Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biomol NMR ; 70(1): 21-31, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29168021

RESUMEN

NMR spectroscopy of membrane proteins involved in electron transport is difficult due to the presence of both the lipids and paramagnetic centers. Here we report the solution NMR study of the NADPH-cytochrome P450 oxidoreductase (POR) in its reduced and oxidized states. We interrogate POR, first, in its truncated soluble form (70 kDa), which is followed by experiments with the full-length protein incorporated in a lipid nanodisc (240 kDa). To overcome paramagnetic relaxation in the reduced state of POR as well as the signal broadening due to its high molecular weight, we utilized the methyl-TROSY approach. Extrinsic 13C-methyl groups were introduced by modifying the engineered surface-exposed cysteines with methyl-methanethiosulfonate. Chemical shift dispersion of the resonances from different sites in POR was sufficient to monitor differential effects of the reduction-oxidation process and conformation changes in the POR structure related to its function. Despite the high molecular weight of the POR-nanodisc complex, the surface-localized 13C-methyl probes were sufficiently mobile to allow for signal detection at 600 MHz without perdeuteration. This work demonstrates a potential of the solution methyl-TROSY in analysis of structure, dynamics, and function of POR, which may also be applicable to similar paramagnetic and flexible membrane proteins.


Asunto(s)
Proteínas de la Membrana/química , NADPH-Ferrihemoproteína Reductasa/química , Isótopos de Carbono , Lípidos , Proteínas de la Membrana/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Solubilidad , Relación Estructura-Actividad
2.
J Biol Chem ; 291(39): 20487-502, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27496950

RESUMEN

Human NADPH-cytochrome P450 oxidoreductase (POR) gene mutations are associated with severe skeletal deformities and disordered steroidogenesis. The human POR mutation A287P presents with disordered sexual development and skeletal malformations. Difficult recombinant expression and purification of this POR mutant suggested that the protein was less stable than WT. The activities of cytochrome P450 17A1, 19A1, and 21A2, critical in steroidogenesis, were similar using our purified, full-length, unmodified A287P or WT POR, as were those of several xenobiotic-metabolizing cytochromes P450, indicating that the A287P protein is functionally competent in vitro, despite its functionally deficient phenotypic behavior in vivo Differential scanning calorimetry and limited trypsinolysis studies revealed a relatively unstable A287P compared with WT protein, leading to the hypothesis that the syndrome observed in vivo results from altered POR protein stability. The crystal structures of the soluble domains of WT and A287P reveal only subtle differences between them, but these differences are consistent with the differential scanning calorimetry results as well as the differential susceptibility of A287P and WT observed with trypsinolysis. The relative in vivo stabilities of WT and A287P proteins were also examined in an osteoblast cell line by treatment with cycloheximide, a protein synthesis inhibitor, showing that the level of A287P protein post-inhibition is lower than WT and suggesting that A287P may be degraded at a higher rate. Current studies demonstrate that, unlike previously described mutations, A287P causes POR deficiency disorder due to conformational instability leading to proteolytic susceptibility in vivo, rather than through an inherent flavin-binding defect.


Asunto(s)
Fenotipo del Síndrome de Antley-Bixler , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Mutación Missense , Sustitución de Aminoácidos , Fenotipo del Síndrome de Antley-Bixler/enzimología , Fenotipo del Síndrome de Antley-Bixler/genética , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/metabolismo , Estabilidad de Enzimas/genética , Humanos
3.
J Biol Chem ; 291(28): 14639-61, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27189945

RESUMEN

NADPH-cytochrome P450 oxidoreductase transfers electrons from NADPH to cytochromes P450 via its FAD and FMN. To understand the biochemical and structural basis of electron transfer from FMN-hydroquinone to its partners, three deletion mutants in a conserved loop near the FMN were characterized. Comparison of oxidized and reduced wild type and mutant structures reveals that the basis for the air stability of the neutral blue semiquinone is protonation of the flavin N5 and strong H-bond formation with the Gly-141 carbonyl. The ΔGly-143 protein had moderately decreased activity with cytochrome P450 and cytochrome c It formed a flexible loop, which transiently interacts with the flavin N5, resulting in the generation of both an unstable neutral blue semiquinone and hydroquinone. The ΔGly-141 and ΔG141/E142N mutants were inactive with cytochrome P450 but fully active in reducing cytochrome c In the ΔGly-141 mutants, the backbone amide of Glu/Asn-142 forms an H-bond to the N5 of the oxidized flavin, which leads to formation of an unstable red anionic semiquinone with a more negative potential than the hydroquinone. The semiquinone of ΔG141/E142N was slightly more stable than that of ΔGly-141, consistent with its crystallographically demonstrated more rigid loop. Nonetheless, both ΔGly-141 red semiquinones were less stable than those of the corresponding loop in cytochrome P450 BM3 and the neuronal NOS mutant (ΔGly-810). Our results indicate that the catalytic activity of cytochrome P450 oxidoreductase is a function of the length, sequence, and flexibility of the 140s loop and illustrate the sophisticated variety of biochemical mechanisms employed in fine-tuning its redox properties and function.


Asunto(s)
NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Mutación Puntual , Secuencia de Aminoácidos , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromos c/metabolismo , Transporte de Electrón , Mononucleótido de Flavina/química , Mononucleótido de Flavina/metabolismo , Glicina/química , Glicina/genética , Glicina/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , NADP/metabolismo , NADPH-Ferrihemoproteína Reductasa/química , Oxidación-Reducción , Conformación Proteica , Ratas , Eliminación de Secuencia
4.
Nitric Oxide ; 63: 61-67, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-27619338

RESUMEN

This perspective reviews single molecule and ensemble fluorescence spectroscopy studies of the three tissue specific nitric oxide synthase (NOS) isoenzymes and the related diflavin oxidoreductase cytochrome P450 reductase. The focus is on the role of protein dynamics and the protein conformational landscape and we discuss how recent fluorescence-based studies have helped in illustrating how the nature of the NOS conformational landscape relates to enzyme turnover and catalysis.


Asunto(s)
NADPH-Ferrihemoproteína Reductasa/química , Óxido Nítrico Sintasa/química , Conformación Proteica , Espectrometría de Fluorescencia
5.
FEBS J ; 282(22): 4357-75, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26307151

RESUMEN

Protein domain dynamics and electron transfer chemistry are often associated, but real-time analysis of domain motion in enzyme-catalysed reactions and the elucidation of mechanistic schemes that relate these motions to the reaction chemistry are major challenges for biological catalysis research. Previously we suggested that reduction of human cytochrome P450 reductase with the reducing coenzyme NADPH is accompanied by major structural re-orientation of the FMN- and FAD-binding domains through an inferred dynamic cycle of 'open' and 'closed' conformations of the enzyme (PLoS Biol, 2011, e1001222). However, these studies were restricted to stopped-flow/FRET analysis of the reductive half-reaction, and were compromised by fluorescence quenching of the acceptor by the flavin cofactors. Here we have improved the design of the FRET system, by using dye pairs with near-IR fluorescence, and extended studies on human cytochrome P450 reductase to the oxidative half-reaction using a double-mixing stopped-flow assay, thereby analysing in real-time conformational dynamics throughout the complete catalytic cycle. We correlate redox changes accompanying the reaction chemistry with protein dynamic changes observed by FRET, and show that redox chemistry drives a major re-orientation of the protein domains in both the reductive and oxidative half-reactions. Our studies using the tractable (soluble) surrogate electron acceptor cytochrome c provide a framework for analysing mechanisms of electron transfer in the endoplasmic reticulum between cytochrome P450 reductase and cognate P450 enzymes. More generally, our work emphasizes the importance of protein dynamics in intra- and inter-protein electron transfer, and establishes methodology for real-time analysis of structural changes throughout the catalytic cycle of complex redox proteins.


Asunto(s)
Citocromos c/química , NADPH-Ferrihemoproteína Reductasa/química , Transporte de Electrón , Transferencia Resonante de Energía de Fluorescencia , Humanos , Oxidación-Reducción , Conformación Proteica , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA