Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 30(51): e202402132, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-38973769

RESUMEN

The design of boron-based molecular rotors stems from boron-carbon binary clusters containing multiple planar hypercoordinate carbons (phCs, such as C2B8). However, the design of boron-coordinated phCs is challenging due to boron's tendency to occupy hypercoordinate centers more than carbon. Although this challenge has been addressed, the designed clusters of interest have not exhibited dynamic fluxionality similar to that of the initial C2B8. To address this issue, we report a σ/π doubly aromatic CB2H5 + cluster, the first global minimum containing a boron-coordinated planar tetracoordinate carbon atom with dynamic fluxionality. Dynamics simulations show that two ligand H atoms exhibit alternate rotation, resulting in an intriguing dynamic fluxionality in this cluster. Electronic structure analysis reveals the flexible bonding positions of the ligand H atoms because they do not participate in π delocalized bonding nor bond to any other non-carbon atom, highlighting this rotational fluxionality. Unprecedentedly, the fluxional process involves not only the usual conversion of the number of bonding atoms, but also the type of bonding (3c π bonds ↔4c σ bonds), which is an uncommon fluxional mechanism. The cluster represents an effort to apply phC species to molecular machines.

2.
Chemistry ; 30(15): e202304134, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38205620

RESUMEN

A 14-electron ternary anionic CBe2 H5 - cluster containing a planar tetracoordinate carbon (ptC) atom is designed herein. Remarkably, it can be stabilized by only two beryllium atoms with both π-acceptor/σ-donor properties and two hydrogen atoms, which means that the conversion from planar methane (transition state) to ptC species (global minimum) requires the substitution of only two hydrogen atoms. Moreover, two ligand H atoms exhibit alternate rotation, giving rise to interesting dynamic fluxionality in this cluster. The electronic structure analysis reveals the flexible bonding positions of ligand H atoms due to C-H localized bonds, highlighting the rotational fluxionality in the cluster, and two CBe2 3c-2e delocalized bonds endow its rare 2σ/2π double aromaticity. Unprecedentedly, the fluxional process exhibits a conversion in the type of bonding (σ bond↔π bond), which is an uncommon fluxional mechanism. The cluster can be seen as an attempt to apply planar hypercoordinate carbon species to molecular motors.

3.
Molecules ; 28(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050038

RESUMEN

Doping alkali metals into boron clusters can effectively compensate for the intrinsic electron deficiency of boron and lead to interesting boron-based binary clusters, owing to the small electronegativity of the former elements. We report on the computational design of a three-layered sandwich cluster, Na5B7, on the basis of global-minimum (GM) searches and electronic structure calculations. It is shown that the Na5B7 cluster can be described as a charge-transfer complex: [Na4]2+[B7]3-[Na]+. In this sandwich cluster, the [B7]3- core assumes a molecular wheel in shape and features in-plane hexagonal coordination. The magic 6π/6σ double aromaticity underlies the stability of the [B7]3- molecular wheel, following the (4n + 2) Hückel rule. The tetrahedral Na4 ligand in the sandwich has a [Na4]2+ charge-state, which is the simplest example of three-dimensional aromaticity, spherical aromaticity, or superatom. Its 2σ electron counting renders σ aromaticity for the ligand. Overall, the sandwich cluster has three-fold 6π/6σ/2σ aromaticity. Molecular dynamics simulation shows that the sandwich cluster is dynamically fluxional even at room temperature, with a negligible energy barrier for intramolecular twisting between the B7 wheel and the Na4 ligand. The Na5B7 cluster offers a new example for dynamic structural fluxionality in molecular systems.

4.
J Mol Model ; 26(2): 30, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31965328

RESUMEN

A series of fluxional planar boron and boron-based binary clusters have evoked considerable interest of chemists. Here we propose the first ternary nanocompass cluster Mg2BeB8 based on quantum chemical calculations. It possesses a half-sandwich structure with a Mg2 dimer as the needle and a BeB8 molecular wheel as baseplate, which is the global minimum on the potential energy surface. Mg2BeB8 can be viewed as a nanocompass, whose Mg2 needle can rotate freely around the BeB8 baseplate at 300 K. The calculated rotation barrier is only 0.1 kcal mol-1 at the single-point CCSD(T)/6-311+G(d)//PBE0/6-311+G(d) level. Chemical bonding analyses indicate that Mg2BeB8 is a charge-transfer complex [Mg2]2+[BeB8]2- in nature. There is localized covalent Mg-Mg bond for [Mg2]2+ needle, while there are three delocalized π and three delocalized σ bonds for [BeB8]2- baseplate. The ionic bonding between the [Mg2]2+ needle and the 6π/6σ double aromatic [BeB8]2- baseplate makes the Mg2BeB8 cluster fluxional. The current results suggest that altering the baseplate is an effective way to enrich the nanocompass' family.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA