Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brain ; 146(5): 1804-1811, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36349561

RESUMEN

Corpus callosum defects are frequent congenital cerebral disorders caused by mutations in more than 300 genes. These include genes implicated in corpus callosum development or function, as well as genes essential for mitochondrial physiology. However, in utero corpus callosum anomalies rarely raise a suspicion of mitochondrial disease and are characterized by a very large clinical heterogeneity. Here, we report a detailed pathological and neuro-histopathological investigation of nine foetuses from four unrelated families with prenatal onset of corpus callosum anomalies, sometimes associated with other cerebral or extra-cerebral defects. Next generation sequencing allowed the identification of novel pathogenic variants in three different nuclear genes previously reported in mitochondrial diseases: TIMMDC1, encoding a Complex I assembly factor never involved before in corpus callosum defect; MRPS22, a protein of the small mitoribosomal subunit; and EARS2, the mitochondrial tRNA-glutamyl synthetase. The present report describes the antenatal histopathological findings in mitochondrial diseases and expands the genetic spectrum of antenatal corpus callosum anomalies establishing OXPHOS function as an important factor for corpus callosum biogenesis. We propose that, when observed, antenatal corpus callosum anomalies should raise suspicion of mitochondrial disease and prenatal genetic counselling should be considered.


Asunto(s)
Cuerpo Calloso , Enfermedades Mitocondriales , Humanos , Femenino , Embarazo , Cuerpo Calloso/patología , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/patología , Enfermedades Mitocondriales/genética , Mitocondrias/patología , Mutación , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales
2.
J Inherit Metab Dis ; 44(4): 949-960, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33855712

RESUMEN

Glutamyl-tRNA synthetase 2 (encoded by EARS2) is a mitochondrial aminoacyl-tRNA synthetase required to translate the 13 subunits of the electron transport chain encoded by the mitochondrial DNA. Pathogenic EARS2 variants cause combined oxidative phosphorylation deficiency, subtype 12 (COXPD12), an autosomal recessive disorder involving lactic acidosis, intellectual disability, and other features of mitochondrial compromise. Patients with EARS2 deficiency present with variable phenotypes ranging from neonatal lethality to a mitigated disease with clinical improvement in early childhood. Here, we report a neonate homozygous for a rare pathogenic variant in EARS2 (c.949G>T; p.G317C). Metabolomics in primary fibroblasts from this patient revealed expected abnormalities in TCA cycle metabolites, as well as numerous changes in purine, pyrimidine, and fatty acid metabolism. To examine genotype-phenotype correlations in COXPD12, we compared the metabolic impact of reconstituting these fibroblasts with wild-type EARS2 versus four additional EARS2 variants from COXPD12 patients with varying clinical severity. Metabolomics identified a group of signature metabolites, mostly from the TCA cycle and amino acid metabolism, that discriminate between EARS2 variants causing relatively mild and severe COXPD12. Taken together, these findings indicate that metabolomics in patient-derived fibroblasts may help establish genotype-phenotype correlations in EARS2 deficiency and likely other mitochondrial disorders.


Asunto(s)
Variación Genética/genética , Glutamato-ARNt Ligasa/genética , Leucoencefalopatías/genética , Errores Innatos del Metabolismo/genética , Acidosis Láctica/etiología , Aminoacil-ARNt Sintetasas/genética , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Glutamato-ARNt Ligasa/metabolismo , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/etiología , Leucoencefalopatías/metabolismo , Masculino , Errores Innatos del Metabolismo/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación
4.
Brain Dev ; 43(7): 798-803, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33962821

RESUMEN

BACKGROUND: Leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL) is a hereditary disorder caused by biallelic variants in the EARS2 gene. Patients exhibit developmental delay, hypotonia, and hyperreflexia. Brain magnetic resonance imaging (MRI) reveals T2-hyperintensities in the deep white matter, thalamus, and brainstem, which generally stabilize over time. Herein, we report a case of LTBL, showing remitting and exacerbating white matter lesions. CASE DESCRIPTION: A non-consanguineous Japanese boy exhibited unsteady head control with prominent hypotonia, with no family history of neurological diseases. Brain MRI at one year of age revealed extensive T2-hyperintensities on the cerebral white matter, cerebellum, thalamus, basal ganglia, pons, and medulla oblongata. Magnetic resonance spectroscopy of the lesions showed lactate and myoinositol peaks. Whole-exome sequencing yielded novel compound heterozygous EARS2 variants of c.164G>T, p.Arg55Leu and c.484C>T, p.Arg162Trp. Interestingly, the lesions were reduced at three years of age, and new lesions emerged at eight years of age. At 10 years of age, the lesions were changed in the corpus callosum, deep cerebral white matter, and cerebellum, without physical exacerbation. The lesions improved one year later. CONCLUSION: We present the first case with remitting and exacerbating brain lesions in LTBL. EARS2 could relate to selective and specific brain regions and age dependency. Although the exact role of EARS2 remains unknown, the remitting and exacerbating imaging changes may be a clue in elucidating a novel EARS2 function in LTBL.


Asunto(s)
Tronco Encefálico , Progresión de la Enfermedad , Glutamato-ARNt Ligasa/genética , Ácido Láctico/metabolismo , Leucoencefalopatías , Brote de los Síntomas , Tálamo , Adolescente , Factores de Edad , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Leucoencefalopatías/patología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Remisión Espontánea , Tálamo/diagnóstico por imagen , Tálamo/metabolismo , Tálamo/patología
5.
Mol Genet Metab Rep ; 28: 100782, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34285876

RESUMEN

BACKGROUND: Mitochondrial alanyl-tRNA synthetase 2 gene (AARS2) related disease is a rare genetic disorder affecting mitochondrial metabolism, leading to severe cardiac disease in infants or progressive leukodystrophy in young adults. The disease is considered ultra-rare with only 39 cases of AARS2-leukodystrophy previously reported. CASE PRESENTATION: We present the case of a young man of consanguineous heritage suffering from cognitive decline and progressive spasticity as well as weakness of the proximal musculature. Utilizing MRI and whole genome sequencing, the patient was diagnosed with a homozygous AARS2 missense variant (NM_020745.3:c.650C > T; p.(Pro217Leu)) and a homozygous CAPN3 variant (NM_000070.2: c.1469G > A; p.(Arg490Gln)), both variants have previously been identified in patients suffering from AARS2 related leukodystrophy and limb-girdle muscular dystrophy, respectively. CONCLUSIONS: This case report presents a case of homozygous AARS2 leukodystrophy and serves to highlight the importance of whole genome sequencing in diagnosing rare neurological diseases as well as to add to the awareness of adult onset leukodystrophies.

6.
Genes (Basel) ; 11(9)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887222

RESUMEN

The EARS2 nuclear gene encodes mitochondrial glutamyl-tRNA synthetase, a member of the class I family of aminoacyl-tRNA synthetases (aaRSs) that plays a crucial role in mitochondrial protein biosynthesis by catalyzing the charging of glutamate to mitochondrial tRNA(Glu). Pathogenic EARS2 variants have been associated with a rare mitochondrial disorder known as leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL). The targeted sequencing of 150 nuclear genes encoding respiratory chain complex subunits and proteins implicated in the oxidative phosphorylation (OXPHOS) function was performed. The oxygen consumption rate (OCR), and the extracellular acidification rate (ECAR), were measured. The enzymatic activities of Complexes I-V were analyzed spectrophotometrically. We describe a patient carrying two heterozygous EARS2 variants, c.376C>T (p.Gln126*) and c.670G>A (p.Gly224Ser), with infantile-onset disease and a severe clinical presentation. We demonstrate a clear defect in mitochondrial function in the patient's fibroblasts, suggesting the molecular mechanism underlying the pathogenicity of these EARS2 variants. Experimental validation using patient-derived fibroblasts allowed an accurate characterization of the disease-causing variants, and by comparing our patient's clinical presentation with that of previously reported cases, new clinical and radiological features of LTBL were identified, expanding the clinical spectrum of this disease.


Asunto(s)
Variación Genética/genética , Glutamato-ARNt Ligasa/genética , Ácido Láctico/metabolismo , Leucoencefalopatías/genética , Adulto , Aminoacil-ARNt Sintetasas/genética , Tronco Encefálico/metabolismo , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Humanos , Leucoencefalopatías/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno/genética , Fenotipo , ARN de Transferencia/genética , Tálamo/metabolismo , Adulto Joven
7.
JIMD Rep ; 51(1): 3-10, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32071833

RESUMEN

Mitochondrial aminoacyl-tRNA synthetases play a major role in protein translation, synthesis, and oxidative phosphorylation. We reviewed all patients diagnosed with mitochondrial aminoacyl-tRNA synthetase deficiencies diagnosed in a single neurometabolic clinic. We report five patients with mitochondrial aminoacyl-tRNA synthetase deficiencies including DARS2, EARS2, PARS2, and RARS2 deficiencies. Siblings with DARS2 deficiency presented with global developmental delay within the first year of life. DARS2, EARS2, PARS2, and RARS2 deficiencies were identified by whole exome sequencing. We report coagulation factor abnormalities in PARS2 deficiency for the first time. We also report symmetric increased signal intensity in globus pallidi in FLAIR images in brain MRI in EARS2 deficiency for the first time. One patient with RARS2 deficiency had compound heterozygous variants in RARS2. One of those variants was an intronic variant. We confirmed the pathogenicity by mRNA studies. Mitochondrial aminoacyl-tRNA synthetase deficiencies are diagnosed by molecular genetic investigations. Clinically available non-invasive biochemical investigations are non-specific for the diagnosis of mitochondrial aminoacyl-tRNA synthetase deficiencies. A combination of brain MRI features and molecular genetic investigations should be undertaken to confirm the diagnosis of mitochondrial aminoacyl-tRNA synthetase deficiencies.

8.
J Neurodev Disord ; 11(1): 29, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31839000

RESUMEN

BACKGROUND: The mitochondrial aminoacyl-tRNA synthetase proteins (mt-aaRSs) are a group of nuclear-encoded enzymes that facilitate conjugation of each of the 20 amino acids to its cognate tRNA molecule. Mitochondrial diseases are a large, clinically heterogeneous group of disorders with diverse etiologies, ages of onset, and involved organ systems. Diseases related to mt-aaRS mutations are associated with specific syndromes that affect the central nervous system and produce highly characteristic MRI patterns, prototypically the DARS2, EARS, and AARS2 leukodystrophies, which are caused by mutations in mitochondrial aspartyl-tRNA synthetase, mitochondria glutamate tRNA synthetase, and mitochondrial alanyl-tRNA synthetase, respectively. BODY: The disease patterns emerging for these leukodystrophies are distinct in terms of the age of onset, nature of disease progression, and predominance of involved white matter tracts. In DARS2 and EARS2 disorders, earlier disease onset is typically correlated with more significant brain abnormalities, rapid neurological decline, and greater disability. In AARS2 leukodystrophy cases reported thus far, there is nearly invariable progression to severe disability and atrophy of involved brain regions, often within a decade. Although most mutations are compound heterozygous inherited in an autosomal recessive fashion, homozygous variants are found in each disorder and demonstrate high phenotypic variability. Affected siblings manifest disease on a wide spectrum. CONCLUSION: The syndromic nature and selective vulnerability of white matter tracts in these disorders suggests there may be a shared mechanism of mitochondrial dysfunction to target for study. There is evidence that the clinical variability and white matter tract specificity of each mt-aaRS leukodystrophy depend on both canonical and non-canonical effects of the mutations on the process of mitochondrial translation. Furthermore, different sensitivities to the mt-aaRS mutations have been observed based on cell type. Most mutations result in at least partial retention of mt-aaRS enzyme function with varied effects on the mitochondrial respiratory chain complexes. In EARS2 and AARS2 cells, this appears to result in cumulative impairment of respiration. Mt-aaRS mutations may also affect alternative biochemical pathways such as the integrated stress response, a homeostatic program in eukaryotic cells that typically confers cytoprotection, but can lead to cell death when abnormally activated in response to pathologic states. Systematic review of this group of disorders and further exploration of disease mechanisms in disease models and neural cells are warranted.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Encéfalo/enzimología , Enfermedades Desmielinizantes/enzimología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/enzimología , Trastornos del Neurodesarrollo/enzimología , Animales , Encéfalo/patología , Enfermedades Desmielinizantes/complicaciones , Humanos , Enfermedades Mitocondriales/complicaciones , Proteínas Mitocondriales/metabolismo
9.
JIMD Rep ; 33: 61-68, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27571996

RESUMEN

Mitochondrial translation defects are important causes of early onset mitochondrial disease. Although the biochemical (combined respiratory chain deficiency) signature and neuroimaging are usually distinctive, they are not diagnostic as the genetic origin of mitochondrial translation defects is heterogeneous. We report a female child, born at term to non-consanguineous parents, who exhibited global hypotonia, failure to thrive, persistent and progressive hyperlactacidaemia with lactic acidosis, liver dysfunction and encephalopathy and died at the age of 5 months. Brain MRI revealed hypogenesis of the corpus callosum, T2 signal abnormalities in the medulla oblongata, pons, midbrain, thalami, cerebellar white matter, and a lactate peak on MRS. Muscle histochemistry showed cytochrome c oxidase (COX)-deficient and ragged-red fibres, while muscle biochemical studies showed decreased activities of mitochondrial respiratory chain complexes I and IV. Whole exome sequencing (WES) identified biallelic EARS2 (NM_001083614) variants, a previously reported start-loss (c.1>G, p.Met1?) variant and a novel missense (c.184A>T, p.Ile62Phe) variant. Patient fibroblasts and muscle homogenate displayed markedly decreased EARS2 protein levels, although decreased steady-state levels of complex I (NDUFB8) and complex IV (MT-CO1 and MT-CO2) subunits were only observed in muscle. Pathogenic variants in EARS2, encoding mitochondrial glutamyl-tRNA synthetase (mtGluR), are associated with Leukoencephalopathy involving the Thalamus and Brainstem with high Lactate (LTBL), a mitochondrial disorder characterised by a distinctive brain MRI pattern and a biphasic clinical course. We further outline the unique phenotypic spectrum of LTBL and review the neuroradiological features reported in all patients documented in the literature.

10.
Brain Dev ; 38(9): 857-61, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27117034

RESUMEN

Mitochondrial glutamyl-tRNA synthetase is a major component of protein biosynthesis that loads tRNAs with cognate amino acids. Mutations in the gene encoding this enzyme have been associated with a variety of disorders related to oxidative phosphorylation. Here, we present a case of leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL) presenting a biphasic clinical course characterized by delayed psychomotor development and seizure. High-throughput sequencing revealed a novel compound heterozygous mutation in mitochondrial glutamyl-tRNA synthetase 2 (EARS2), which appears to be causative of disease symptoms.


Asunto(s)
Tronco Encefálico/diagnóstico por imagen , Glutamato-ARNt Ligasa/genética , Ácido Láctico/metabolismo , Leucoencefalopatías/genética , Leucoencefalopatías/fisiopatología , Mutación , Tálamo/diagnóstico por imagen , Tronco Encefálico/metabolismo , Preescolar , Análisis Mutacional de ADN , Femenino , Estudios de Seguimiento , Humanos , Leucoencefalopatías/diagnóstico , Leucoencefalopatías/tratamiento farmacológico , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Índice de Severidad de la Enfermedad , Tálamo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA