Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.093
Filtrar
Más filtros

Intervalo de año de publicación
1.
EMBO J ; 41(15): e110735, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35796008

RESUMEN

γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter, and its levels in the synaptic space are controlled by the GABA transporter isoforms (GATs). GATs are structurally related to biogenic amine transporters but display interactions with distinct inhibitors used as anti-epileptics. In this study, we engineer the binding pocket of Drosophila melanogaster dopamine transporter to resemble GAT1 and determine high-resolution X-ray structures of the modified transporter in the substrate-free state and in complex with GAT1 inhibitors NO711 and SKF89976a that are analogs of tiagabine, a medication prescribed for the treatment of partial seizures. We observe that the primary binding site undergoes substantial shifts in subsite architecture in the modified transporter to accommodate the two GAT1 inhibitors. We also observe that SKF89976a additionally interacts at an allosteric site in the extracellular vestibule, yielding an occluded conformation. Interchanging SKF89976a interacting residue in the extracellular loop 4 between GAT1 and dDAT suggests a role for this motif in the selective control of neurotransmitter uptake. Our findings, therefore, provide vital insights into the organizational principles dictating GAT1 activity and inhibition.


Asunto(s)
Drosophila melanogaster , Ácido gamma-Aminobutírico , Animales , Transporte Biológico , Drosophila melanogaster/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/química , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Neurotransmisores , Ácido gamma-Aminobutírico/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(6): e2114204120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36730201

RESUMEN

Psychostimulants interacting with the dopamine transporter (DAT) can be used illicitly or for the treatment of specific neuropsychiatric disorders. However, they can also produce severe and persistent adverse events. Often, their pharmacological properties in vitro do not fully correlate to their pharmacological profile in vivo. Here, we investigated the pharmacological effects of enantiomers of pyrovalerone, α-pyrrolidinovalerophenone, and 3,4-methylenedioxypyrovalerone as compared to the traditional psychostimulants cocaine and methylphenidate, using a variety of in vitro, computational, and in vivo approaches. We found that in vitro drug-binding kinetics at DAT correlate with the time-course of in vivo psychostimulant action in mice. In particular, a slow dissociation (i.e., slow koff) of S-enantiomers of pyrovalerone analogs from DAT predicts their more persistent in vivo effects when compared to cocaine and methylphenidate. Overall, our findings highlight the critical importance of drug-binding kinetics at DAT for determining the in vivo profile of effects produced by psychostimulant drugs.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Cocaína , Metilfenidato , Ratones , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Cocaína/farmacología , Cocaína/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Metilfenidato/farmacología
3.
Front Neuroendocrinol ; 75: 101153, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128801

RESUMEN

The hypothalamus is a key link in neuroendocrine regulations, which are provided by neuropeptides and dopamine. Until the late 1980 s, it was believed that, along with peptidergic neurons, hypothalamus contained dopaminergic neurons. Over time, it has been shown that besides dopaminergic neurons expressing the dopamine transporter and dopamine-synthesizing enzymes - tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) - the hypothalamus contains neurons expressing only TH, only AADC, both enzymes or only dopamine transporter. The end secretory product of TH neurons is L-3,4-dihydroxyphenylalanine, while that of AADC neurons and bienzymatic neurons lacking the dopamine transporter is dopamine. During ontogenesis, especially in the perinatal period, monoenzymatic neurons predominate in the hypothalamic neuroendocrine centers. It is assumed that L-3,4-dihydroxyphenylalanine and dopamine are released into the neuropil, cerebral ventricles, and blood vessels, participating in the regulation of target cell differentiation in the perinatal period and the functioning of target cells in adulthood.

4.
J Biol Chem ; 299(8): 105063, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468107

RESUMEN

Amphetamines (AMPHs) are substrates of the dopamine transporter (DAT) and reverse the direction of dopamine (DA) transport. This has been suggested to depend on activation of Ca2+-dependent pathways, but the mechanism underlying reverse transport via endogenously expressed DAT is still unclear. Here, to enable concurrent visualization by live imaging of extracellular DA dynamics and cytosolic Ca2+ levels, we employ the fluorescent Ca2+ sensor jRGECO1a expressed in cultured dopaminergic neurons together with the fluorescent DA sensor GRABDA1H expressed in cocultured "sniffer" cells. In the presence of the Na+-channel blocker tetrodotoxin to prevent exocytotic DA release, AMPH induced in the cultured neurons a profound dose-dependent efflux of DA that was blocked both by inhibition of DAT with cocaine and by inhibition of the vesicular monoamine transporter-2 with Ro-4-1284 or reserpine. However, the AMPH-induced DA efflux was not accompanied by an increase in cytosolic Ca2+ and was unaffected by blockade of voltage-gated calcium channels or chelation of cytosolic Ca2+. The independence of cytosolic Ca2+ was further supported by activation of N-methyl-D-aspartate-type ionotropic glutamate receptors leading to a marked increase in cytosolic Ca2+ without affecting AMPH-induced DA efflux. Curiously, AMPH elicited spontaneous Ca2+ spikes upon blockade of the D2 receptor, suggesting that AMPH can regulate intracellular Ca2+ in an autoreceptor-dependent manner regardless of the apparent independence of Ca2+ for AMPH-induced efflux. We conclude that AMPH-induced DA efflux in dopaminergic neurons does not require cytosolic Ca2+ but is strictly dependent on the concerted action of AMPH on both vesicular monoamine transporter-2 and DAT.


Asunto(s)
Anfetamina , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Anfetamina/metabolismo , Anfetamina/farmacología , Cocaína/metabolismo , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas , Humanos , Línea Celular Tumoral
5.
J Neurochem ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010681

RESUMEN

The regulation of dopamine (DA) removal from the synaptic cleft is a crucial process in neurotransmission and is facilitated by the sodium- and chloride-coupled dopamine transporter DAT. Psychostimulant drugs, cocaine, and amphetamine, both block the uptake of DA, while amphetamine also triggers the release of DA. As a result, they prolong or even amplify neurotransmitter signaling. Atypical inhibitors of DAT lack cocaine-like rewarding effects and offer a promising strategy for the treatment of drug use disorders. Here, we present the 3.2 Å resolution cryo-electron microscopy structure of the Drosophila melanogaster dopamine transporter (dDAT) in complex with the atypical non-competitive inhibitor AC-4-248. The inhibitor partially binds at the central binding site, extending into the extracellular vestibule, and locks the transporter in an outward open conformation. Our findings propose mechanisms for the non-competitive inhibition of DAT and attenuation of cocaine potency by AC-4-248 and provide a basis for the rational design of more efficacious atypical inhibitors.

6.
J Neurochem ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960397

RESUMEN

The dopamine transporter (DAT) is a transmembrane protein that regulates dopamine (DA) neurotransmission by binding to and moving DA from the synaptic cleft back into the neurons. Besides moving DA and other endogenous monoamines, DAT is also a neuronal carrier for exogenous compounds such as the psychostimulant amphetamine (Amph), and several studies have shown that Amph-induced behaviors require a functional DAT. Here, we demonstrate that exposure to Amph during early development causes behavioral, functional, and epigenetic modifications at the Caenorhabditis elegans DAT gene homolog, dat-1, in C. elegans offspring. Specifically, we show that, while embryos exposed to Amph generate adults that produce offspring with no obvious behavioral alterations, both adults and offspring exhibit an increased behavioral response when challenged with Amph. Our functional studies suggest that a decrease in DAT-1 expression underlies the increased behavioral response to Amph seen in offspring. Moreover, our epigenetic data suggest that histone methylation is a mechanism utilized by Amph to maintain changes in DAT-1 expression in offspring. Taken together, our data reveal that Amph, by altering the epigenetic landscape of DAT, propagates long-lasting functional and behavioral changes in offspring.

7.
J Neurochem ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118406

RESUMEN

The nematode Caenorhabditis elegans is well known for its ability to support forward genetic screens to identify molecules involved in neuronal viability and signaling. The proteins involved in C. elegans dopamine (DA) regulation are highly conserved across evolution, with prior work demonstrating that the model can serve as an efficient platform to identify novel genes involved in disease-associated processes. To identify novel players in DA signaling, we took advantage of a recently developed library of pre-sequenced mutant nematodes arising from the million mutation project (MMP) to identify strains that display the DA-dependent swimming-induced-paralysis phenotype (Swip). Our screen identified novel mutations in the dopamine transporter encoding gene dat-1, whose loss was previously used to identify the Swip phenotype, as well as multiple genes with previously unknown connections to DA signaling. Here, we present our isolation and characterization of one of these genes, bbs-1, previously linked to the function of primary cilia in worms and higher organisms, including humans, and where loss-of-function mutations result in a human disorder known as Bardet-Biedl syndrome. Our studies of C. elegans BBS-1 protein, as well as other proteins that are known to be assembled into a higher order complex (the BBSome) reveal that functional or structural disruption of this complex leads to exaggerated C. elegans DA signaling to produce Swip via a cell-autonomous mechanism. We provide evidence that not only does the proper function of cilia in C. elegans DA neurons support normal swimming behavior, but also that bbs-1 maintains normal levels of DAT-1 trafficking or function via a RHO-1 and SWIP-13/MAPK-15 dependent pathway where mutants may contribute to Swip independent of altered ciliary function. Together, these studies demonstrate novel contributors to DA neuron function in the worm and demonstrate the utility and efficiency of forward genetic screens using the MMP library.

8.
J Neurochem ; 168(3): 251-268, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308566

RESUMEN

The striatum can be divided into four anatomically and functionally distinct domains: the dorsolateral, dorsomedial, ventral and the more recently identified caudolateral (tail) striatum. Dopamine transmission in these striatal domains underlies many important behaviours, yet little is known about this phenomenon in the tail striatum. Furthermore, the tail is divided anatomically into four divisions (dorsal, medial, intermediate and lateral) based on the profile of D1 and D2 dopamine receptor-expressing medium spiny neurons, something that is not seen elsewhere in the striatum. Considering this organisation, how dopamine transmission occurs in the tail striatum is of great interest. We recorded evoked dopamine release in the four tail divisions, with comparison to the dorsolateral striatum, using fast-scan cyclic voltammetry in rat brain slices. Contributions of clearance mechanisms were investigated using dopamine transporter knockout (DAT-KO) rats, pharmacological transporter inhibitors and dextran. Evoked dopamine release in all tail divisions was smaller in amplitude than in the dorsolateral striatum and, importantly, regional variation was observed: dorsolateral ≈ lateral > medial > dorsal ≈ intermediate. Release amplitudes in the lateral division were 300% of that in the intermediate division, which also exhibited uniquely slow peak dopamine clearance velocity. Dopamine clearance in the intermediate division was most dependent on DAT, and no alternative dopamine transporters investigated (organic cation transporter-3, norepinephrine transporter and serotonin transporter) contributed significantly to dopamine clearance in any tail division. Our findings confirm that the tail striatum is not only a distinct dopamine domain but also that each tail division has unique dopamine transmission characteristics. This supports that the divisions are not only anatomically but also functionally distinct. How this segregation relates to the overall function of the tail striatum, particularly the processing of multisensory information, is yet to be determined.


Asunto(s)
Dopamina , Cola (estructura animal) , Ratas , Animales , Cuerpo Estriado , Neostriado , Antagonistas de Dopamina/farmacología
9.
Annu Rev Pharmacol Toxicol ; 61: 609-628, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33411583

RESUMEN

The abuse of illicit psychostimulants such as cocaine and methamphetamine continues to pose significant health and societal challenges. Despite considerable efforts to develop medications to treat psychostimulant use disorders, none have proven effective, leaving an underserved patient population and unanswered questions about what mechanism(s) of action should be targeted for developing pharmacotherapies. As both cocaine and methamphetamine rapidly increase dopamine (DA) levels in mesolimbic brain regions, leading to euphoria that in some can lead to addiction, targets in which this increased dopaminergic tone may be mitigated have been explored. Further, understanding and targeting mechanisms underlying relapse are fundamental to the success of discovering medications that reduce the reinforcing effects of the drug of abuse, decrease the negative reinforcement or withdrawal/negative affect that occurs during abstinence, or both. Atypical inhibitors of the DA transporter and partial agonists/antagonists at DA D3 receptors are described as two promising targets for future drug development.


Asunto(s)
Conducta Adictiva , Estimulantes del Sistema Nervioso Central , Cocaína , Preparaciones Farmacéuticas , Dopamina , Humanos
10.
Eur J Neurosci ; 59(10): 2502-2521, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38650303

RESUMEN

The emergence of compulsive drug-seeking habits, a hallmark feature of substance use disorder, has been shown to be predicated on the engagement of dorsolateral striatal control over behaviour. This process involves the dopamine-dependent functional coupling of the anterior dorsolateral striatum (aDLS) with the nucleus accumbens core, but the mechanisms by which this coupling occurs have not been fully elucidated. The striatum is tiled by a syncytium of astrocytes that express the dopamine transporter (DAT), the level of which is altered in individuals with heroin use disorder. Astrocytes are therefore uniquely placed functionally to bridge dopamine-dependent mechanisms across the striatum. Here we tested the hypothesis that exposure to heroin influences the expression of DAT in striatal astrocytes across the striatum before the development of DLS-dependent incentive heroin seeking habits. Using Western-blot, qPCR, and RNAscope™, we measured DAT protein and mRNA levels in whole tissue, culture and in situ astrocytes from striatal territories of rats with a well-established cue-controlled heroin seeking habit and rats trained to respond for heroin or food under continuous reinforcement. Incentive heroin seeking habits were associated with a reduction in DAT protein levels in the anterior aDLS that was preceded by a heroin-induced reduction in DAT mRNA and protein in astrocytes across the striatum. Striatal astrocytes were also shown to be susceptible to direct dopamine- and opioid-induced downregulation of DAT expression. These results suggest that astrocytes may critically regulate the striatal dopaminergic adaptations that lead to the development of incentive heroin seeking habits.


Asunto(s)
Astrocitos , Cuerpo Estriado , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Comportamiento de Búsqueda de Drogas , Heroína , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Masculino , Ratas , Comportamiento de Búsqueda de Drogas/fisiología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Heroína/farmacología , Heroína/administración & dosificación , Dopamina/metabolismo , Motivación/efectos de los fármacos , Motivación/fisiología , Dependencia de Heroína/metabolismo , Ratas Sprague-Dawley
11.
Eur J Neurosci ; 59(10): 2436-2449, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38444104

RESUMEN

Psychostimulant use disorders (PSUD) are prevalent; however, no FDA-approved medications have been made available for treatment. Previous studies have shown that dual inhibitors of the dopamine transporter (DAT) and sigma receptors significantly reduce the behavioral/reinforcing effects of cocaine, which have been associated with stimulation of extracellular dopamine (DA) levels resulting from DAT inhibition. Here, we employ microdialysis and fast scan cyclic voltammetry (FSCV) procedures to investigate the effects of dual inhibitors of DAT and sigma receptors in combination with cocaine on nucleus accumbens shell (NAS) DA dynamics in naïve male Sprague Dawley rats. In microdialysis studies, administration of rimcazole (3, 10 mg/kg; i.p.) or its structural analog SH 3-24 (1, 3 mg/kg; i.p.), compounds that are dual inhibitors of DAT and sigma receptors, significantly reduced NAS DA efflux stimulated by increasing doses of cocaine (0.1, 0.3, 1.0 mg/kg; i.v.). Using the same experimental conditions, in FSCV tests, we show that rimcazole pretreatments attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Under the same conditions, JJC8-091, a modafinil analog and dual inhibitor of DAT and sigma receptors, similarly attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Our results provide the neurochemical groundwork towards understanding actions of dual inhibitors of DAT and sigma receptors on DA dynamics that likely mediate the behavioral effects of psychostimulants like cocaine.


Asunto(s)
Cocaína , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Inhibidores de Captación de Dopamina , Dopamina , Núcleo Accumbens , Receptores sigma , Animales , Masculino , Ratas , Compuestos de Bencidrilo/farmacología , Cocaína/farmacología , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Inhibidores de Captación de Dopamina/farmacología , Microdiálisis/métodos , Modafinilo/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Piperidinas/farmacología , Ratas Sprague-Dawley , Receptores sigma/antagonistas & inhibidores
12.
Eur J Neurosci ; 59(6): 1242-1259, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37941514

RESUMEN

Ca2+ entry into nigrostriatal dopamine (DA) neurons and axons via L-type voltage-gated Ca2+ channels (LTCCs) contributes, respectively, to pacemaker activity and DA release and has long been thought to contribute to vulnerability to degeneration in Parkinson's disease. LTCC function is greater in DA axons and neurons from substantia nigra pars compacta than from ventral tegmental area, but this is not explained by channel expression level. We tested the hypothesis that LTCC control of DA release is governed rather by local mechanisms, focussing on candidate biological factors known to operate differently between types of DA neurons and/or be associated with their differing vulnerability to parkinsonism, including biological sex, α-synuclein, DA transporters (DATs) and calbindin-D28k (Calb1). We detected evoked DA release ex vivo in mouse striatal slices using fast-scan cyclic voltammetry and assessed LTCC support of DA release by detecting the inhibition of DA release by the LTCC inhibitors isradipine or CP8. Using genetic knockouts or pharmacological manipulations, we identified that striatal LTCC support of DA release depended on multiple intersecting factors, in a regionally and sexually divergent manner. LTCC function was promoted by factors associated with Parkinsonian risk, including male sex, α-synuclein, DAT and a dorsolateral co-ordinate, but limited by factors associated with protection, that is, female sex, glucocerebrosidase activity, Calb1 and ventromedial co-ordinate. Together, these data show that LTCC function in DA axons and isradipine effect are locally governed and suggest they vary in a manner that in turn might impact on, or reflect, the cellular stress that leads to parkinsonian degeneration.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Femenino , Ratones , Animales , Masculino , Isradipino/farmacología , Isradipino/metabolismo , Dopamina/metabolismo , Canales de Calcio Tipo L/metabolismo , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismo , Factores de Riesgo , Calcio/metabolismo
13.
J Transl Med ; 22(1): 719, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103832

RESUMEN

With the increasing age of the population worldwide, the incidence rate of Parkinson's disease (PD) is increasing annually. Currently, the treatment strategy for PD only improves clinical symptoms. No effective treatment strategy can slow down the progression of the disease. In the present study, whole transcriptome sequencing was used to obtain the mRNA and miRNA expression profiles in a PD mouse model, which revealed the pathogenesis of PD. The transcription factor RUNX3 upregulated the miR-186-3p expression in the PD model. Furthermore, the high miR-186-3p expression in PD can be targeted to inhibit the DAT expression, resulting in a decrease in the dopamine content of dopaminergic neurons. Moreover, miR-186-3p can be targeted to inhibit the IGF1R expression and prevent the activation of the IGF1R-P-PI3K-P-AKT pathway, thus increasing the apoptosis of dopaminergic neurons by regulating the cytochrome c-Bax-cleaved caspase-3 pathway. Our research showed that the RUNX3-miR-186-3p-DAT-IGF1R axis plays a key role in the pathogenesis of PD, and miR-186-3p is a potential target for the treatment of PD.


Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal , Modelos Animales de Enfermedad , MicroARNs , Enfermedad de Parkinson , Receptor IGF Tipo 1 , MicroARNs/genética , MicroARNs/metabolismo , Animales , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Ratones Endogámicos C57BL , Masculino , Apoptosis/genética , Transducción de Señal , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Ratones , Secuencia de Bases
14.
Eur J Nucl Med Mol Imaging ; 51(9): 2638-2648, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38587645

RESUMEN

PURPOSE: Toludesvenlafaxine is a recently developed antidepressant that belongs to the triple reuptake inhibitor class. Despite the in vitro evidence that toludesvenlafaxine inhibits the reuptake of serotonin (5-HT), norepinephrine (NE) and dopamine (DA), there is no in vivo evidence that toludesvenlafaxine binds to DAT and increases DA level, a mechanism thought to contribute to its favorable clinical performance. METHODS: Positron emission tomography/computed tomography (PET/CT) was used to examine the DAT binding capacity in healthy rats and human subjects and microdialysis was used to examine the striatal DA level in rats. [18F]FECNT and [11C]CFT were used as PET/CT radioactive tracer for rat and human studies, respectively. RESULTS: In rats, 9 mg/kg of toludesvenlafaxine hydrochloride (i.v.) followed by an infusion of 3 mg/kg via minipump led to the binding rate to striatum DAT at 3.7 - 32.41% and to hypothalamus DAT at 5.91 - 17.52% during the 45 min scanning period. 32 mg/kg oral administration with toludesvenlafaxine hydrochloride significantly increased the striatal DA level with the AUC0 - 180 min increased by 63.9%. In healthy volunteers, 160 mg daily toludesvenlafaxine hydrochloride sustained-release tablets for 4 days led to an average occupancy rates of DAT at 8.04% ± 7.75% and 8.09% ± 7.00%, respectively, in basal ganglion 6 h and 10 h postdose. CONCLUSION: These results represent the first to confirm the binding of toludesvenlafaxine to DAT in both rats and humans using PET/CT, and its elevation of brain DA level, which may help understand the unique pharmacological and functional effects of triple reuptake inhibitors such as toludesvenlafaxine. GOV IDENTIFIERS: NCT05905120. Registered 14 June 2023. (retrospectively registered).


Asunto(s)
Succinato de Desvenlafaxina , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratas , Humanos , Animales , Masculino , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Adulto , Unión Proteica , Ratas Sprague-Dawley , Femenino , Dopamina/metabolismo
15.
Eur J Nucl Med Mol Imaging ; 51(5): 1333-1344, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38133688

RESUMEN

PURPOSE: Deep convolutional neural networks (CNN) are promising for automatic classification of dopamine transporter (DAT)-SPECT images. Reporting the certainty of CNN-based decisions is highly desired to flag cases that might be misclassified and, therefore, require particularly careful inspection by the user. The aim of the current study was to design and validate a CNN-based system for the identification of uncertain cases. METHODS: A network ensemble (NE) combining five CNNs was trained for binary classification of [123I]FP-CIT DAT-SPECT images as "normal" or "neurodegeneration-typical reduction" with high accuracy (NE for classification, NEfC). An uncertainty detection module (UDM) was obtained by combining two additional NE, one trained for detection of "reduced" DAT-SPECT with high sensitivity, the other with high specificity. A case was considered "uncertain" if the "high sensitivity" NE and the "high specificity" NE disagreed. An internal "development" dataset of 1740 clinical DAT-SPECT images was used for training (n = 1250) and testing (n = 490). Two independent datasets with different image characteristics were used for testing only (n = 640, 645). Three established approaches for uncertainty detection were used for comparison (sigmoid, dropout, model averaging). RESULTS: In the test data from the development dataset, the NEfC achieved 98.0% accuracy. 4.3% of all test cases were flagged as "uncertain" by the UDM: 2.5% of the correctly classified cases and 90% of the misclassified cases. NEfC accuracy among "certain" cases was 99.8%. The three comparison methods were less effective in labelling misclassified cases as "uncertain" (40-80%). These findings were confirmed in both additional test datasets. CONCLUSION: The UDM allows reliable identification of uncertain [123I]FP-CIT SPECT with high risk of misclassification. We recommend that automatic classification of [123I]FP-CIT SPECT images is combined with an UDM to improve clinical utility and acceptance. The proposed UDM method ("high sensitivity versus high specificity") might be useful also for DAT imaging with other ligands and for other binary classification tasks.


Asunto(s)
Aprendizaje Profundo , Humanos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Incertidumbre , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tropanos
16.
Artículo en Inglés | MEDLINE | ID: mdl-38730086

RESUMEN

PURPOSE: [123I]I-FP-CIT SPECT is an imaging tool to support the diagnosis of parkinsonian syndromes characterized by nigrostriatal dopaminergic degeneration. After intravenous injection, [123I]I-FP-CIT is metabolized for a small part by the enzyme CYP3A4, leading to the formation of [123I]I-nor-ß-CIT. [123I]I-nor-ß-CIT passes the blood-brain barrier and has a very high affinity for the serotonin transporter (SERT). The SERT is expressed in the striatum and cortical areas. So, at least theoretical, the use of frequently used CYP3A4 inhibitors (like amiodarone) may influence the specific to non-specific striatal [123I]I-FP-CIT ratio. Here we tested this novel hypothesis. METHODS: Using a retrospective design, we determined the specific to non-specific striatal [123I]I-FP-CIT ratio (using BRASS software) in 6 subjects that were using an CYP3A4 inhibitor and 18 matched controls. Only subjects were included with a normal rated [123I]I-FP-CIT SPECT scan, and all participants were scanned on the same brain-dedicated SPECT system. RESULTS: The specific to non-specific (assessed in the occipital cortex) striatal [123I]I-FP-CIT binding ratio was significantly higher in CYP3A4 users than in the control group (3.52 ± 0.33 vs. 2.90 ± 0.78, p < 0.001). CONCLUSION: Our preliminary data suggest that the use of CYP3A4 inhibitors may influence striatal [123I]I-FP-CIT binding ratios. This information, when reproduced in larger studies, may be relevant for studies in which quantification of [123I]I-FP-CIT SPECT imaging is used for diagnostic or research purposes.

17.
Synapse ; 78(4): e22294, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38813759

RESUMEN

Major depressive disorder is one of the most prevalent mental health disorders, posing a global socioeconomic burden. Conventional antidepressant treatments have a slow onset of action, and 30% of patients show no clinically significant treatment response. The recently approved fast-acting antidepressant S-ketamine, an N-methyl-D-aspartate receptor antagonist, provides a new approach for treatment-resistant patients. However, knowledge of S-ketamine's mechanism of action is still being established. Depressed human subjects have lower striatal dopamine transporter (DAT) availability compared to healthy controls. Rodent studies report increased striatal dopamine concentration in response to acute ketamine administration. In vivo [18F]FE-PE2I ([18F]-(E)-N-(3-iodoprop-2-enyl)-2ß-carbofluoroethoxy-3ß-(4'-methyl-phenyl) nortropane) positron emission tomography (PET) imaging of the DAT has not previously been applied to assess the effect of acute subanesthetic S-ketamine administration on DAT availability. We applied translational in vivo [18F]FE-PE2I PET imaging of the DAT in healthy female rats to evaluate whether an acute subanesthetic intraperitoneal dose of 15 mg/kg S-ketamine alters DAT availability. We also performed [3H]GBR-12935 autoradiography on postmortem brain sections. We found no effect of acute S-ketamine administration on striatal DAT binding using [18F]FE-PE2I PET or [3H]GBR-12935 autoradiography. This negative result does not support the hypothesis that DAT changes are associated with S-ketamine's rapid antidepressant effects, but additional studies are warranted.


Asunto(s)
Cuerpo Estriado , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Ketamina , Ratas Sprague-Dawley , Animales , Ketamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Femenino , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/diagnóstico por imagen , Ratas , Tomografía de Emisión de Positrones , Autorradiografía
18.
Eur J Neurol ; 31(3): e16169, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38085264

RESUMEN

BACKGROUND AND PURPOSE: Pure autonomic failure (PAF) is a rare progressive neurodegenerative disease characterized by neurogenic orthostatic hypotension at presentation, without other neurological abnormalities. Some patients may develop other central neurological features indicative of multiple system atrophy or a Lewy body disorder. There are currently no biomarkers to assess possible central nervous system involvement in probable PAF at an early stage. A possibility is to evaluate the nigrostriatal dopaminergic degeneration by imaging of dopamine transporter with DaTscan brain imaging. The objective was to evaluate subclinical central nervous system involvement using DaTscan in PAF. METHODS: We retreospectively reviewed pure autonomic failure patients who were evaluated at the Autonomic Unit between January 2015 and August 2021 and underwent comprehensive autonomic assessment, neurological examination, brain magnetic resonance imaging and DaTscan imaging. DaTscan imaging was performed if patients presented with atypical features which did not meet the criteria for Parkinson's disease or multiple system atrophy or other atypical parkinsonism. RESULTS: In this cohort, the median age was 49.5 years at disease onset, 57.5 years at presentation, and the median disease duration was 7.5 years. Five of 10 patients had an abnormal DaTscan without neurological features meeting the criteria of an alternative diagnosis. Patients with abnormal DaTscan were predominantly males, had shorter disease duration and had more severe genitourinary symptoms. DISCUSSION: Degeneration of nigrostriatal dopaminergic neurons measured using DaTscan imaging can present in patients with PAF without concurrent signs indicating progression to widespread α-synucleinopathy. It is advocated that DaTscan imaging should be considered as part of the workup of patients with emerging autonomic failure who are considered to have PAF.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Atrofia de Múltiples Sistemas , Insuficiencia Autonómica Pura , Masculino , Humanos , Persona de Mediana Edad , Femenino , Insuficiencia Autonómica Pura/diagnóstico por imagen , Insuficiencia Autonómica Pura/patología , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/patología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Imágenes Dopaminérgicas , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Biomarcadores , Enfermedades del Sistema Nervioso Autónomo/diagnóstico por imagen , Enfermedades del Sistema Nervioso Autónomo/etiología
19.
Bioorg Med Chem Lett ; 102: 129678, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38408514

RESUMEN

The dopamine transporter (DAT) is closely related to a variety of neurological disorders including Parkinson's disease (PD) and other neurodegenerative diseases. In vivo imaging of DAT with radio-labelled tracers has become a powerful technique in related disorders. The radioiodine-labelled tropane derivative [123I]FP-CIT ([123I]1a) is widely used in clinical single photon emission computed tomography (SPECT) imaging as a DAT imaging agent. To develop more metabolically stable DAT radioligands for accurate imaging, this work compared two novel deuterated tropane derivatives ([131I]1c-d) with non-deuterated tropane derivatives ([131I]1a-b). [131I]1a-d were obtained in high radiochemical purity (RCP) above 99 % with molar activities of 7.0-10.0 GBq/µmol. The [131I]1a and [131I]1c exhibited relatively higher affinity to DAT (Ki: 2.0-3.12 nM) than [131I]1b and [131I]1d. Biodistribution results showed that [131I]1c consistently exhibited a higher ratio of the target to non-target (striatum/cerebellum) than [131I]1a. Furthermore, metabolism studies indicated that the in vivo metabolic stability of [131I]1c was superior to that of [131I]1a. Ex vivo autoradiography showed that [131I]1c selectively localized on DAT-rich striatal regions and the specific signal could be blocked by DAT inhibitor. These results indicated that [131I]1c might be a potential probe for DAT SPECT imaging in the brain.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Radioisótopos de Yodo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Radioisótopos de Yodo/metabolismo , Distribución Tisular , Tropanos , Tomografía Computarizada de Emisión de Fotón Único/métodos
20.
J Pharmacol Sci ; 154(2): 61-71, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246729

RESUMEN

Attention-deficit/hyperactivity disorder (ADHD) is the most common childhood-onset psychiatric disorder. We investigated the effects of systemic administration of monoamine reuptake inhibitors on long-term potentiation (LTP) formation and monoamine release in the medial prefrontal cortex (mPFC) of the stroke-prone spontaneously hypertensive rat (SHRSP)/Ezo, an animal model of ADHD, and its genetic control, Wistar Kyoto (WKY)/Ezo, to elucidate the functional changes in the mPFC monoamine neural system. Methylphenidate (dopamine (DA) and noradrenaline (NA) reuptake inhibitor) and desipramine (NA reuptake inhibitor) improved LTP formation defects in the mPFC of SHRSP/Ezo, suggesting that NA or both DA and NA are required for improvement of impaired LTP. Methylphenidate increased mPFC DA in both WKY/Ezo and SHRSP/Ezo, but the increase was greater in the former. GBR-12909 (DA reuptake inhibitor) increased mPFC DA in WKY/Ezo but had no effect in SHRSP/Ezo. This may be because DA transporter in SHRSP/Ezo is functionally impaired and contributes less to DA reuptake, so its inhibition did not increase DA level. Meanwhile, basal DA levels in the mPFC of SHRSP/Ezo were paradoxically decreased. These results suggest that functional changes in the DA and NA neural system in the frontal lobe are involved in the pathology of ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Metilfenidato , Humanos , Ratas , Animales , Niño , Ratas Endogámicas WKY , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Ratas Endogámicas SHR , Aminas , Metilfenidato/farmacología , Modelos Animales , Dopamina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA