
Envejecimiento , Encéfalo , Cognición , Metabolismo Energético , Humanos , Metabolismo Energético/fisiología , Encéfalo/metabolismo , Cognición/fisiología , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Microbiota/fisiología , Congresos como Asunto
10.
Neurobiol Dis ; 192: 106405, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211710

RESUMEN

Mechanisms underlying the migraine aura are incompletely understood, which to large extent is related to a lack of models in which cortical spreading depolarization (CSD), the correlate of the aura, occurs spontaneously. Here, we investigated electrophysiological and behavioural CSD features in freely behaving mice expressing mutant CaV2.1 Ca2+ channels, either with the milder R192Q or the severer S218L missense mutation in the α1 subunit, known to cause familial hemiplegic migraine type 1 (FHM1) in patients. Very rarely, spontaneous CSDs were observed in mutant but never in wildtype mice. In homozygous Cacna1aR192Q mice exclusively single-wave CSDs were observed whereas heterozygous Cacna1aS218L mice displayed multiple-wave events, seemingly in line with the more severe clinical phenotype associated with the S218L mutation. Spontaneous CSDs were associated with body stretching, one-directional slow head turning, and rotating movement of the body. Spontaneous CSD events were compared with those induced in a controlled manner using minimally invasive optogenetics. Also in the optogenetic experiments single-wave CSDs were observed in Cacna1aR192Q and Cacna1aS218L mice (whereas the latter also showed multiple-wave events) with movements similar to those observed with spontaneous events. Compared to wildtype mice, FHM1 mutant mice exhibited a reduced threshold and an increased propagation speed for optogenetically induced CSD with a more profound CSD-associated dysfunction, as indicated by a prolonged suppression of transcallosal evoked potentials and a reduction of unilateral forepaw grip performance. When induced during sleep, the optogenetic CSD threshold was particularly lowered, which may explain why spontaneous CSD events predominantly occurred during sleep. In conclusion, our data show that key neurophysiological and behavioural features of optogenetically induced CSDs mimic those of rare spontaneous events in FHM1 R192Q and S218L mutant mice with differences in severity in line with FHM1 clinical phenotypes seen with these mutations.


Asunto(s)
Ataxia Cerebelosa , Depresión de Propagación Cortical , Epilepsia , Trastornos Migrañosos , Migraña con Aura , Humanos , Ratones , Animales , Migraña con Aura/genética , Ratones Transgénicos , Depresión de Propagación Cortical/fisiología , Trastornos Migrañosos/genética , Potenciales Evocados
11.
Microcirculation ; 31(6): e12861, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38762881

RESUMEN

OBJECTIVE: We attempted to record the regional cerebral blood flow (CBF) simultaneously at various regions of the cerebral cortex and the striatum during middle cerebral artery (MCA) occlusion and to evaluate neurological deficits and infarct formation. METHODS: In male C57BL/6J mice, CBF was recorded in three regions including the ipsilateral cerebral cortex and the striatum with laser Doppler flowmeters, and the origin of MCA was occluded with a monofilament suture for 15-90 min. After 48 h, neurological deficits were evaluated, and infarct was examined by triphenyltetrazolium chloride (TTC) staining. RESULTS: CBF decrease in the striatum was approximately two-thirds of the MCA-dominant region of the cortex during MCA occlusion. The characteristic CBF fluctuation because of spontaneously occurred spreading depolarization observed throughout the cortex was not found in the striatum. Ischemic foci with slight lower staining to TTC were found in the ipsilateral striatum in MCA-occluded mice for longer than 30 min (n = 54). Twenty-nine among 64 MCA-occluded mice exhibited neurological deficits even in the absence of apparent infarct with minimum staining to TTC in the cortex, and the severity of neurological deficits was not correlated with the size of the cortical infarct. CONCLUSION: Neurological deficits might be associated with the ischemic striatum rather than with cortical infarction.


Asunto(s)
Circulación Cerebrovascular , Cuerpo Estriado , Infarto de la Arteria Cerebral Media , Animales , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/patología , Ratones , Masculino , Circulación Cerebrovascular/fisiología , Cuerpo Estriado/fisiopatología , Cuerpo Estriado/irrigación sanguínea , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/fisiopatología , Ratones Endogámicos C57BL
12.
J Neurosci Res ; 102(1): e25285, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284865

RESUMEN

The altered activity generated by corneal neuronal injury can result in morphological and physiological changes in the architecture of synaptic connections in the nervous system. These changes can alter the sensitivity of neurons (both second-order and higher-order projection) projecting pain signals. A complex process involving different cell types, molecules, nerves, dendritic cells, neurokines, neuropeptides, and axon guidance molecules causes a high level of sensory rearrangement, which is germane to all the phases in the pathomechanism of corneal neuropathic pain. Immune cells migrating to the region of nerve injury assist in pain generation by secreting neurokines that ensure nerve depolarization. Furthermore, excitability in the central pain pathway is perpetuated by local activation of microglia in the trigeminal ganglion and alterations of the descending inhibitory modulation for corneal pain arriving from central nervous system. Corneal neuropathic pain may be facilitated by dysfunctional structures in the central somatosensory nervous system due to a lesion, altered synaptogenesis, or genetic abnormality. Understanding these important pathways will provide novel therapeutic insight.


Asunto(s)
Neuralgia , Humanos , Neuralgia/tratamiento farmacológico , Córnea , Sistema Nervioso Central , Neuronas , Orientación del Axón
13.
J Cardiovasc Electrophysiol ; 35(4): 802-810, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409896

RESUMEN

INTRODUCTION: The Mt. FUJI multicenter trial demonstrated that a delivery catheter system had a higher rate of successful right ventricular (RV) lead deployment on the RV septum (RVS) than a conventional stylet system. In this subanalysis of the Mt. FUJI trial, we assessed the differences in electrocardiogram (ECG) parameters during RV pacing between a delivery catheter system and a stylet system and their associations with the lead tip positions. METHODS: Among 70 patients enrolled in the Mt FUJI trial, ECG parameters, RV lead tip positions, and lead depth inside the septum assessed by computed tomography were compared between the catheter group (n = 36) and stylet group (n = 34). RESULTS: The paced QRS duration (QRS-d), corrected paced QT (QTc), and JT interval (JTc) were significantly shorter in the catheter group than in the stylet group (QRS-d: 130 ± 19 vs. 142 ± 15 ms, p = .004; QTc: 476 ± 25 vs. 514 ± 20 ms, p < .001; JTc: 347 ± 24 vs. 372 ± 17 ms, p < .001). This superiority of the catheter group was maintained in a subgroup analysis of patients with an RV lead tip position at the septum. The lead depth inside the septum was greater in the catheter group than in the stylet group, and there was a significant negative correlation between the paced QRS-d and the lead depth. CONCLUSION: Using a delivery catheter system carries more physiological depolarization and repolarization during RVS pacing and deeper screw penetration in the septum in comparison to conventional stylet system. The lead depth could have a more impact on the ECG parameters rather than the type of pacing lead.


Asunto(s)
Estimulación Cardíaca Artificial , Tabique Interventricular , Humanos , Estimulación Cardíaca Artificial/efectos adversos , Estimulación Cardíaca Artificial/métodos , Catéteres , Electrocardiografía/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/cirugía , Tabique Interventricular/diagnóstico por imagen
14.
J Eukaryot Microbiol ; 71(4): e13030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757880

RESUMEN

Paramecium exhibits responsive behavior to environmental changes, moving either closer to or further away from stimuli. Electrophysiological experiments have revealed that these behavioral responses are controlled by membrane potentials. Anoctamin, a Ca2+-activated Cl- channel, is involved in the regulation of membrane potential in mammals. However, it remains uncertain whether Cl- channels like anoctamin regulate Paramecium behavior. Herein, replacement of external Cl- ions with acetate ion and application of Cl- channel blocker niflumic acid (NFA, 0.1 µM) increased spontaneous avoiding reactions (sARs). Hence, we hypothesized that anoctamin is involved in the stabilization of membrane potential fluctuation. Paramecium cells in which the anoctamin-like protein 1 gene was knocked down displayed frequent sARs in the culture medium without external stimulation. Treatment of anoctamin-like protein 1-knockdown cells with the Ca2+ chelator BAPTA or Ca-channel blocker nicardipine reversed the increase in sARs. Electrophysiological experiments revealed extension of membrane depolarization when positive currents were applied to anoctamin-like protein 1-knockdown cells. We concluded that anoctamin-like protein 1 works as a Cl-channel and stabilizes the membrane potential oscillation, reducing sARs.


Asunto(s)
Potenciales de la Membrana , Paramecium , Proteínas Protozoarias , Paramecium/fisiología , Paramecium/genética , Potenciales de la Membrana/efectos de los fármacos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Calcio/metabolismo , Ácido Niflúmico/farmacología , Técnicas de Silenciamiento del Gen
15.
Bioorg Med Chem Lett ; 112: 129916, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116953

RESUMEN

The delivery of functional molecules to the cell nucleus enables the visualization of nuclear function and the development of effective medical treatments. In this study, we successfully modified the Hoechst molecule, which is a well-documented nuclear-staining agent, using the strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. We prepared Hoechst derivatives bearing an azide group (Hoe-N3) and characterized their SPAAC reactions in the presence of corresponding molecules with a dibenzylcyclooctyne unit (DBCO). The SPAAC reaction of Hoe-N3 with alkylamine bearing DBCO, fluorescent TAMRA, or Cy5 molecules bearing DBCO led to the formation of the coupling products Hoe-Amine, Hoe-TAMRA, and Hoe-Cy5, respectively. These Hoechst derivatives retained their DNA-binding properties. In addition, Hoe-TAMRA and Hoe-Cy5 exhibited properties of dual accumulation in the cell nucleus and mitochondria. Initial incubation of these molecules in living cells resulted in its accumulation in mitochondria, while after mitochondrial depolarization, it was smoothly released from mitochondria and translocated into the cell nucleus. Thus, mitochondrial depolarization could be monitored by measuring the emission of Hoe-TAMRA and Hoe-Cy5 at the cell nucleus.

16.
Brain ; 146(7): 2989-3002, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36795624

RESUMEN

Spreading depolarization (SD), the underlying mechanism of migraine aura, may trigger the opening of the pannexin 1 (PANX1) pore to sustain the cortical neuroinflammatory cascades involved in the genesis of headache. Yet, the mechanism underlying SD-evoked neuroinflammation and trigeminovascular activation remains incompletely understood. We characterized the identity of inflammasome activated following SD-evoked PANX1 opening. Pharmacological inhibitors targeting PANX1 or NLRP3 as well as genetic ablation of Nlrp3 and Il1b were applied to investigate the molecular mechanism of the downstream neuroinflammatory cascades. In addition, we examined whether SD-triggered microglial activation facilitates neuronal NLRP3-mediated inflammatory cascades. Pharmacological inhibition of toll-like receptors TLR2/4, the potential receptors of the damage-associated molecular pattern HMGB1, was further employed to interrogate the neuron-microglia interplay in SD-induced neuroinflammation. We found that NLRP3 but not NLRP1 or NLRP2 inflammasome was activated following PANX1 opening after single or multiple SDs evoked by either KCl topical application or non-invasively with optogenetics. The SD-evoked NLRP3 inflammasome activation was observed exclusively in neurons but not microglia or astrocytes. Proximity ligation assay demonstrated that the assembly of the NLRP3 inflammasome occurred as early as 15 min after SD. Genetic ablation of Nlrp3 or Il1b or pharmacological inhibition of PANX1 or NLRP3 ameliorated SD-induced neuronal inflammation, middle meningeal artery dilatation, calcitonin gene-related peptide expression in trigeminal ganglion and c-Fos expression in trigeminal nucleus caudalis. Moreover, multiple SDs induced microglial activation subsequent to neuronal NLRP3 inflammasome activation, which in turn orchestrated with neurons to mediate cortical neuroinflammation, as demonstrated by decreased neuronal inflammation after pharmacological inhibition of microglia activation or blockade of the TLR2/4 receptors. To conclude, single or multiple SDs evoked activation of neuronal NLRP3 inflammasomes and its downstream inflammatory cascades to mediate cortical neuroinflammation and trigeminovascular activation. In the context of multiple SDs, the cortical inflammatory processes could be facilitated by SD-evoked microglia activation. These findings may implicate the potential role of innate immunity in migraine pathogenesis.


Asunto(s)
Inflamasomas , Trastornos Migrañosos , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Receptor Toll-Like 2 , Inflamación , Neuronas/metabolismo , Proteínas del Tejido Nervioso , Conexinas
17.
Arch Sex Behav ; 53(5): 1609-1620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38647830

RESUMEN

Negative attitudes and stigmatization toward sexual minorities is a cause of minority stress of non-heterosexual persons on an individual level and has a negative impact on democratic coexistence in postmodern, plural society on a societal level. Derived from clinical research, we developed a short metacognitive training (MCT) intended to induce doubt toward inaccurate beliefs about LGBTIQ+ persons. We expected this MCT to reduce homonegativity, threat perceptions of LGBTIQ+ persons, and to foster extended outgroup tolerance compared to an education and a no-treatment control condition. We tested this hypothesis in U.S. Republican leaners who represent a social group that is likely to hold homonegative attitudes. We randomly assigned 490 U.S. Republican leaners to an MCT condition comprising 16 questions and respective answers (n = 166) vs. an education control condition (n = 164) vs. a no-treatment control condition (n = 160). We found that Republican leaners after receiving MCT (1) had a significant reduction of homonegativity (ds ≥ 0.28), (2) significantly perceived LGBTIQ+ persons as less threatening (ds ≥ 0.30), and (3) were significantly more tolerant of various outgroups such as LGBTIQ+ persons, feminists, liberals, and climate activists (ds ≥ 0.23) relative to both control conditions. The small effects of this short intervention and the possibility of systematically applying MCT in social discourse to reduce homonegativity with its potential significance for LGBTIQ+ individuals' mental health are discussed. Furthermore, we highlight this pilot study's significance toward intervention possibilities regarding political division and polarization in postmodern, democratic societies.


Asunto(s)
Metacognición , Minorías Sexuales y de Género , Humanos , Proyectos Piloto , Femenino , Masculino , Minorías Sexuales y de Género/psicología , Adulto , Estados Unidos , Persona de Mediana Edad , Estereotipo , Homofobia/psicología
18.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526670

RESUMEN

KRAS interacts with the inner leaflet of the plasma membrane (PM) using a hybrid anchor that comprises a lysine-rich polybasic domain (PBD) and a C-terminal farnesyl chain. Electrostatic interactions have been envisaged as the primary determinant of interactions between KRAS and membranes. Here, we integrated molecular dynamics (MD) simulations and superresolution spatial analysis in mammalian cells and systematically compared four equally charged KRAS anchors: the wild-type farnesyl hexa-lysine and engineered mutants comprising farnesyl hexa-arginine, geranylgeranyl hexa-lysine, and geranylgeranyl hexa-arginine. MD simulations show that these equally charged KRAS mutant anchors exhibit distinct interactions and packing patterns with different phosphatidylserine (PtdSer) species, indicating that prenylated PBD-bilayer interactions extend beyond electrostatics. Similar observations were apparent in intact cells, where each anchor exhibited binding specificities for PtdSer species with distinct acyl chain compositions. Acyl chain composition determined responsiveness of the spatial organization of different PtdSer species to diverse PM perturbations, including transmembrane potential, cholesterol depletion, and PM curvature. In consequence, the spatial organization and PM binding of each KRAS anchor precisely reflected the behavior of its preferred PtdSer ligand to these same PM perturbations. Taken together these results show that small GTPase PBD-prenyl anchors, such as that of KRAS, have the capacity to encode binding specificity for specific acyl chains as well as lipid headgroups, which allow differential responses to biophysical perturbations that may have biological and signaling consequences for the anchored GTPase.


Asunto(s)
Fosfatidilserinas/química , Prenilación , Proteínas ras/química , Proteínas ras/metabolismo , Animales , Línea Celular , Colesterol/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Proteínas Mutantes/metabolismo , Nanopartículas/química , Electricidad Estática
19.
Nano Lett ; 23(16): 7463-7469, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37579023

RESUMEN

Valley degrees of freedom in transition metal dichalcogenides thoroughly influence electron-phonon coupling and its nonequilibrium dynamics. We conducted a first-principles study of the quantum kinetics of chiral phonons following valley-selective carrier excitation with circularly polarized light. Our numerical investigations treat the ultrafast dynamics of electrons and phonons on equal footing within a parameter-free ab initio framework. We report the emergence of valley-polarized phonon populations in monolayer MoS2 that can be selectively excited at either the K or K' valleys depending on the light helicity. The resulting vibrational state is characterized by a distinctive chirality, which lifts time-reversal symmetry of the lattice on transient time scales. We show that chiral valley phonons can further lead to fingerprints of vibrational dichroism detectable by ultrafast diffuse scattering and persist beyond 10 ps. The valley polarization of nonequilibrium phonon populations could be exploited as an information carrier, thereby extending the paradigm of valleytronics to the domain of vibrational excitations.

20.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928376

RESUMEN

SARS-CoV-2 is the causative agent of the COVID-19 pandemic, the acute respiratory disease which, so far, has led to over 7 million deaths. There are several symptoms associated with SARS-CoV-2 infections which include neurological and psychiatric disorders, at least in the case of pre-Omicron variants. SARS-CoV-2 infection can also promote the onset of glioblastoma in patients without prior malignancies. In this study, we focused on the Envelope protein codified by the virus genome, which acts as viroporin and that is reported to be central for virus propagation. In particular, we characterized the electrophysiological profile of E-protein transfected U251 and HEK293 cells through the patch-clamp technique and FURA-2 measurements. Specifically, we observed an increase in the voltage-dependent (Kv) and calcium-dependent (KCa) potassium currents in HEK293 and U251 cell lines, respectively. Interestingly, in both cellular models, we observed a depolarization of the mitochondrial membrane potential in accordance with an alteration of U251 cell growth. We, therefore, investigated the transcriptional effect of E protein on the signaling pathways and found several gene alterations associated with apoptosis, cytokines and WNT pathways. The electrophysiological and transcriptional changes observed after E protein expression could explain the impact of SARS-CoV-2 infection on gliomagenesis.


Asunto(s)
COVID-19 , Glioblastoma , Potencial de la Membrana Mitocondrial , SARS-CoV-2 , Humanos , Glioblastoma/metabolismo , Glioblastoma/virología , Glioblastoma/patología , Glioblastoma/genética , Células HEK293 , SARS-CoV-2/fisiología , COVID-19/virología , COVID-19/metabolismo , Línea Celular Tumoral , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas de la Envoltura de Coronavirus/genética , Apoptosis , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/virología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA