Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 84(16): 3115-3127.e11, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39116872

RESUMEN

Proteasome is essential for cell survival, and proteasome inhibition induces proteasomal gene transcription via the activated endoplasmic-reticulum-associated transcription factor nuclear factor erythroid 2-like 1 (Nrf1/NFE2L1). Nrf1 activation requires proteolytic cleavage by DDI2 and N-glycan removal by NGLY1. We previously showed that Nrf1 ubiquitination by SKP1-CUL1-F-box (SCF)FBS2/FBXO6, an N-glycan-recognizing E3 ubiquitin ligase, impairs its activation, although the molecular mechanism remained elusive. Here, we show that SCFFBS2 cooperates with the RING-between-RING (RBR)-type E3 ligase ARIH1 to ubiquitinate Nrf1 through oxyester bonds in human cells. Endo-ß-N-acetylglucosaminidase (ENGASE) generates asparagine-linked N-acetyl glucosamine (N-GlcNAc) residues from N-glycans, and N-GlcNAc residues on Nrf1 served as acceptor sites for SCFFBS2-ARIH1-mediated ubiquitination. We reconstituted the polyubiquitination of N-GlcNAc and serine/threonine residues on glycopeptides and found that the RBR-specific E2 enzyme UBE2L3 is required for the assembly of atypical ubiquitin chains on Nrf1. The atypical ubiquitin chains inhibited DDI2-mediated activation. The present results identify an unconventional ubiquitination pathway that inhibits Nrf1 activation.


Asunto(s)
Factor Nuclear 1 de Respiración , Ubiquitinación , Humanos , Células HEK293 , Factor Nuclear 1 de Respiración/metabolismo , Factor Nuclear 1 de Respiración/genética , Factor 1 Relacionado con NF-E2/metabolismo , Factor 1 Relacionado con NF-E2/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Acetilglucosamina/metabolismo , Células HeLa , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética
2.
J Biol Chem ; 294(45): 17143-17154, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548313

RESUMEN

N-Linked glycans play important roles in various cellular and immunological events. Endo-ß-N-acetylglucosaminidase (ENGase) can release or transglycosylate N-glycans and is a promising tool for the chemoenzymatic synthesis of glycoproteins with homogeneously modified glycans. The ability of ENGases to act on core-fucosylated glycans is a key factor determining their therapeutic utility because mammalian N-glycans are frequently α-1,6-fucosylated. Although the biochemistries and structures of various ENGases have been studied extensively, the structural basis for the recognition of the core fucose and the asparagine-linked GlcNAc is unclear. Herein, we determined the crystal structures of a core fucose-specific ENGase from the caterpillar fungus Cordyceps militaris (Endo-CoM), which belongs to glycoside hydrolase family 18. Structures complexed with fucose-containing ligands were determined at 1.75-2.35 Å resolutions. The fucose moiety linked to GlcNAc is extensively recognized by protein residues in a round-shaped pocket, whereas the asparagine moiety linked to the GlcNAc is exposed to the solvent. The N-glycan-binding cleft of Endo-CoM is Y-shaped, and several lysine and arginine residues are present at its terminal regions. These structural features were consistent with the activity of Endo-CoM on fucose-containing glycans on rituximab (IgG) and its preference for a sialobiantennary substrate. Comparisons with other ENGases provided structural insights into their core fucose tolerance and specificity. In particular, Endo-F3, a known core fucose-specific ENGase, has a similar fucose-binding pocket, but the surrounding residues are not shared with Endo-CoM. Our study provides a foothold for protein engineering to develop enzymatic tools for the preparation of more effective therapeutic antibodies.


Asunto(s)
Acetilglucosaminidasa/química , Acetilglucosaminidasa/metabolismo , Cordyceps/enzimología , Fucosa/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Glicosilación , Modelos Moleculares , Especificidad por Sustrato
3.
Biochem Biophys Res Commun ; 530(4): 719-724, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32782141

RESUMEN

NGLY1 is a widely conserved eukaryotic cytosolic deglycosylating enzyme involved in the endoplasmic reticulum-associated degradation (ERAD) process, which eliminates misfolded proteins through retrograde translocation and proteasomal degradation. A human genetic disorder called NGLY1-deficiency has been reported, indicating the functional importance of NGLY1 in humans. Evidence suggests that Ngly1-KO is embryonic lethal in mice, while additional deletion of the Engase gene, encoding another cytosolic deglycosylating enzyme (endo-ß-N-acetylglucosaminidase; ENGase), partially rescued lethality. Upon compromised Ngly1 activity, ENGase-mediated deglycosylation of misfolded glycoproteins may cause excess formation of N-GlcNAc proteins in the cytosol, leading to detrimental effects in the mice. Whether endogenous N-GlcNAc proteins are really formed in Ngly1-KO cells/animals or not remains unclarified. Here, comprehensive identification of O- and N-GlcNAc proteins was carried out using purified cytosol from wild type, Ngly1-KO, Engase-KO, and Ngly1/Engase double KO mouse embryonic fibroblasts. It was revealed that while there is no dramatic change in the level of O-GlcNAc proteins among cells examined, there was a vast increase of N-GlcNAc proteins in Ngly1-KO cells upon proteasome inhibition. Importantly, few N-GlcNAc proteins were observed in Engase-KO or Ngly1/Engase double-KO cells, clearly indicating that the cytosolic ENGase is responsible for the formation of N-GlcNAc proteins. The excess formation of N-GlcNAc proteins may at least in part account for the pathogenesis of NGLY1-deficiency.


Asunto(s)
Acetilglucosamina/metabolismo , Glicoproteínas/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Animales , Línea Celular , Citosol/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Fibroblastos/metabolismo , Glicosilación , Ratones
4.
Proc Natl Acad Sci U S A ; 112(5): 1398-403, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605922

RESUMEN

The cytoplasmic peptide:N-glycanase (PNGase; Ngly1 in mice) is a deglycosylating enzyme involved in the endoplasmic reticulum (ER)-associated degradation (ERAD) process. The precise role of Ngly1 in the ERAD process, however, remains unclear in mammals. The findings reported herein, using mouse embryonic fibroblast (MEF) cells, that the ablation of Ngly1 causes dysregulation of the ERAD process. Interestingly, not only delayed degradation but also the deglycosylation of a misfolded glycoprotein was observed in Ngly1(-/-) MEF cells. The unconventional deglycosylation reaction was found to be catalyzed by the cytosolic endo-ß-N-acetylglucosaminidase (ENGase), generating aggregation-prone N-GlcNAc proteins. The ERAD dysregulation in cells lacking Ngly1 was restored by the additional knockout of ENGase gene. Thus, our study underscores the functional importance of Ngly1 in the ERAD process and provides a potential mechanism underlying the phenotypic consequences of a newly emerging genetic disorder caused by mutation of the human NGLY1 gene.


Asunto(s)
Acetilglucosamina/metabolismo , Retículo Endoplásmico/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Animales , Células Cultivadas , Ratones , Mutación , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Ensayo de Radioinmunoprecipitación
5.
Beilstein J Org Chem ; 14: 416-429, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29520306

RESUMEN

N-Glycan oxazolines have found widespread use as activated donor substrates for endo-ß-N-acetylglucosaminidase (ENGase) enzymes, an important application that has correspondingly stimulated interest in their production, both by total synthesis and by semi-synthesis using oligosaccharides isolated from natural sources. Amongst the many synthetic approaches reported, the majority rely on the fabrication (either by total synthesis, or semi-synthesis from locust bean gum) of a key Manß(1-4)GlcNAc disaccharide, which can then be elaborated at the 3- and 6-positions of the mannose unit using standard glycosylation chemistry. Early approaches subsequently relied on the Lewis acid catalysed conversion of peracetylated N-glycan oligosaccharides produced in this manner into their corresponding oxazolines, followed by global deprotection. However, a key breakthrough in the field has been the development by Shoda of 2-chloro-1,3-dimethylimidazolinium chloride (DMC), and related reagents, which can direct convert an oligosaccharide with a 2-acetamido sugar at the reducing terminus directly into the corresponding oxazoline in water. Therefore, oxazoline formation can now be achieved in water as the final step of any synthetic sequence, obviating the need for any further protecting group manipulations, and simplifying synthetic strategies. As an alternative to total synthesis, significant quantities of several structurally complicated N-glycans can be isolated from natural sources, such as egg yolks and soy bean flour. Enzymatic transformations of these materials, in concert with DMC-mediated oxazoline formation as a final step, allow access to a selection of N-glycan oxazoline structures both in larger quantities and in a more expedient fashion than is achievable by total synthesis.

6.
Bioorg Med Chem Lett ; 27(13): 2962-2966, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28512024

RESUMEN

N-Glycanase deficiency, or NGLY1 deficiency, is an extremely rare human genetic disease. N-Glycanase, encoded by the gene NGLY1, is an important enzyme involved in protein deglycosylation of misfolded proteins. Deglycosylation of misfolded proteins precedes the endoplasmic reticulum (ER)-associated degradation (ERAD) process. NGLY1 patients produce little or no N-glycanase (Ngly1), and the symptoms include global developmental delay, frequent seizures, complex hyperkinetic movement disorder, difficulty in swallowing/aspiration, liver dysfunction, and a lack of tears. Unfortunately, there has not been any therapeutic option available for this rare disease so far. Recently, a proposed molecular mechanism for NGLY1 deficiency suggested that endo-ß-N-acetylglucosaminidase (ENGase) inhibitors may be promising therapeutics for NGLY1 patients. Herein, we performed structure-based virtual screening utilizing FDA-approved drug database on this ENGase target to enable repurposing of existing drugs. Several Proton Pump Inhibitors (PPIs), a series of substituted 1H-benzo [d] imidazole, and 1H-imidazo [4,5-b] pyridines, among other scaffolds, have been identified as potent ENGase inhibitors. An electrophoretic mobility shift assay was employed to assess the inhibition of ENGase activity by these PPIs. Our efforts led to the discovery of Rabeprazole Sodium as the most promising hit with an IC50 of 4.47±0.44µM. This is the first report that describes the discovery of small molecule ENGase inhibitors, which can potentially be used for the treatment of human NGLY1 deficiency.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Enfermedades Genéticas Congénitas/tratamiento farmacológico , Inhibidores de la Bomba de Protones/farmacología , Bombas de Protones/metabolismo , Rabeprazol/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Enfermedades Genéticas Congénitas/genética , Humanos , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/antagonistas & inhibidores , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Estructura Molecular , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Inhibidores de la Bomba de Protones/síntesis química , Inhibidores de la Bomba de Protones/química , Rabeprazol/síntesis química , Rabeprazol/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
7.
Angew Chem Int Ed Engl ; 55(16): 5058-61, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26971709

RESUMEN

The majority of lysosomal enzymes are targeted to the lysosome by post-translational tagging with N-glycans terminating in mannose-6-phosphate (M6P) residues. Some current enzyme replacement therapies (ERTs) for lysosomal storage disorders are limited in their efficacy by the extent to which the recombinant enzymes bear the M6P-terminated glycans required for effective trafficking. Chemical synthesis was combined with endo-ß-N-acetylglucosaminidase (ENGase) catalysis to allow the convergent synthesis of glycosyl amino acids bearing M6P residues. This approach can be extended to the remodeling of proteins, as exemplified by RNase. The powerful synergy of chemical synthesis and ENGase-mediated biocatalysis enabled the first synthesis of a glycoprotein bearing M6P-terminated N-glycans in which the glycans are attached to the peptide backbone by entirely natural linkages.


Asunto(s)
Glicoproteínas/síntesis química , Acetilglucosaminidasa/química , Secuencia de Carbohidratos , Glicoproteínas/química , Fosforilación
8.
J Biochem ; 171(2): 161-167, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-34580715

RESUMEN

Cytosolic peptide:N-glycanase (NGLY1) is an enzyme that cleaves N-glycans from glycoproteins that has been retrotranslocated from the endoplasmic reticulum (ER) lumen into the cytosol. It is known that NGLY1 is involved in the degradation of cytosolic glycans (non-lysosomal glycan degradation) as well as ER-associated degradation, a quality control system for newly synthesized glycoproteins. The discovery of NGLY1 deficiency, which is caused by mutations in the human NGLY1 gene and results in multisystemic symptoms, has attracted interest in the physiological functions of NGLY1 in mammals. Studies using various animal models led to the identification of possible factors that contribute to the pathogenesis of NGLY1 deficiency. In this review, we summarize phenotypic consequences that have been reported for various Ngly1-deficient rodent models and discuss future perspectives to provide more insights into the physiological functions of NGLY1.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Roedores , Animales , Citosol/metabolismo , Glicoproteínas , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Roedores/metabolismo
9.
Acta Pharm Sin B ; 12(5): 2417-2428, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35646546

RESUMEN

Glycosite-specific antibody‒drug conjugatess (gsADCs), harnessing Asn297 N-glycan of IgG Fc as the conjugation site for drug payloads, usually require multi-step glycoengineering with two or more enzymes, which limits the substrate diversification and complicates the preparation process. Herein, we report a series of novel disaccharide-based substrates, which reprogram the IgG glycoengineering to one-step synthesis of gsADCs, catalyzed by an endo-N-acetylglucosaminidase (ENGase) of Endo-S2. IgG glycoengineering via ENGases usually has two steps: deglycosylation by wild-type (WT) ENGases and transglycosylation by mutated ENGases. But in the current method, we have found that disaccharide LacNAc oxazoline can be efficiently assembled onto IgG by WT Endo-S2 without hydrolysis of the product, which enables the one-step glycoengineering directly from native antibodies. Further studies on substrate specificity revealed that this approach has excellent tolerance on various modification of 6-Gal motif of LacNAc. Within 1 h, one-step synthesis of gsADC was achieved using the LacNAc-toxin substrates including structures free of bioorthogonal groups. These gsADCs demonstrated good homogeneity, buffer stability, in vitro and in vivo anti-tumor activity. This work presents a novel strategy using LacNAc-based substrates to reprogram the multi-step IgG glycoengineering to a one-step manner for highly efficient synthesis of gsADCs.

10.
Carbohydr Res ; 426: 40-5, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27058295

RESUMEN

Endo-ß-N-acetylglucosaminidases (ENGases) are versatile biocatalysts that allow access to a wide variety of defined homogenous N-linked glycoconjugates in a convergent manner. A hybrid-type N-glycan was accessed by total synthesis, converted to an oxazoline, and used as a donor substrate with both wild type Endo M and an N175Q glycosynthase Endo M mutant allowing the convergent synthesis of a glycosylated amino acid bearing a hybrid N-glycan structure.


Asunto(s)
Biocatálisis , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Oxazoles/química , Oxazoles/metabolismo , Polisacáridos/biosíntesis , Polisacáridos/química , Conformación de Carbohidratos , Glicosilación , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/química , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/genética
11.
Front Plant Sci ; 5: 429, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25237315

RESUMEN

Free N-glycans (FNGs) are present at micromolar concentrations in plant cells during their differentiation, growth, and maturation stages. It has been postulated that these FNGs are signaling molecules involved in plant development or fruit ripening. However, the hypothetical biochemical and molecular function of FNGs has not been yet established. The structure of FNGs found ubiquitously in plant tissues such as hypocotyls, leaves, roots, developing seeds, or fruits can be classified into two types: high-mannose type and plant complex type; the former, in most cases, has only one GlcNAc residue at the reducing end (GN1 type), while the latter has the chitobiosyl unit at the reducing end (GN2 type). These findings suggest that endo-ß-N-acetylglucosaminidase (ENGase) must be involved in the production of GN1 type FNGs, whereas only peptide:N-glycanase (PNGase) is involved in the production of GN2 type FNGs. It has been hypothesized that cytosolic PNGase (cPNGase) and ENGase in animal cells are involved in the production of high-mannose type FNGs in order to release N-glycans from the misfolded glycoproteins in the protein quality control systems. In the case of plants, it is well known that another type of PNGase, the acidic PNGase (aPNGase) is involved in the production of plant complex type FNGs in an acidic organelle, suggesting the de-N-glycosylation mechanism in plants is different from that in animal cells. To better understand the role of these FNGs in plants, the genes encoding these N-glycan releasing enzymes (ENGase and PNGase) were first identified, and then structure of FNGs in ENGase knocked-out plants were analyzed. These transgenic plants provide new insight into the plant-specific de-N-glycosylation mechanism and putative physiological functions of FNGs. In this review, we focus on the structural features of plant FNGs, as well as functional features of cPNGase/ENGase and plant specific PNGase, and putative functions of FNGs are also discussed.

12.
Carbohydr Res ; 381: 19-27, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24056010

RESUMEN

The riboflavin producer Ashbya gossypii is a filamentous hemiascomycete, closely related to the yeast Saccharomyces cerevisiae, that has been used as a model organism to study fungal developmental biology. It has also been explored as a host for the expression of recombinant proteins. However, although N-glycosylation plays important roles in protein secretion, morphogenesis, and the development of multicellular organisms, the N-glycan structures synthesised by A. gossypii had not been elucidated. In this study, we report the first characterization of A. gossypii N-glycans and provide valuable insights into their biosynthetic pathway. By combined matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry profiling and nuclear magnetic resonance (NMR) spectroscopy we determined that the A. gossypii secreted N-glycome is characterized by high-mannose type structures in the range Man4-18GlcNAc2, mostly containing neutral core-type N-glycans with 8-10 mannoses. Cultivation in defined minimal media induced the production of acidic mannosylphosphorylated N-glycans, generally more elongated than the neutral N-glycans. Truncated neutral N-glycan structures similar to those found in other filamentous fungi (Man4-7GlcNAc2) were detected, suggesting the possible existence of trimming activity in A. gossypii. Homologs for all of the S. cerevisiae genes known to be involved in the endoplasmatic reticulum and Golgi N-glycan processing were found in the A. gossypii genome. However, processing of N-glycans by A. gossypii differs considerably from that by S. cerevisiae, allowing much shorter N-glycans. Genes for two putative N-glycan processing enzymes were identified, that did not have homologs in S. cerevisiae.


Asunto(s)
Eremothecium/química , Polisacáridos/biosíntesis , Polisacáridos/metabolismo , Eremothecium/metabolismo , Glicosilación , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA