Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Bioorg Med Chem ; 22(3): 1163-75, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24433964

RESUMEN

We explored both structure-activity relationships among substituted oxyoxalamides used as the primary pharmacophore of inhibitors of the human sEH and as a secondary pharmacophore to improve water solubility of inhibitors. When the oxyoxalamide function was modified with a variety of alkyls or substituted alkyls, compound 6 with a 2-adamantyl group and a benzyl group was found to be a potent sEH inhibitor, suggesting that the substituted oxyoxalamide function is a promising primary pharmacophore for the human sEH, and compound 6 can be a novel lead structure for the development of further improved oxyoxalamide or other related derivatives. In addition, introduction of substituted oxyoxalamide to inhibitors with an amide or urea primary pharmacophore produced significant improvements in inhibition potency and water solubility. In particular, the N,N,O-trimethyloxyoxalamide group in amide or urea inhibitors (26 and 31) was most effective among those tested for both inhibition and solubility. The results indicate that substituted oxyoxalamide function incorporated into amide or urea inhibitors is a useful secondary pharmacophore, and the resulting structures will be an important basis for the development of bioavailable sEH inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Relación Estructura-Actividad , Amidas/química , Técnicas de Química Sintética , Inhibidores Enzimáticos/síntesis química , Humanos , Concentración 50 Inhibidora , Ácido Oxámico/química , Solubilidad , Urea/química
2.
Bioorg Med Chem ; 22(2): 772-86, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24373735

RESUMEN

We report herein the development, synthesis, physicochemical and pharmacological characterization of a novel class of pharmacodynamic hybrids that selectively inhibit cyclooxygenase-2 (COX-2) isoform and present suitable nitric oxide releasing properties. The replacement of the ester moiety with the amide group gave access to in vivo more stable and active derivatives that highlighted outstanding pharmacological properties. In particular, the glycine derivative proved to be extremely active in suppressing hyperalgesia and edema.


Asunto(s)
Amidas/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Glicina/farmacología , Óxido Nítrico/química , Ácido Acético , Amidas/química , Animales , Carragenina , Línea Celular , Constricción Patológica/inducido químicamente , Constricción Patológica/tratamiento farmacológico , Inhibidores de la Ciclooxigenasa 2/química , Edema/inducido químicamente , Edema/tratamiento farmacológico , Glicina/análogos & derivados , Glicina/química , Humanos , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hígado/metabolismo , Masculino , Ratones , Nitratos/metabolismo , Nitritos/metabolismo , Ratas , Ratas Wistar , Relación Estructura-Actividad
3.
Tetrahedron ; 68(8): 2068-2073, 2012 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32287426

RESUMEN

Cyclodepsipeptides of the enniation-, PF1022-, and verticilide-family represent a diverse class of highly interesting natural products with respect to their manifold biological activities. However, until now no stepwise solid-phase synthesis has been accomplished due to the difficult combination of N-methyl amino acids and hydroxycarboxylic acids. We report here the first stepwise solid-phase synthesis of the anthelmintic cyclooctadepsipeptide PF1022A based on an Fmoc/THP-ether protecting group strategy on Wang-resin. The standard conditions of our synthesis allow an unproblematic adaption to an automated peptide synthesizer.

4.
Front Immunol ; 12: 626840, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717145

RESUMEN

Despite significant advances in prevention and treatment of transplant rejection with immunosuppressive medications, we continue to face challenges of long-term graft survival, detrimental medication side effects to both the recipient and transplanted organ together with risks for opportunistic infections. Transplantation tolerance has so far only been achieved through hematopoietic chimerism, which carries with it a serious and life-threatening risk of graft versus host disease, along with variability in persistence of chimerism and uncertainty of sustained tolerance. More recently, numerous in vitro and in vivo studies have explored the therapeutic potential of silent clearance of apoptotic cells which have been well known to aid in maintaining peripheral tolerance to self. Apoptotic cells from a donor not only have the ability of down regulating the immune response, but also are a way of providing donor antigens to recipient antigen-presenting-cells that can then promote donor-specific peripheral tolerance. Herein, we review both laboratory and clinical evidence that support the utility of apoptotic cell-based therapies in prevention and treatment of graft versus host disease and transplant rejection along with induction of donor-specific tolerance in solid organ transplantation. We have highlighted the potential limitations and challenges of this apoptotic donor cell-based therapy together with ongoing advancements and attempts made to overcome them.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Rechazo de Injerto/inmunología , Enfermedad Injerto contra Huésped/inmunología , Inmunosupresores/uso terapéutico , Trasplante de Órganos , Animales , Células Presentadoras de Antígenos/trasplante , Apoptosis , Quimerismo , Rechazo de Injerto/prevención & control , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Donantes de Tejidos , Inmunología del Trasplante , Tolerancia al Trasplante , Ureohidrolasas/inmunología
5.
Acta Pharm Sin B ; 11(3): 835-847, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33777685

RESUMEN

Localized delivery, comparing to systemic drug administration, offers a unique alternative to enhance efficacy, lower dosage, and minimize systemic tissue toxicity by releasing therapeutics locally and specifically to the site of interests. Herein, a localized drug delivery platform ("plum‒pudding" structure) with controlled release and long-acting features is developed through an injectable hydrogel ("pudding") crosslinked via self-assembled triblock polymeric micelles ("plum") to help reduce renal interstitial fibrosis. This strategy achieves controlled and prolonged release of model therapeutics in the kidney for up to three weeks in mice. Following a single injection, local treatments containing either anti-inflammatory small molecule celastrol or anti-TGFß antibody effectively minimize inflammation while alleviating fibrosis via inhibiting NF-κB signaling pathway or neutralizing TGF-ß1 locally. Importantly, the micelle-hydrogel hybrid based localized therapy shows enhanced efficacy without local or systemic toxicity, which may represent a clinically relevant delivery platform in the management of renal interstitial fibrosis.

6.
Eur J Med Chem ; 172: 71-94, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30947123

RESUMEN

In this study, a new series of N,N-bis(alkanol)amine aryl ester heterodimers was synthesized and studied. The new compounds were designed based on the structures of our previous arylamine ester derivatives endowed with high P-gp-dependent multidrug resistance reversing activity on a multidrug-resistant leukemia cell line. All new compounds were active in the pirarubicin uptake assay on the doxorubicin-resistant erythroleukemia K562 cells (K562/DOX). Compounds bearing a linker made up of 10 methylenes showed unprecedented high reversal activities regardless of the combination of aromatic moieties. Docking results obtained by an in silico study supported the data obtained by the biological tests and a study devoted to establish the chemical stability in phosphate buffer solution (PBS) and human plasma showed that only a few compounds exhibited a significant degradation in the human plasma matrix. Ten selected non-hydrolysable derivatives were able to inhibit the P-gp-mediated rhodamine-123 efflux on K562/DOX cells, and the evaluation of their apparent permeability and ATP consumption on other cell lines suggested that the compounds can behave as unambiguous or not transported substrates. The activity of these the compounds on the transport proteins breast cancer resistance protein (BCRP) and multidrug resistance associated protein 1 (MRP1) was also analyzed. All tested derivatives displayed a moderate potency on the BCRP overexpressing cells; while only four molecules showed to be effective on MRP1 overexpressing cells, highlighting a clear structural requirement for selectivity. In conclusion, we have identified a new very powerful series of compounds which represent interesting leads for the development of new potent and efficacious P-gp-dependent MDR modulators.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Aminas/farmacología , Antineoplásicos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Ésteres/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Aminas/síntesis química , Aminas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Células CACO-2 , Dimerización , Relación Dosis-Respuesta a Droga , Ésteres/síntesis química , Ésteres/química , Humanos , Células K562 , Modelos Moleculares , Estructura Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
7.
Acta Pharm Sin B ; 9(2): 421-432, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30972286

RESUMEN

Prodrug nanoassemblies, which can refrain from large excipients, achieve higher drug loading and control drug release, have been placed as the priority in drug delivery system. Reasoning that glutathione (GSH) and reactive oxygen species (ROS) are highly upgraded in tumor tissues which makes them attractive targets for drug delivery system, we designed and synthetized a novel prodrug which utilized mono thioether bond as a linker to bridge linoleic acid (LA) and docetaxel (DTX). This mono thioether-linked conjugates (DTX-S-LA) could self-assemble into nanoparticles without the aid of much excipients. The mono thioether endowed the nanoparticles redox sensitivity resulting in specific release at the tumor tissue. Our studies demonstrated that the nanoassemblies had uniform particle size, high stability and fast release behavior. DTX-S-LA nanoassemblies outperformed DTX solution in pharmacokinetic profiles for it had longer circulation time and higher area under curve (AUC). Compared with DTX solution, the redox dual-responsive nanoassemblies had comparable cytotoxic activity. Besides, the antitumor efficacy was evaluated in mice bearing 4T1 xenograft. It turned out this nanoassemblies could enhance anticancer efficacy by increasing the dose because of higher tolerance. Overall, these results indicated that the redox sensitivity nanoassemblies may have a great potential to cancer therapy.

8.
Stem Cells Transl Med ; 4(11): 1302-16, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26378259

RESUMEN

UNLABELLED: An increasing number of studies demonstrate that administration of either conditioned media (CM) or extracellular vesicles (EVs) released by mesenchymal stromal cells (MSCs) derived from bone marrow and other sources are as effective as the MSCs themselves in mitigating inflammation and injury. The goal of the current study was to determine whether xenogeneic administration of CM or EVs from human bone marrow-derived MSCs would be effective in a model of mixed Th2/Th17, neutrophilic-mediated allergic airway inflammation, reflective of severe refractory asthma, induced by repeated mucosal exposure to Aspergillus hyphal extract (AHE) in immunocompetent C57Bl/6 mice. Systemic administration of both CM and EVs isolated from human and murine MSCs, but not human lung fibroblasts, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyperreactivity (AHR), lung inflammation, and the antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, both CM and EVs from human MSCs (hMSCs) were generally more potent than those from mouse MSCs (mMSCs) in most of the outcome measures. The weak cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride was found to inhibit release of both soluble mediators and EVs, fully negating effects of systemically administered hMSCs but only partly inhibited the ameliorating effects of mMSCs. These results demonstrate potent xenogeneic effects of CM and EVs from hMSCs in an immunocompetent mouse model of allergic airway inflammation and they also show differences in mechanisms of action of hMSCs versus mMSCs to mitigate AHR and lung inflammation in this model. SIGNIFICANCE: There is a growing experience demonstrating benefit of mesenchymal stromal cell (MSC)-based cell therapies in preclinical models of asthma. In the current study, conditioned media (CM) and, in particular, the extracellular vesicle fraction obtained from the CM were as potent as the MSCs themselves in mitigating Th2/Th17-mediated allergic airway inflammation in a mouse model of severe refractory clinical asthma. Moreover, human MSC CM and extracellular vesicles were effective in this immunocompetent mouse model. These data add to a growing scientific basis for initiating clinical trials of MSCs or extracellular vesicles derived from MSCs in severe refractory asthma and provide further insight into the mechanisms by which the MSCs may ameliorate the asthma.


Asunto(s)
Aspergillus/química , Asma/terapia , Células de la Médula Ósea/inmunología , Micropartículas Derivadas de Células/inmunología , Mezclas Complejas/toxicidad , Hifa/química , Células Madre Mesenquimatosas/inmunología , Animales , Asma/inducido químicamente , Asma/inmunología , Asma/patología , Mezclas Complejas/química , Humanos , Masculino , Ratones
9.
Eur J Med Chem ; 69: 244-61, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24044937

RESUMEN

Osteoarthritis is a disabling disease characterized by the articular cartilage breakdown. Aggrecanases are potential therapeutic targets for the treatment of this pathology. At the starting point of this project, an acylthiosemicarbazide was discovered to inhibit aggrecanase-2. The acylthiosemicarbazide Zn binding group is also a convenient linker for library synthesis. A focused library of 920 analogs was thus prepared and screened to establish structure-activity relationships. The modification of the acylthiosemicarbazide was also explored. This strategy combining library design and discrete compounds synthesis yielded inhibitor 35, that is highly selective for aggrecanases over a panel of metalloproteases and inhibits the degradation of native fully glycosylated aggrecan. A docking study generated binding conformations explaining the structure-activity relationships.


Asunto(s)
Proteínas ADAM/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Compuestos Organometálicos/farmacología , Semicarbacidas/química , Zinc/química , Proteínas ADAM/metabolismo , Proteína ADAMTS5 , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Humanos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Relación Estructura-Actividad
10.
Eur J Med Chem ; 65: 360-75, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23747805

RESUMEN

The present paper describes the development of a new series of P2Y12 receptor antagonists based on our previously reported piperazinyl urea series 1 (IC50 binding affinity = 0.33 µM, aq solubility <0.1 µM, microsomal CLint (HLM) ≥300 µM/min/mg). By replacement of the urea functionality with a sulfonylurea group we observed increased affinity along with improved stability and solubility as exemplified by 47 (IC50 binding affinity = 0.042 µM, aq solubility = 90 µM, microsomal CLint (HLM) = 70 µM/min/mg). Further improvements in affinity and metabolic stability were achieved by replacing the central piperazine ring with a 3-aminoazetidine as exemplified by 3 (IC50 binding affinity = 0.0062 µM, aq solubility = 83 µM, microsomal CLint (HLM) = 28 µM/min/mg). The improved affinity observed in the in vitro binding assay also translated to the potency observed in the WPA aggregation assay (47: 19 nM and 3: 9.5 nM) and the observed in vitro ADME properties translates to the in vivo PK properties observed in rat. In addition, we found that the chemical stability of the sulfonylureas during prolonged storage in solution was related to the sulfonyl urea linker and depended on the type of solvent and the substitution pattern of the sulfonyl urea functionality.


Asunto(s)
Ácidos Nicotínicos/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y12/metabolismo , Urea/análogos & derivados , Animales , Estructura Molecular , Ácidos Nicotínicos/síntesis química , Ácidos Nicotínicos/química , Antagonistas del Receptor Purinérgico P2Y/síntesis química , Antagonistas del Receptor Purinérgico P2Y/química , Ratas , Relación Estructura-Actividad , Urea/síntesis química , Urea/química , Urea/farmacología
11.
Eur J Med Chem ; 66: 450-65, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23831695

RESUMEN

A whole organism high-throughput screen of approximately 87,000 compounds against Trypanosoma brucei brucei led to the recent discovery of several novel compound classes with low micromolar activity against this organism and without appreciable cytotoxicity to mammalian cells. Herein we report a structure-activity relationship (SAR) investigation around one of these hit classes, the 3-(oxazolo[4,5-b]pyridin-2-yl)anilides. Sharp SAR is revealed, with our most active compound (5) exhibiting an IC50 of 91 nM against the human pathogenic strain T.b. rhodesiense and being more than 700 times less toxic towards the L6 mammalian cell line. Physicochemical properties are attractive for many compounds in this series. For the most potent representatives, we show that solubility and metabolic stability are key parameters to target during future optimisation.


Asunto(s)
Anilidas/química , Anilidas/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/parasitología , Anilidas/toxicidad , Animales , Humanos , Ratones , Mioblastos Esqueléticos/efectos de los fármacos , Ratas , Especificidad de la Especie , Relación Estructura-Actividad , Tripanocidas/toxicidad
12.
Eur J Med Chem ; 67: 175-87, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23867602

RESUMEN

A therapeutic rationale is proposed for the treatment of inflammatory diseases, such as psoriasis and inflammatory bowel diseases (IBD), by selective targeting of TYK2. Hit triage, following a high-throughput screen for TYK2 inhibitors, revealed pyridine 1 as a promising starting point for lead identification. Initial expansion of 3 separate regions of the molecule led to eventual identification of cyclopropyl amide 46, a potent lead analog with good kinase selectivity, physicochemical properties, and pharmacokinetic profile. Analysis of the binding modes of the series in TYK2 and JAK2 crystal structures revealed key interactions leading to good TYK2 potency and design options for future optimization of selectivity.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , TYK2 Quinasa/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , TYK2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA