RESUMEN
The human pathogen Mycobacterium tuberculosis typically causes lung disease but can also disseminate to other tissues. We identified a M. tuberculosis (Mtb) outbreak presenting with unusually high rates of extrapulmonary dissemination and bone disease. We found that the causal strain carried an ancestral full-length version of the type VII-secreted effector EsxM rather than the truncated version present in other modern Mtb lineages. The ancestral EsxM variant exacerbated dissemination through enhancement of macrophage motility, increased egress of macrophages from established granulomas, and alterations in macrophage actin dynamics. Reconstitution of the ancestral version of EsxM in an attenuated modern strain of Mtb altered the migratory mode of infected macrophages, enhancing their motility. In a zebrafish model, full-length EsxM promoted bone disease. The presence of a derived nonsense variant in EsxM throughout the major Mtb lineages 2, 3, and 4 is consistent with a role for EsxM in regulating the extent of dissemination.
Asunto(s)
Enfermedades Óseas , Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculosis , Animales , Humanos , Pez Cebra , Tuberculosis/microbiología , Macrófagos/microbiología , Proteínas Bacterianas/genéticaRESUMEN
Phenotypic and metabolic heterogeneity within tumors is a major barrier to effective cancer therapy. How metabolism is implicated in specific phenotypes and whether lineage-restricted mechanisms control key metabolic vulnerabilities remain poorly understood. In melanoma, downregulation of the lineage addiction oncogene microphthalmia-associated transcription factor (MITF) is a hallmark of the proliferative-to-invasive phenotype switch, although how MITF promotes proliferation and suppresses invasion is poorly defined. Here, we show that MITF is a lineage-restricted activator of the key lipogenic enzyme stearoyl-CoA desaturase (SCD) and that SCD is required for MITFHigh melanoma cell proliferation. By contrast MITFLow cells are insensitive to SCD inhibition. Significantly, the MITF-SCD axis suppresses metastasis, inflammatory signaling, and an ATF4-mediated feedback loop that maintains de-differentiation. Our results reveal that MITF is a lineage-specific regulator of metabolic reprogramming, whereby fatty acid composition is a driver of melanoma phenotype switching, and highlight that cell phenotype dictates the response to drugs targeting lipid metabolism.
Asunto(s)
Adaptación Fisiológica/fisiología , Ácidos Grasos/metabolismo , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Regulación hacia Abajo/fisiología , Humanos , Ratones , Invasividad Neoplásica/patología , Fenotipo , Transducción de Señal/fisiologíaRESUMEN
We show that adding noise before publishing data effectively screens [Formula: see text]-hacked findings: spurious explanations produced by fitting many statistical models (data mining). Noise creates "baits" that affect two types of researchers differently. Uninformed [Formula: see text]-hackers, who are fully ignorant of the true mechanism and engage in data mining, often fall for baits. Informed researchers, who start with an ex ante hypothesis, are minimally affected. We show that as the number of observations grows large, dissemination noise asymptotically achieves optimal screening. In a tractable special case where the informed researchers' theory can identify the true causal mechanism with very few data, we characterize the optimal level of dissemination noise and highlight the relevant trade-offs. Dissemination noise is a tool that statistical agencies currently use to protect privacy. We argue this existing practice can be repurposed to screen [Formula: see text]-hackers and thus improve research credibility.
RESUMEN
Horizontal transfer of F-like plasmids by bacterial conjugation is responsible for disseminating antibiotic resistance and virulence determinants among pathogenic Enterobacteriaceae species, a growing health concern worldwide. Central to this process is the conjugative F pilus, a long extracellular filamentous polymer that extends from the surface of plasmid donor cells, allowing it to probe the environment and make contact with the recipient cell. It is well established that the F pilus can retract to bring mating pair cells in tight contact before DNA transfer. However, whether DNA transfer can occur through the extended pilus has been a subject of active debate. In this study, we use live-cell microscopy to show that while most transfer events occur between cells in direct contact, the F pilus can indeed serve as a conduit for the DNA during transfer between physically distant cells. Our findings enable us to propose a unique model for conjugation that revises our understanding of the DNA transfer mechanism and the dissemination of drug resistance and virulence genes within complex bacterial communities.
Asunto(s)
Escherichia coli , Genes Bacterianos , Escherichia coli/genética , Plásmidos/genética , Fimbrias Bacterianas/genética , ADN Bacteriano/genética , Conjugación Genética , ADN , Transferencia de Gen HorizontalRESUMEN
Leptomeningeal dissemination (LMD) is the primary cause of treatment failure in children with Group 3 medulloblastoma (MB). Building on our previous work on protein phosphatase 2A (PP2A) activation in MB, here we present pre-clinical and molecular data on the effects of two novel classes of PP2A activators on disease processes of LMD in Group 3 MB. The PP2A activators employed in this study are ATUX-6156 and ATUX-6954 (diarylmethylcycloamine sulfonylureas), and ATUX-1215 and ATUX-5800 (diarylmethyl-4-aminotetrahydropyran-sulfonamides). Treatment with these compounds led to suppression of the endogenous PP2A inhibitor, cancerous inhibitor of PP2A (CIP2A), enhanced phosphatase activity (10-60%), and reduced MB viability, migration, and invasion, prerequisites for MB cells to access the cerebrospinal fluid, affecting the initiation stage of LMD. PP2A activator treatment of MB cells led to apoptosis mediated via caspase 9/PARP signaling due to decreased phosphorylation of Bad, impeding the dispersal stage of LMD. Cell proliferation and LMD-driving cellular traits and molecules pertinent to the third stage, colonization, were also affected. Treatment with ATUX-1215 or ATUX-5800 prevented LMD in an intraventricular murine model of MB, possibly mediated by disruption of the CCL2-CCR2 axis by altered NF-kB phosphorylation via disrupted AKT signaling. The present investigation offers proof-of-principle data for PP2A-based reactivation therapy for Group 3 MB and provides the first indications that PP2A reactivation may challenge the current paradigm in targeting the 3-stage process of MB LMD. Further investigations of PP2A activators are warranted as these compounds may prove beneficial as therapeutics for MB.
RESUMEN
Grass carp reovirus (GCRV), particularly the highly prevalent type II GCRV (GCRV-II), causes huge losses in the aquaculture industry. However, little is known about the mechanisms by which GCRV-II invades grass carp and further disseminates among tissues. In the present study, monocytes/macrophages (Mo/Mφs) were isolated from the peripheral blood of grass carp and infected with GCRV-II. The results of indirect immunofluorescent microscopy, transmission electron microscopy, real-time quantitative RT-PCR (qRT-PCR), western blot (WB), and flow cytometry analysis collectively demonstrated that GCRV-II invaded Mo/Mφs and replicated in them. Additionally, we observed that GCRV-II induced different types (M1 and M2) of polarization of Mo/Mφs in multiple tissues, especially in the brain, head kidney, and intestine. To assess the impact of different types of polarization on GCRV-II replication, we recombinantly expressed and purified the intact cytokines CiIFN-γ2, CiIL-4/13A, and CiIL-4/13B and successfully induced M1 and M2 type polarization of macrophages using these cytokines through in vitro experiments. qRT-PCR, WB, and flow cytometry analyses showed that M2 macrophages had higher susceptibility to GCRV-II infection than other types of Mo/Mφs. In addition, we found GCRV-II induced apoptosis of Mo/Mφs to facilitate virus replication and dissemination and also detected the presence of GCRV-II virus in plasma. Collectively, our findings indicated that GCRV-II could invade immune cells Mo/Mφs and induce apoptosis and polarization of Mo/Mφs for efficient infection and dissemination, emphasizing the crucial role of Mo/Mφs as a vector for GCRV-II infection.IMPORTANCEType II grass carp reovirus (GCRV) is a prevalent viral strain and causes huge losses in aquaculture. However, the related dissemination pathway and mechanism remain largely unclear. Here, our study focused on phagocytic immune cells, monocytes/macrophages (Mo/Mφs) in blood and tissues, and explored whether GCRV-II can invade Mo/Mφs and replicate and disseminate via Mo/Mφs with their differentiated type M1 and M2 macrophages. Our findings demonstrated that GCRV-II infected Mo/Mφs and replicated in them. Furthermore, GCRV-II infection induces an increased number of M1 and M2 macrophages in grass carp tissues and a higher viral load in M2 macrophages. Furthermore, GCRV-II induced Mo/Mφs apoptosis to release viruses, eventually infecting more cells. Our study identified Mo/Mφs as crucial components in the pathway of GCRV-II dissemination and provides a solid foundation for the development of treatment strategies for GCRV-II infection.
Asunto(s)
Carpas , Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Animales , Apoptosis , Citocinas , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/patología , Enfermedades de los Peces/virología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/virología , Monocitos/metabolismo , Infecciones por Reoviridae/metabolismo , Infecciones por Reoviridae/patología , Infecciones por Reoviridae/veterinaria , Replicación ViralRESUMEN
Usutu virus (USUV) and West Nile virus (WNV) are closely related emerging arboviruses belonging to the Flavivirus genus and posing global public health concerns. Although human infection by these viruses is mainly asymptomatic, both have been associated with neurological disorders such as encephalitis and meningoencephalitis. Since USUV and WNV are transmitted through the bite of an infected mosquito, the skin represents the initial site of virus inoculation and provides the first line of host defense. Although some data on the early stages of WNV skin infection are available, very little is known about USUV. Herein, USUV-skin resident cell interactions were characterized. Using primary human keratinocytes and fibroblasts, an early replication of USUV during the first 24 hours was shown in both skin cells. In human skin explants, a high viral tropism for keratinocytes was observed. USUV infection of these models induced type I and III interferon responses associated with upregulated expression of various interferon-stimulated genes as well as pro-inflammatory cytokine and chemokine genes. Among the four USUV lineages studied, the Europe 2 strain replicated more efficiently in skin cells and induced a higher innate immune response. In vivo, USUV and WNV disseminated quickly from the inoculation site to distal cutaneous tissues. In addition, viral replication and persistence in skin cells were associated with an antiviral response. Taken together, these results provide a better understanding of the pathophysiology of the early steps of USUV infection and suggest that the skin constitutes a major amplifying organ for USUV and WNV infection.IMPORTANCEUsutu virus (USUV) and West Nile virus (WNV) are closely related emerging Flaviviruses transmitted through the bite of an infected mosquito. Since they are directly inoculated within the upper skin layers, the interactions between the virus and skin cells are critical in the pathophysiology of USUV and WNV infection. Here, during the early steps of infection, we showed that USUV can efficiently infect two human resident skin cell types at the inoculation site: the epidermal keratinocytes and the dermal fibroblasts, leading to the induction of an antiviral innate immune response. Moreover, following cutaneous inoculation, we demonstrated that both viruses can rapidly spread, replicate, and persist in all distal cutaneous tissues in mice, a phenomenon associated with a generalized skin inflammatory response. These results highlight the key amplifying and immunological role of the skin during USUV and WNV infection.
Asunto(s)
Infecciones por Flavivirus , Flavivirus , Tropismo Viral , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Ratones , Antivirales , Culicidae , Infecciones por Flavivirus/virología , Interferones , Fiebre del Nilo Occidental/virología , Piel/inmunología , Piel/patología , Piel/virología , Técnicas In VitroRESUMEN
The obligate intracellular parasite Toxoplasma gondii causes life-threatening toxoplasmosis to immunocompromised individuals. The pathogenesis of Toxoplasma relies on its swift dissemination to the central nervous system through a 'Trojan Horse' mechanism using infected leukocytes as carriers. Previous work found TgWIP, a protein secreted from Toxoplasma, played a role in altering the actin cytoskeleton and promoting cell migration in infected dendritic cells (DCs). However, the mechanism behind these changes was unknown. Here, we report that TgWIP harbors two SH2-binding motifs that interact with tyrosine phosphatases Shp1 and Shp2, leading to phosphatase activation. DCs infected with Toxoplasma exhibited hypermigration, accompanying enhanced F-actin stress fibers and increased membrane protrusions such as filopodia and pseudopodia. By contrast, these phenotypes were abrogated in DCs infected with Toxoplasma expressing a mutant TgWIP lacking the SH2-binding motifs. We further demonstrated that the Rho-associated kinase (Rock) is involved in the induction of these phenotypes, in a TgWIP-Shp1/2 dependent manner. Collectively, the data uncover a molecular mechanism by which TgWIP modulates the migration dynamics of infected DCs in vitro.
Asunto(s)
Movimiento Celular , Células Dendríticas , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Proteínas Protozoarias , Toxoplasma , Toxoplasma/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Células Dendríticas/metabolismo , Células Dendríticas/parasitología , Animales , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Humanos , Ratones , Quinasas Asociadas a rho/metabolismo , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Toxoplasmosis/patología , Ratones Endogámicos C57BLRESUMEN
Translating evidence-based practice (EBP) into real-world clinical settings often takes a considerable amount of time and resources. In allergy and immunology, the dissemination and implementation (D&I) sciences facilitate the study of how variations in knowledge, resources, patient populations, and staffing models lead to differences in the clinical care of asthma, allergic disease, and primary immunodeficiency. Despite the need for validated approaches to study how to best apply EBP in the real world, the D&I sciences are underutilized. To address this gap, an American Academy of Allergy, Asthma & Immunology (AAAAI) work group was convened to provide an overview for the role of the D&I sciences in clinical care and future research within the field. For the D&I sciences to be leveraged effectively, teams should be multidisciplinary and inclusive of community and clinical partners, and multimethods approaches to data collection and analyses should be used. Used appropriately, the D&I sciences provide important tools to promote EBP and health equity as well as optimization of clinical practice in allergy and immunology.
Asunto(s)
Alergia e Inmunología , Humanos , Práctica Clínica Basada en la Evidencia , Ciencia de la Implementación , Difusión de la InformaciónRESUMEN
OBJECTIVES: Genetic characterization of the antibiotic resistance determinants and associated mobile genetic elements (MGEs) among Streptococcus pyogenes [Group A streptococci (GAS)] clinical isolates of an M77 serotype collected in Poland between 2003 and 2017. METHODS: The genomes of 136 M77 GAS isolates were sequenced using Illumina, and selected with long-read approach (Oxford Nanopore). Whole genome sequences were analyzed to determine the presence of macrolide resistance determinants, and their genetic context. RESULTS: The strains used in the study were collected in the two multicenter surveys from in- and outpatients. Sequencing data analysis revealed that all strains carried the tet(O) gene (100%, N=136). They were classified as a single sequence type ST63. For erythromycin resistance, the unique determinant was erm(TR) detected in 76.5% (N=104) isolates. A single appearance of tet(M) and erm(B) on Tn3872 was noticed. The mefA, mefE, and msr(D) genes were detected in neither of the genomes. This correlated with the detected strain phenotypes - 11 exhibited cMLSB, 93 - iMLSB, and no M phenotype.The erm(TR) gene was predominantly (N=74) found within a novel hybrid Integrative Conjugative Element composed of the ICESp1108-like sequence and ICESp2906 variant which was then named ICESp1109. However, in strains isolated before 2008, erm(TR) was located within ICESp2905 (N=27). The erm(TR) gene was detected within stand-alone ICESp1108-like sequences in 3 strains. CONCLUSIONS: Based on phylogenetic analysis results the clonal dissemination of the macrolide-resistant S. pyogenes M77/ST63 strain with hybrid ICESp1109 was observed between 2008 and 2017. ICESp1109 is the novel hybrid ICE in Gram-positive bacteria.
RESUMEN
Rickettsia parkeri is a pathogen of public health concern and transmitted by the Gulf Coast tick, Amblyomma maculatum. Rickettsiae are obligate intracellular bacteria that enter and replicate in diverse host cells. Rickettsial outer membrane protein B (OmpB) functions in bacterial adhesion, invasion, and avoidance of cell-autonomous immunity in mammalian cell infection, but the function of OmpB in arthropod infection is unknown. In this study, the function of R. parkeri OmpB was evaluated in the tick host. R. parkeri wild-type and R. parkeri ompBSTOP::tn (non-functional OmpB) were capillary fed to naïve A. maculatum ticks to investigate dissemination in the tick and transmission to vertebrates. Ticks exposed to R. parkeri wild-type had greater rickettsial loads in all organs than ticks exposed to R. parkeri ompBSTOP::tn at 12 h post-capillary feeding and after 1 day of feeding on host. In rats that were exposed to R. parkeri ompBSTOP::tn-infected ticks, dermal inflammation at the bite site was less compared to R. parkeri wild-type-infected ticks. In vitro, R. parkeri ompBSTOP::tn cell attachment to tick cells was reduced, and host cell invasion of the mutant was initially reduced but eventually returned to the level of R. parkeri wild-type by 90 min post-infection. R. parkeri ompBSTOP::tn and R. parkeri wild-type had similar growth kinetics in the tick cells, suggesting that OmpB is not essential for R. parkeri replication in tick cells. These results indicate that R. parkeri OmpB functions in rickettsial attachment and internalization to tick cells and pathogenicity during tick infection.
Asunto(s)
Ixodidae , Rickettsia , Garrapatas , Ratas , Animales , Garrapatas/microbiología , Ixodidae/microbiología , Proteínas de la Membrana , MamíferosRESUMEN
Enterococci are common commensal bacteria that colonize the gastrointestinal tracts of most mammals, including humans. Importantly, these bacteria are one of the leading causes of nosocomial infections. This study examined the role of colonic macrophages in facilitating Enterococcus faecalis infections in mice. We determined that depletion of colonic phagocytes resulted in the reduction of E. faecalis dissemination to the gut-draining mesenteric lymph nodes. Furthermore, we established that trafficking of monocyte-derived CX3CR1-expressing macrophages contributed to E. faecalis dissemination in a manner that was not reliant on CCR7, the conventional receptor involved in lymphatic migration. Finally, we showed that E. faecalis mutants with impaired intracellular survival exhibited reduced dissemination, suggesting that E. faecalis can exploit host immune cell migration to disseminate systemically and cause disease. Our findings indicate that modulation of macrophage trafficking in the context of antibiotic therapy could serve as a novel approach for preventing or treating opportunistic infections by disseminating enteric pathobionts like E. faecalis.
Asunto(s)
Receptor 1 de Quimiocinas CX3C , Colon , Enterococcus faecalis , Macrófagos , Receptores CCR2 , Receptores de Quimiocina , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Macrófagos/microbiología , Macrófagos/inmunología , Ratones , Colon/microbiología , Colon/inmunología , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Ratones Endogámicos C57BL , Ganglios Linfáticos/microbiología , Ganglios Linfáticos/inmunología , Receptores CCR7/metabolismo , Receptores CCR7/genéticaRESUMEN
Peritoneal metastasis frequently accompanies metastatic and/or recurrent gastric cancer, leading to a poor prognosis owing to a lack of effective treatment. Hence, there is a pressing need to enhance our understanding of the mechanisms and molecules driving peritoneal metastasis. In a previous study, galectin-4 inhibition impeded peritoneal metastasis in a murine model. This study examined the glycan profiles of cell surface proteins and glycosphingolipids (GSLs) in cells with varying tumorigenic potentials to understand the intricate mechanisms underlying galectin-4-mediated regulation, particularly glycosylation. Detailed mass spectrometry analysis showed that galectin-4 knockout cells exhibit increased expression of lacto-series GSLs with ß1,3-linked galactose while showing no significant alterations in neolacto-series GSLs. We conducted real-time polymerase chain reaction (PCR) analysis to identify candidate glycosyltransferases that synthesize increased levels of GSLs. Subsequently, we introduced the candidate B3GALT5 gene and selected the clones with high expression levels. B3GALT5 gene-expressing clones showed GSL glycan profiles like those of knockout cells and significantly reduced tumorigenic ability in mouse models. These clones exhibited diminished proliferative capacity and showed reduced expression of galectin-4 and activated AKT. Moreover, co-localization of galectin-4 with flotillin-2 (a raft marker) decreased in B3GALT5-expressing cells, implicating GSLs in galectin-4 localization to lipid rafts. D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (a GSL synthase inhibitor) also affected galectin-4 localization in rafts, suggesting the involvement of GSL microdomains. We discovered that B3GALT5 plays a crucial role in regulating peritoneal metastasis of malignant gastric cancer cells by suppressing cell proliferation and modulating lipid rafts and galectin-4 via mechanisms that are yet to be elucidated.
Asunto(s)
Galactosiltransferasas , Galectina 4 , Neoplasias Gástricas , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Animales , Humanos , Ratones , Galactosiltransferasas/metabolismo , Galactosiltransferasas/genética , Galectina 4/metabolismo , Galectina 4/genética , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/genética , Proliferación Celular , Diferenciación Celular , Línea Celular TumoralRESUMEN
Disseminated leishmaniasis (DL) is an emergent severe disease manifesting with multiple lesions. To determine the relationship between immune response and clinical and therapeutic outcomes, we studied 101 DL and 101 cutaneous leishmaniasis (CL) cases and determined cytokines and chemokines in supernatants of mononuclear cells stimulated with leishmania antigen. Patients were treated with meglumine antimoniate (20 mg/kg) for 20 days (CL) or 30 days (DL); 19 DL patients were instead treated with amphotericin B, miltefosine, or miltefosine and meglumine antimoniate. High levels of chemokine ligand 9 were associated with more severe DL. The cure rate for meglumine antimoniate was low for both DL (44%) and CL (60%), but healing time was longer in DL (p = 0.003). The lowest cure rate (22%) was found in DL patients with >100 lesions. However, meglumine antimoniate/miltefosine treatment cured all DL patients who received it; therefore, that combination should be considered as first choice therapy.
Asunto(s)
Leishmania braziliensis , Leishmania , Leishmaniasis Cutánea , Fosforilcolina/análogos & derivados , Humanos , Antimoniato de Meglumina/uso terapéutico , Leishmaniasis Cutánea/diagnóstico , Leishmaniasis Cutánea/tratamiento farmacológicoRESUMEN
Highly pathogenic avian influenza H5N6 and H5N1 viruses of clade 2.3.4.4b were simultaneously introduced into South Korea at the end of 2023. An outbreak at a broiler duck farm consisted of concurrent infection by both viruses. Sharing genetic information and international surveillance of such viruses in wild birds and poultry is critical.
Asunto(s)
Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Filogenia , Gripe Aviar/virología , Gripe Aviar/epidemiología , República de Corea/epidemiología , Animales , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Patos/virología , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Coinfección/virología , Coinfección/epidemiología , Historia del Siglo XXI , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiologíaRESUMEN
Circulating tumor cells (CTCs) are known to be prognostic for metastatic relapse and are detected in patients as solitary cells or cell clusters. Circulating tumor cell clusters (CTC clusters) have been observed clinically for decades and are of significantly higher metastatic potential compared to solitary CTCs. Recent studies suggest distinct differences in CTC cluster biology regarding invasion and survival in circulation. However, differences regarding dissemination, dormancy, and reawakening require more investigations compared to solitary CTCs. Here, we review the current state of CTC cluster research and consider their clinical significance. In addition, we discuss the concept of collective invasion by CTC clusters and molecular evidence as to how cluster survival in circulation compares to that of solitary CTCs. Molecular differences between solitary and clustered CTCs during dormancy and reawakening programs will also be discussed. We also highlight future directions to advance our current understanding of CTC cluster biology.
Asunto(s)
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Pronóstico , BiologíaRESUMEN
Thymic epithelial tumors (TETs) are rare tumors arising from the mediastinum. Among TETs, thymoma type B2, B3 and thymic carcinoma are highly malignant and often present invasion and dissemination. However, the biological characteristics of TETs have not been thoroughly studied, and their mechanisms of invasion and dissemination are largely unknown. α-Actinin 4 (ACTN4) is a member of actin-binding proteins and reportedly plays important roles in the progression of several cancers. In this study, we investigated the relationship between ACTN4 and characteristics of the malignant potential of TETs, such as invasion and dissemination. In vitro experiments using Ty-82 thymic carcinoma cells revealed that overexpression of ACTN4 enhanced the proliferative and invasive ability of Ty-82 cells; conversely, knockdown of ACTN4 attenuated the proliferative and invasive potential of Ty-82 cells. In western blotting (WB) experiments, ACTN4 induced the phosphorylation of extracellular signal-regulated kinase and glycogen synthase kinase 3ß to regulate the ß-catenin/Slug pathway. Furthermore, WB analysis of cancer tissue-origin spheroids from patients with TETs showed results similar to those for Ty-82 cells. In vivo experiments showed that the knockdown of ACTN4 significantly suppressed the dissemination of Ty-82 cells. A WB and immunohistochemistry staining comparison of primary and disseminated lesions of TETs using surgical specimens showed upregulated expression of ACTN4, ß-catenin, and Slug proteins in disseminated lesions. In summary, our study suggests ACTN4 is associated with malignant potential characteristics such as invasion and dissemination in TETs via the ß-catenin/Slug pathway.
RESUMEN
Tissue factor pathway inhibitor-2 (TFPI2) is a Kunitz-type serine protease inhibitor and an ovarian clear cell carcinoma (CCC) biomarker. TFPI2 is expressed in several cancers and exerts tumor-suppressive effects; however, the role of TFPI2 in the CCC cell phenotype remains unclear. Therefore, in this study, we investigated the function of TFPI2 by establishing a gene knockout (KO) in ES-2 CCC cells and observed the change in phenotypes in vitro and in vivo. TFPI2 KO inhibited ES-2 cell proliferation, increased extracellular matrix protein adhesion, enhanced focal adhesion formation and activated integrin ß1 cell surface clustering in vitro, and markedly increased ES-2 tumor growth and dissemination in the peritoneal cavity of a mouse xenograft model. These findings suggest a novel function of TFPI2 expression in suppressing the formation of focal adhesions in CCC cells, potentially by activating integrin ß1. This function plays a role in the peritoneal growth characteristics of CCC cells.
RESUMEN
We present a detailed argument for how to integrate, or bridge, systems science thinking and methods with implementation science. We start by showing how fundamental systems science principles of structure, dynamics, information, and utility are relevant for implementation science. Then we examine the need for implementation science to develop and apply richer theories of complex systems. This can be accomplished by emphasizing a causal mechanisms approach. Identifying causal mechanisms focuses on the "cogs and gears" of public health, clinical, and organizational interventions. A mechanisms approach focuses on how a specific strategy will produce the implementation outcome. We show how connecting systems science to implementation science opens new opportunities for examining and addressing social determinants of health and conducting equitable and ethical implementation research. Finally, we present case studies illustrating successful applications of systems science within implementation science in community health policy, tobacco control, health care access, and breast cancer screening.
Asunto(s)
Ciencia de la Implementación , Humanos , Política de Salud , Análisis de Sistemas , Determinantes Sociales de la Salud , Teoría de Sistemas , Accesibilidad a los Servicios de Salud/organización & administración , Investigación sobre Servicios de Salud/organización & administración , Salud Pública , Neoplasias de la MamaRESUMEN
BACKGROUND: In clinical practice, peritoneal dissemination after curative-intent surgery for pleural mesothelioma occasionally recurs. This study investigated the risk factors and prognosis associated with post-pleurectomy/decortication peritoneal dissemination in pleural mesothelioma, which are rarely reported. METHODS: This retrospective review included 160 patients who experienced recurrence after pleurectomy/decortication for pleural mesothelioma between January 2011 and December 2021. Patients with recurrence were classified according to the initial recurrence pattern. The P group experienced recurrence with peritoneal dissemination, and the non-P group experienced recurrence without peritoneal dissemination. The analysis determined the risk factors for peritoneal dissemination using multivariable logistic regression analysis. Survival was analyzed using the Kaplan-Meier method and the log-rank test. RESULTS: Of the 160 patients, 20 (12.5%) exhibited peritoneal dissemination and were assigned to the P group, whereas 140 (87.5%) had recurrence without peritoneal dissemination and were assigned to the non-P group. Multivariable logistic regression analysis showed that diaphragm reconstruction (odds ratio [OR], 2.8; 95% confidence interval [CI], 1.0-8.0; p = 0.048) and female sex (OR, 3.7; 95% CI 1.26-10.8; p = 0.017) were associated with the P group. Post-recurrence survival was worse in the P group than in the non-P group (1-year post-recurrence survival: 22.2% vs. 65.3%; median: 6.7 months vs. 19.4 months; p = 0.0013). CONCLUSIONS: Peritoneal dissemination occurred in approximately one of every eight patients with recurrence after pleurectomy/decortication for pleural mesothelioma, and the incidence was significantly higher among females and patients undergoing diaphragm reconstruction. Moreover, postoperative recurrence of peritoneal dissemination was associated with a poor prognosis.