RESUMEN
RNA sequencing is the gold-standard method to quantify transcriptomic changes between two conditions. The overwhelming majority of data analysis methods available are focused on polyadenylated RNA transcribed from single-copy genes and overlook transcripts from repeated sequences such as transposable elements (TEs). These self-autonomous genetic elements are increasingly studied, and specialized tools designed to handle multimapping sequencing reads are available. Transfer RNAs are transcribed by RNA polymerase III and are essential for protein translation. There is a need for integrated software that is able to analyze multiple types of RNA. Here, we present 3t-seq, a Snakemake pipeline for integrated differential expression analysis of transcripts from single-copy genes, TEs, and tRNA. 3t-seq produces an accessible report and easy-to-use results for downstream analysis starting from raw sequencing data and performing quality control, genome mapping, gene expression quantification, and statistical testing. It implements three methods to quantify TEs expression and one for tRNA genes. It provides an easy-to-configure method to manage software dependencies that lets the user focus on results. 3t-seq is released under MIT license and is available at https://github.com/boulardlab/3t-seq.
Asunto(s)
Elementos Transponibles de ADN , ARN de Transferencia , RNA-Seq , Programas Informáticos , ARN de Transferencia/genética , RNA-Seq/métodos , Perfilación de la Expresión Génica/métodos , Humanos , Biología Computacional/métodos , Análisis de Secuencia de ARN/métodosRESUMEN
Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.
Asunto(s)
Plasticidad Neuronal , Células de Purkinje , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Animales , Plasticidad Neuronal/genética , Humanos , Potenciales de Acción/fisiología , Sinapsis/fisiología , Sinapsis/metabolismo , Sinapsis/genética , Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/fisiologíaRESUMEN
Little millet (Panicum sumatrense Roth ex Roem. & Schult.) is an essential minor millet of southeast Asia and Africa's temperate and subtropical regions. The plant is stress-tolerant, has a short life cycle, and has a mineral-rich nutritional profile associated with unique health benefits. We report the developmental gene expression atlas of little millet (genotype JK-8) from ten tissues representing different stages of its life cycle, starting from seed germination and vegetative growth to panicle maturation. The developmental transcriptome atlas led to the identification of 342 827 transcripts. The BUSCO analysis and comparison with the transcriptomes of related species confirm that this study presents high-quality, in-depth coverage of the little millet transcriptome. In addition, the eFP browser generated here has a user-friendly interface, allowing interactive visualizations of tissue-specific gene expression. Using these data, we identified transcripts, the orthologs of which in Arabidopsis and rice are involved in nutrient acquisition, transport, and response pathways. The comparative analysis of the expression levels of these transcripts holds great potential for enhancing the mineral content in crops, particularly zinc and iron, to address the issue of "hidden hunger" and to attain nutritional security, making it a valuable asset for translational research.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Panicum , Transcriptoma , Transcriptoma/genética , Panicum/genética , Panicum/metabolismo , Panicum/crecimiento & desarrollo , Minerales/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Perfilación de la Expresión GénicaRESUMEN
BACKGROUND: How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum have long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. RESULTS: The final assembled and filtered Berghia genome is comparable to other high-quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes) and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. CONCLUSIONS: Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.
Asunto(s)
Gastrópodos , Animales , Gastrópodos/genética , Filogenia , Evolución Molecular , Moluscos/genética , Cromosomas , Fenotipo , Expresión GénicaRESUMEN
Sperm undergo a series of changes in the epididymis region before acquiring the ability to move and fertilize, and the identification of genes expressed in a region-specific manner in the epididymis provides a valuable insight into functional differences between regions. We collected epididymal tissue from three yaks and cultured epithelial cells from the caput, corpus and cauda regions of the yak epididymis using the tissue block method. RNA sequencing analysis (RNA-seq) technology was used to detect gene expression in yak epididymal caput, corpus and cauda epithelial cells. The results showed that the DEGs were highest in the caput vs. corpus comparison, and lowest in the corpus vs. cauda comparison. Six DEGs were verified by real-time fluorescence quantitative PCR (qRT-PCR), consistent with transcriptome sequencing results. The significantly enriched DNA replication pathway in the caput vs. corpus was coordinated with cell proliferation, while upregulated DEGs such as POLD1 and MCM4 were found in the DNA replication pathway. The AMPK signaling pathway was found significantly enriched in the caput vs cauda, suggesting its involvement in sperm maturation and capacitation. The TGF beta signaling pathway was screened in the corpus vs cauda and is crucial for mammalian reproductive regulation. Upregulated DEGs (TGFB3, INHBA, INHBB) are involved in the TGF beta signaling pathway. This study provides a reference for culturing yak epididymal epithelial cells in vitro, and elucidates the transcriptional profiles of epithelial cells in different segments of the epididymis, revealing the regulatory and functional differences between different segments, providing basic data for exploring the molecular mechanism of yak sperm maturation and improving the reproductive capacity of high-altitude mammals.
Asunto(s)
Epidídimo , Células Epiteliales , Animales , Epidídimo/metabolismo , Epidídimo/citología , Bovinos/metabolismo , Masculino , Células Epiteliales/metabolismo , Células Epiteliales/citología , Transcriptoma , Transducción de Señal , Células Cultivadas , Maduración del Esperma/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genéticaRESUMEN
Even though high-throughput transcriptome sequencing is routinely performed in many laboratories, computational analysis of such data remains a cumbersome process often executed manually, hence error-prone and lacking reproducibility. For corresponding data processing, we introduce Curare, an easy-to-use yet versatile workflow builder for analyzing high-throughput RNA-Seq data focusing on differential gene expression experiments. Data analysis with Curare is customizable and subdivided into preprocessing, quality control, mapping, and downstream analysis stages, providing multiple options for each step while ensuring the reproducibility of the workflow. For a fast and straightforward exploration and visualization of differential gene expression results, we provide the gene expression visualizer software GenExVis. GenExVis can create various charts and tables from simple gene expression tables and DESeq2 results without the requirement to upload data or install software packages. In combination, Curare and GenExVis provide a comprehensive software environment that supports the entire data analysis process, from the initial handling of raw RNA-Seq data to the final DGE analyses and result visualizations, thereby significantly easing data processing and subsequent interpretation.
Asunto(s)
Curare , RNA-Seq , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos , Transcriptoma , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Perfilación de la Expresión Génica/métodosRESUMEN
BACKGROUND: Conventional differential gene expression analysis pipelines for non-model organisms require computationally expensive transcriptome assembly. We recently proposed an alternative strategy of directly aligning RNA-seq reads to a protein database, and demonstrated drastic improvements in speed, memory usage, and accuracy in identifying differentially expressed genes. RESULT: Here we report a further speed-up by replacing DNA-protein alignment by quasi-mapping, making our pipeline > 1000× faster than assembly-based approach, and still more accurate. We also compare quasi-mapping to other mapping techniques, and show that it is faster but at the cost of sensitivity. CONCLUSION: We provide a quick-and-dirty differential gene expression analysis pipeline for non-model organisms without a reference transcriptome, which directly quasi-maps RNA-seq reads to a reference protein database, avoiding computationally expensive transcriptome assembly.
Asunto(s)
Perfilación de la Expresión Génica , Perfilación de la Expresión Génica/métodos , Transcriptoma/genética , ADN/genética , ADN/metabolismo , Alineación de Secuencia/métodos , Proteínas/genética , Proteínas/metabolismoRESUMEN
BACKGROUND: Transcriptomes present a rich, multi-dimensional subset of genomics data. They provide broad insights into genetic sequence, and more significantly gene expression, across biological samples. This technology is frequently employed for describing the genetic response to experimental conditions and has created vast libraries of datasets which shed light on gene function across different tissues, diseases, diets and developmental stages in many species. However, public accessibility of these data is impeded by a lack of suitable software interfaces and databases with which to locate and analyse them. BODY: Here we present an update on the status of CrustyBase.org, an online resource for analysing and sharing crustacean transcriptome datasets. Since its release in October 2020, the resource has provided many thousands of transcriptome sequences and expression profiles to its users and received 19 new dataset imports from researchers across the globe. In this article we discuss user analytics which point towards the utilization of this resource. The architecture of the application has proven robust with over 99.5% uptime and effective reporting of bugs through both user engagement and the error logging mechanism. We also introduce several new features that have been developed as part of a new release of CrustyBase.org. Two significant features are described in detail, which allow users to navigate through transcripts directly by submission of transcript identifiers, and then more broadly by searching for encoded protein domains by keyword. The latter is a novel and experimental feature, and grants users the ability to curate gene families from any dataset hosted on CrustyBase in a matter of minutes. We present case studies to demonstrate the utility of these features. CONCLUSION: Community engagement with this resource has been very positive, and we hope that improvements to the service will further enable the research of users of the platform. Web-based platforms such as CrustyBase have many potential applications across life science domains, including the health sector, which are yet to be realised. This leads to a wider discussion around the role of web-based resources in facilitating an open and collaborative research community.
Asunto(s)
Programas Informáticos , Transcriptoma , Genómica/métodos , Bases de Datos Factuales , FenotipoRESUMEN
BACKGROUND: Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS: Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION: Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.
Asunto(s)
Anopheles , Insecticidas , Malaria , Nitrilos , Piretrinas , Animales , Insecticidas/farmacología , Anopheles/genética , Benin , Organofosfatos/farmacología , Mosquitos Vectores , Piretrinas/farmacología , Resistencia a los Insecticidas/genética , Perfilación de la Expresión GénicaRESUMEN
BACKGROUND: Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS: D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION: Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
Asunto(s)
Consorcios Microbianos , Poríferos , Simbiosis , Transcriptoma , Simbiosis/genética , Poríferos/microbiología , Poríferos/genética , Animales , Consorcios Microbianos/genética , Perfilación de la Expresión Génica , Mar MediterráneoRESUMEN
BACKGROUND: Diachasmimorpha longicaudata is a hymenopteran fruit fly endoparasitoid. Females of this species find their hosts for oviposition by using complex sensorial mechanisms in response to physical and chemical stimuli associated with the host and host habitat. Ecological and behavioral aspects related to host-seeking behavior for oviposition have been extensively studied in D. longicaudata, including the identification of volatile organic compounds acting as attractants to females. In this sense, molecular mechanisms of chemoreception have been explored in this species, including a preliminary characterization of odorant-binding proteins (OBPs), chemosensory proteins (CSPs) and odorant receptors (ORs), among other proteins. Functional assays on OBP and CSP have been conducted as a first approach to identify molecular mechanisms associated with the female host-seeking behavior for oviposition. The aims of the present study were to identify the D. longicaudata sensory gene repertoire expressed in the antenna of sexually mature and mated individuals of both sexes, and subsequently, characterize transcripts differentially expressed in the antennae of females to identify candidate genes associated with the female host-seeking behavior for oviposition. RESULTS: A total of 33,745 predicted protein-coding sequences were obtained from a de novo antennal transcriptome assembly. Ten sensory-related gene families were annotated as follows: 222 ORs, 44 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 9 CSPs, 13 OBPs, 2 ammonium transporters (AMTs), 8 pickpocket (PPKs) receptors, 16 transient receptor potential (TRP) channels, 12 CD36/SNMPs and 3 Niemann-Pick type C2 like proteins (NPC2-like). The differential expression analysis revealed 237 and 151 transcripts up- and downregulated, respectively, between the female and male antennae. Ninety-seven differentially expressed transcripts corresponded to sensory-related genes including 88 transcripts being upregulated (87 ORs and one TRP) and nine downregulated (six ORs, two CSPs and one OBP) in females compared to males. CONCLUSIONS: The sensory gene repertoire of D. longicaudata was similar to that of other taxonomically related parasitoid wasps. We identified a high number of ORs upregulated in the female antenna. These results may indicate that this gene family has a central role in the chemoreception of sexually mature females during the search for hosts and host habitats for reproductive purposes.
Asunto(s)
Conducta de Búsqueda de Hospedador , Receptores Odorantes , Avispas , Humanos , Animales , Masculino , Femenino , Avispas/genética , Perfilación de la Expresión Génica , Transcriptoma , Receptores de Superficie Celular/genética , Receptores Odorantes/genética , Proteínas de Insectos/genética , Antenas de Artrópodos/metabolismo , FilogeniaRESUMEN
Interspecies RNA-Seq datasets are increasingly common, and have the potential to answer new questions about the evolution of gene expression. Single-species differential expression analysis is now a well-studied problem that benefits from sound statistical methods. Extensive reviews on biological or synthetic datasets have provided the community with a clear picture on the relative performances of the available methods in various settings. However, synthetic dataset simulation tools are still missing in the interspecies gene expression context. In this work, we develop and implement a new simulation framework. This tool builds on both the RNA-Seq and the phylogenetic comparative methods literatures to generate realistic count datasets, while taking into account the phylogenetic relationships between the samples. We illustrate the usefulness of this new framework through a targeted simulation study, that reproduces the features of a recently published dataset, containing gene expression data in adult eye tissue across blind and sighted freshwater crayfish species. Using our simulated datasets, we perform a fair comparison of several approaches used for differential expression analysis. This benchmark reveals some of the strengths and weaknesses of both the classical and phylogenetic approaches for interspecies differential expression analysis, and allows for a reanalysis of the crayfish dataset. The tool has been integrated in the R package compcodeR, freely available on Bioconductor.
Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , RNA-Seq , Filogenia , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodosRESUMEN
The rpl1001 gene encodes 60S ribosomal protein L10, which is involved in intracellular protein synthesis and cell growth. However, it is not yet known whether it is involved in the regulation of cell mitosis dynamics. This study focuses on the growth, spore production, cell morphology, the dynamics of microtubules, chromosomes, actin, myosin, and mitochondria of fission yeast (Schizosaccharomyces pombe) to investigate the impact of rpl1001 deletion on cell mitosis. RNA-Seq and bioinformatics analyses were also used to reveal key genes, such as hsp16, mfm1 and isp3, and proteasome pathways. The results showed that rpl1001 deletion resulted in slow cell growth, abnormal spore production, altered cell morphology, and abnormal microtubule number and length during interphase. The cell dynamics of the rpl1001Δ strain showed that the formation of a monopolar spindle leads to abnormal chromosome segregation with increased rate of spindle elongation in anaphase of mitosis, decreased total time of division, prolonged formation time of actin and myosin loops, and increased expression of mitochondrial proteins. Analysis of the RNA-Seq sequencing results showed that the proteasome pathway, up-regulation of isp3, and down-regulation of mfm1 and mfm2 in the rpl1001Δ strain were the main factors underpinning the increased number of spore production. Also, in the rpl1001Δ strain, down-regulation of dis1 caused the abnormal microtubule and chromosome dynamics, and down-regulation of hsp16 and pgk1 were the key genes affecting the delay of actin ring and myosin ring formation. This study reveals the effect and molecular mechanism of rpl1001 gene deletion on cell division, which provides the scientific basis for further clarifying the function of the Rpl1001 protein in cell division.
RESUMEN
Pancreas transplantation improves glycemic control and mortality in patients with diabetes but requires aggressive immunosuppression to control the alloimmune and autoimmune response. Recent developments in "omics" methods have provided gene transcript-based biomarkers for organ transplant rejection. The tissue Common Response Module (tCRM) score is developed to identify the severity of rejection in kidney, heart, liver, and lung transplants. Still, it has not yet been validated in pancreas transplants (PT). We evaluated the tCRM score's relevance in PT and additional markers of acute cellular rejection (ACR) for PT. An analysis of 51 pancreas biopsies with ACR identified 37 genes and 56 genes significantly upregulated in the case of grade 3 and grade 2 ACR, respectively (P < .05). Significant differences were seen with higher grades of rejection among several transcripts. Of the 22 genes differentially expressed in grade 3 ACR, 18 were also differentially expressed in grade 2 ACR. The rejection signal was attributable to activated leukocytes' infiltration. Significantly higher tCRM scores were found in grade 3 ACR (P = .007) and grade 2 ACR (P = .004), compared to normal samples. The tCRM score was able to distinguish treatment-resistant cases from those successfully treated for rejection.
RESUMEN
Rapeseed-mustard, the oleiferous Brassica species are important oilseed crops cultivated all over the globe. Mustard aphid Lipaphis erysimi (L.) Kaltenbach is a major threat to the cultivation of rapeseed-mustard. Wild mustard Rorippa indica (L.) Hiern shows tolerance to mustard aphids as a nonhost and hence is an important source for the bioprospecting of potential resistance genes and defense measures to manage mustard aphids sustainably. We performed mRNA sequencing of the R. indica plant uninfested and infested by the mustard aphids, harvested at 24 hours post-infestation. Following quality control, the high-quality reads were subjected to de novo assembly of the transcriptome. As there is no genomic information available for this potential wild plant, the raw reads will be useful for further bioinformatics analysis and the sequence information of the assembled transcripts will be helpful to design primers for the characterization of specific gene sequences. In this study, we also used the generated resource to comprehensively analyse the global profile of differential gene expression in R. indica in response to infestation by mustard aphids. The functional enrichment analysis of the differentially expressed genes reveals a significant immune response and suggests the possibility of chitin-induced defense signaling.
Asunto(s)
Áfidos , Rorippa , Animales , Planta de la Mostaza/genética , Transcriptoma , Áfidos/genética , Rorippa/genéticaRESUMEN
Plants spontaneously accumulate γ-aminobutyric acid (GABA), a nonprotein amino acid, in response to various stressors. Nevertheless, there is limited knowledge regarding the precise molecular mechanisms that plants employ to cope with salt stress. The objective of this study was to investigate the impact of GABA on the salt tolerance of eight distinct varieties of bread wheat (Triticum aestivum L.) by examining plant growth rates and physiological and molecular response characteristics. The application of salt stress had a detrimental impact on plant growth markers. Nevertheless, the impact was mitigated by the administration of GABA in comparison to the control treatment. When the cultivars Gemmiza 7, Gemmiza 9, and Gemmiza 12 were exposed to GABA at two distinct salt concentrations, there was a substantial increase in both the leaf chlorophyll content and photosynthetic rate. Both the control wheat cultivars and the plants exposed to salt treatment and GABA treatment showed alterations in stress-related biomarkers and antioxidants. This finding demonstrated that GABA plays a pivotal role in mitigating the impact of salt treatments on wheat cultivars. Among the eight examined kinds of wheat, CV. Gemmiza 7 and CV. Gemmiza 11 exhibited the most significant alterations in the expression of their TaSOS1 genes. CV. Misr 2, CV. Sakha 94, and CV. Sakha 95 exhibited the highest degree of variability in the expression of the NHX1, DHN3, and GR genes, respectively. The application of GABA to wheat plants enhances their ability to cope with salt stress by reducing the presence of reactive oxygen species (ROS) and other stress indicators, regulating stomatal aperture, enhancing photosynthesis, activating antioxidant enzymes, and upregulating genes involved in salt stress tolerance.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estrés Salino , Plantones , Triticum , Ácido gamma-Aminobutírico , Triticum/genética , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Triticum/fisiología , Triticum/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Biomarcadores/metabolismo , Fotosíntesis/efectos de los fármacos , Tolerancia a la Sal/genética , Tolerancia a la Sal/efectos de los fármacos , Clorofila/metabolismo , Antioxidantes/metabolismoRESUMEN
BACKGROUND: Aphanomyces euteiches is a soil-borne oomycete that causes root rot in pea and other legume species. Symptoms of Aphanomyces root rot (ARR) include root discoloration and wilting, leading to significant yield losses in pea production. Resistance to ARR is known to be polygenic but the roles of single genes in the pea immune response are still poorly understood. This study uses transcriptomics to elucidate the immune response of two pea genotypes varying in their levels of resistance to A. euteiches. RESULTS: In this study, we inoculated roots of the pea (P. sativum L.) genotypes 'Linnea' (susceptible) and 'PI180693' (resistant) with two different A. euteiches strains varying in levels of virulence. The roots were harvested at 6 h post-inoculation (hpi), 20 hpi and 48 hpi, followed by differential gene expression analysis. Our results showed a time- and genotype-dependent immune response towards A. euteiches infection, involving several WRKY and MYB-like transcription factors, along with genes associated with jasmonic acid (JA) and abscisic acid (ABA) signaling. By cross-referencing with genes segregating with partial resistance to ARR, we identified 39 candidate disease resistance genes at the later stage of infection. Among the genes solely upregulated in the resistant genotype 'PI180693', Psat7g091800.1 was polymorphic between the pea genotypes and encoded a Leucine-rich repeat receptor-like kinase reminiscent of the Arabidopsis thaliana FLAGELLIN-SENSITIVE 2 receptor. CONCLUSIONS: This study provides new insights into the gene expression dynamics controlling the immune response of resistant and susceptible pea genotypes to A. euteiches infection. We present a set of 39 candidate disease resistance genes for ARR in pea, including the putative immune receptor Psat7g091800.1, for future functional validation.
Asunto(s)
Aphanomyces , Resistencia a la Enfermedad , Resistencia a la Enfermedad/genética , Sitios de Carácter Cuantitativo , Aphanomyces/genética , Pisum sativum/genética , Enfermedades de las Plantas/genética , Perfilación de la Expresión GénicaRESUMEN
BACKGROUND: Phytophthora palmivora is a devastating oomycete pathogen in durian, one of the most economically important crops in Southeast Asia. The use of fungicides in Phytophthora management may not be a long-term solution because of emerging chemical resistance issues. It is crucial to develop Phytophthora-resistant durian cultivars, and information regarding the underlying resistance mechanisms is valuable for smart breeding programs. RESULTS: In this study, we conducted RNA sequencing (RNA-seq) to investigate early gene expression responses (at 8, 24, and 48 h) after the P. palmivora infection in three durian cultivars, which included one resistant cultivar (Puangmanee; PM) and two susceptible cultivars (Monthong; MT and Kradumthong; KD). We performed co-expression and differential gene expression analyses to capture gene expression patterns and identify the differentially expressed genes. The results showed that genes encoding heat shock proteins (HSPs) were upregulated in all infected durians. The expression levels of genes encoding HSPs, such as ERdj3B, were high only in infected PM. A higher level of P. palmivora resistance in PM appeared to be associated with higher expression levels of various genes encoding defense and chitin response proteins, such as lysM domain receptor-like kinases. MT had a lower resistance level than PM, although it possessed more upregulated genes during P. palmivora infection. Many photosynthetic and defense genes were upregulated in the infected MT, although their expression levels were lower than those in the infected PM. KD, the least resistant cultivar, showed downregulation of genes involved in cell wall organization or biogenesis during P. palmivora infection. CONCLUSIONS: Our results showed that the three durian cultivars exhibited significantly different gene expression patterns in response to P. palmivora infection. The upregulation of genes encoding HSPs was common in all studied durians. The high expression of genes encoding chitin response proteins likely contributed to P. palmivora resistance in durians. Durian susceptibility was associated with low basal expression of defense genes and downregulation of several cell wall-related genes. These findings enhance our understanding of durian resistance to Phytophthora infection and could be useful for the development of elite durian cultivars.
Asunto(s)
Resistencia a la Enfermedad , Phytophthora , Enfermedades de las Plantas , Transcriptoma , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Persea/genética , Persea/microbiologíaRESUMEN
BACKGROUND: Trauma can result in systemic inflammation that leads to organ dysfunction, but the impact on the brain, particularly following extracranial insults, has been largely overlooked. METHODS: Building upon our prior findings, we aimed to understand the impact of systemic inflammation on neuroinflammatory gene transcripts in eight brain regions in rats exposed to (1) blast overpressure exposure [BOP], (2) cutaneous thermal injury [BU], (3) complex extremity injury, 3 hours (h) of tourniquet-induced ischemia, and hind limb amputation [CEI+tI+HLA], (4) BOP+BU or (5) BOP+CEI and delayed HLA [BOP+CEI+dHLA] at 6, 24, and 168 h post-injury (hpi). RESULTS: Globally, the number and magnitude of differentially expressed genes (DEGs) correlated with injury severity, systemic inflammation markers, and end-organ damage, driven by several chemokines/cytokines (Csf3, Cxcr2, Il16, and Tgfb2), neurosteroids/prostaglandins (Cyp19a1, Ptger2, and Ptger3), and markers of neurodegeneration (Gfap, Grin2b, and Homer1). Regional neuroinflammatory activity was least impacted following BOP. Non-blast trauma (in the BU and CEI+tI+HLA groups) contributed to an earlier, robust and diverse neuroinflammatory response across brain regions (up to 2-50-fold greater than that in the BOP group), while combined trauma (in the BOP+CEI+dHLA group) significantly advanced neuroinflammation in all regions except for the cerebellum. In contrast, BOP+BU resulted in differential activity of several critical neuroinflammatory-neurodegenerative markers compared to BU. t-SNE plots of DEGs demonstrated that the onset, extent, and duration of the inflammatory response are brain region dependent. Regardless of injury type, the thalamus and hypothalamus, which are critical for maintaining homeostasis, had the most DEGs. Our results indicate that neuroinflammation in all groups progressively increased or remained at peak levels over the study duration, while markers of end-organ dysfunction decreased or otherwise resolved. CONCLUSIONS: Collectively, these findings emphasize the brain's sensitivity to mediators of systemic inflammation and provide an example of immune-brain crosstalk. Follow-on molecular and behavioral investigations are warranted to understand the short- to long-term pathophysiological consequences on the brain, particularly the mechanism of blood-brain barrier breakdown, immune cell penetration-activation, and microglial activation.
Asunto(s)
Encéfalo , Inflamación , Enfermedades Neuroinflamatorias , Animales , Ratas , Encéfalo/metabolismo , Encéfalo/patología , Masculino , Inflamación/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Ratas Sprague-Dawley , Expresión Génica , Regulación de la Expresión GénicaRESUMEN
Given most tissues are consist of abundant and diverse (sub-)cell types, an important yet unaddressed problem in bulk RNA-seq analysis is to identify at which (sub-)cell type(s) the differential expression occurs. Single-cell RNA-sequencing (scRNA-seq) technologies can answer the question, but they are often labor-intensive and cost-prohibitive. Here, we present LRcell, a computational method aiming to identify specific (sub-)cell type(s) that drives the changes observed in a bulk RNA-seq experiment. In addition, LRcell provides pre-embedded marker genes computed from putative scRNA-seq experiments as options to execute the analyses. We conduct a simulation study to demonstrate the effectiveness and reliability of LRcell. Using three different real datasets, we show that LRcell successfully identifies known cell types involved in psychiatric disorders. Applying LRcell to bulk RNA-seq results can produce a hypothesis on which (sub-)cell type(s) contributes to the differential expression. LRcell is complementary to cell type deconvolution methods.