Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxics ; 12(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38668504

RESUMEN

Dihydroxylated polybrominated diphenyl ethers (DiOH-PBDEs) could be the metabolites of PBDEs of some organisms or the natural products of certain marine bacteria and algae. OH-PBDEs may demonstrate binding affinity to thyroid hormone receptors (TRs) and can disrupt the functioning of the systems modulated by TRs. However, the thyroid hormone disruption mechanism of diOH-PBDEs remains elusive due to the absence of diOH-PBDEs standards. This investigation explores the potential disruptive effects of OH/diOH-PBDEs on thyroid hormones via competitive binding and coactivator recruitment with TRα and TRß. At levels of 5000 nM and 25,000 nM, 6-OH-BDE-47 demonstrated significant recruitment of steroid receptor coactivator (SRC), whereas none of the diOH-PBDEs exhibited SRC recruitment within the range of 0.32-25,000 nM. AutoDock CrankPep (ADCP) simulations suggest that the conformation of SRC and TR-ligand complexes, particularly their interaction with Helix 12, rather than binding affinity, plays a pivotal role in ligand agonistic activity. 6,6'-diOH-BDE-47 displayed antagonistic activity towards both TRα and TRß, while the antagonism of 3,5-diOH-BDE-100 for TRα and TRß was concentration-dependent. 3,5-diOH-BDE-17 and 3,5-diOH-BDE-51 exhibited no discernible agonistic or antagonistic activities. Molecular docking analysis revealed that the binding energy of 3,3',5-triiodo-L-thyronine (T3) surpassed that of OH/diOH-PBDEs. 3,5-diOH-BDE-100 exhibited the highest binding energy, whereas 6,6'-diOH-BDE-47 displayed the lowest. These findings suggest that the structural determinants influencing the agonistic and antagonistic activities of halogen phenols may be more intricate than previously proposed, involving factors beyond high-brominated PBDEs or hydroxyl group and bromine substitutions. It is likely that the agonistic or antagonistic propensities of OH/diOH-PBDEs are instigated by protein conformational changes rather than considerations of binding energy.

2.
Sci Total Environ ; 763: 143036, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131876

RESUMEN

Dihydroxylated polybrominated diphenyl ethers (diOH-PBDEs) appear to be natural products or metabolites of PBDEs in some marine organisms, yet its toxicity is still largely unknown. With a newly lab-synthesized diOH-PBDE, 6,6'-dihydroxy-2,2',4'4'-tetrabromodiphenyl ether (6,6'-diOH-BDE-47) in hand, the present study has provided the first data set to compare 6-hydroxy-2,2',4'4'- tetrabromodiphenyl ether (6-OH-BDE-47) and 6,6'-diOH-BDE-47 for their acute toxicity and accumulation, and thyroid hormone levels in treated zebrafish larvae. By real time-PCR technique, transcripts of hypothalamic-pituitary-thyroid axis associated genes were also investigated in developing larvae at 96 h post fertilization (96 hpf). Apparently, 6,6'-diOH-BDE-47 was less toxic than that of 6-OH-BDE-47: 1) the 96-h LC50 (96-h median lethal concentration) of 6-OH-BDE-47 and 6,6'-diOH-BDE-47 were 235 nM and 516 nM, respectively; 2) although severe developmental delays and morphological deformities were observed in zebrafish larvae in high exposure doses, at the exposure concentration of 1-50 nM, the accumulated 6-OH-BDE-47 and 6,6'-diOH-BDE-47 is ranged between 226-2279 nmol/g and 123-539 nmol/g in treated larvae; and 3) for 6-OH-BDE-47, its bioconcentration factor (BCF) were 1.83- to 4.30-fold more than that of 6,6'-diOH-BDE-47, suggesting that the lower internal exposure concentration of 6,6'-diOH-BDE-47 may lead to lower toxicity. The increased thyroid hormone levels were recorded for 1 nM of 6-OH-BDE-47 and 20 nM of 6,6'-diOH-BDE-47, and the exposures both significantly increased thyroid gland-specific transcription of thyroglobulin gene, indicating an adverse effect associated with the HPT axis. Therefore, 6,6'-diOH-BDE-47, with lower toxicity compared to that of 6-OH-BDE-47, still possesses hazards and environmental risk.


Asunto(s)
Éteres Difenilos Halogenados , Pez Cebra , Animales , Embrión no Mamífero , Éteres Difenilos Halogenados/toxicidad , Bifenilos Polibrominados
3.
Chemosphere ; 240: 124878, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31563719

RESUMEN

Dihydroxylated polybrominated diphenyl ethers (diOH-PBDEs) can be natural products of marine organisms or the metabolites of PBDEs. The optimal determination method and concentration of diOH-PBDEs in seafood are unknown due to a lack of commercially available standards. In the present study, diOH-PBDEs were synthesized, and an efficient measurement method for OH-PBDEs and diOH-PBDEs in sea fish muscle samples, including extraction, clean-up and gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis, was established. Pressurized liquid extraction (PLE) followed by partitioning with a KOH solution and florisil cartridge clean-up proved to be a reliable and robust method for detecting all OH-PBDEs/diOH-PBDEs. GC-MS/MS with an electron ionization (EI) source analysis was a sensitive analytical instrument for OH-PBDEs/diOH-PBDEs. The recovery using this method ranged from 19% to 101%, 28%-88% and 42%-90% for 10 ng, 20 ng and 40 ng spiking levels, respectively. The equipment detection limits (EDLs) were in the range of 0.31-2.78 pg/µL, and the limits of detection (LOD) for the method were in the range of 5.07-38.74 pg/g wet weight. Concentrations of diOH-PBDEs in the marine fish muscle samples were in the range of 32.43-1528.63 pg/g wet weight. Similar compositions of OH-PBDEs/diOH-PBDEs were found within the same family of marine fish.


Asunto(s)
Peces/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Éteres Difenilos Halogenados/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA