RESUMEN
TMPRSS2-ERG gene fusion occurs in approximately 50% of cases of prostate cancer (PCa), and the fusion product is a key driver of prostate oncogenesis. However, how to leverage cellular signaling to ablate TMPRSS2-ERG oncoprotein for PCa treatment remains elusive. Here, we demonstrate that DNA damage induces proteasomal degradation of wild-type ERG and TMPRSS2-ERG oncoprotein through ERG threonine-187 and tyrosine-190 phosphorylation mediated by GSK3ß and WEE1, respectively. The dual phosphorylation triggers ERG recognition and degradation by the E3 ubiquitin ligase FBW7 in a manner independent of a canonical degron. DNA damage-induced TMPRSS2-ERG degradation was abolished by cancer-associated PTEN deletion or GSK3ß inactivation. Blockade of DNA damage-induced TMPRSS2-ERG oncoprotein degradation causes chemotherapy-resistant growth of fusion-positive PCa cells in culture and in mice. Our findings uncover a previously unrecognized TMPRSS2-ERG protein destruction mechanism and demonstrate that intact PTEN and GSK3ß signaling are essential for effective targeting of ERG protein by genotoxic therapeutics in fusion-positive PCa.
Asunto(s)
Proteínas de Ciclo Celular/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Proteínas de Fusión Oncogénica/genética , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Proteínas Tirosina Quinasas/genética , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Quimioterapia , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Xenoinjertos , Humanos , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacosRESUMEN
Chromosomal rearrangements resulting in the fusion of TMPRSS2, an androgen-regulated gene, and the ETS family transcription factor ERG occur in over half of prostate cancers. However, the mechanism by which ERG promotes oncogenic gene expression and proliferation remains incompletely understood. Here, we identify a binding interaction between ERG and the mammalian SWI/SNF (BAF) ATP-dependent chromatin remodeling complex, which is conserved among other oncogenic ETS factors, including ETV1, ETV4, and ETV5. We find that ERG drives genome-wide retargeting of BAF complexes in a manner dependent on binding of ERG to the ETS DNA motif. Moreover, ERG requires intact BAF complexes for chromatin occupancy and BAF complex ATPase activity for target gene regulation. In a prostate organoid model, BAF complexes are required for ERG-mediated basal-to-luminal transition, a hallmark of ERG activity in prostate cancer. These observations suggest a fundamental interdependence between ETS transcription factors and BAF chromatin remodeling complexes in cancer.
Asunto(s)
Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , Neoplasias de la Próstata/genética , Serina Endopeptidasas/genética , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular , Cromatina/química , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Organoides/metabolismo , Organoides/patología , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ets , Serina Endopeptidasas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismoRESUMEN
In response to genotoxic stress, cells evolved with a complex signaling network referred to as the DNA damage response (DDR). It is now well established that the DDR depends upon various posttranslational modifications; among them, ubiquitylation plays a key regulatory role. Here, we profiled ubiquitylation in response to the DNA alkylating agent methyl methanesulfonate (MMS) in the budding yeast Saccharomyces cerevisiae using quantitative proteomics. To discover new proteins ubiquitylated upon DNA replication stress, we used stable isotope labeling by amino acids in cell culture, followed by an enrichment of ubiquitylated peptides and LC-MS/MS. In total, we identified 1853 ubiquitylated proteins, including 473 proteins that appeared upregulated more than 2-fold in response to MMS treatment. This enabled us to localize 519 ubiquitylation sites potentially regulated upon MMS in 435 proteins. We demonstrated that the overexpression of some of these proteins renders the cells sensitive to MMS. We also assayed the abundance change upon MMS treatment of a selection of yeast nuclear proteins. Several of them were differentially regulated upon MMS treatment. These findings corroborate the important role of ubiquitin-proteasome-mediated degradation in regulating the DDR.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ubiquitinación , Proteínas de Saccharomyces cerevisiae/metabolismo , Daño del ADN , Reparación del ADNRESUMEN
Human ETS Related Gene, ERG, a master transcription factor, turns oncogenic upon its out-of-context activation in diverse developmental lineages. However, the mechanism underlying its lineage-specific activation of Notch (N), Wnt, or EZH2-three well-characterized oncogenic targets of ERG-remains elusive. We reasoned that deep homology in genetic tool kits might help uncover such elusive cancer mechanisms in Drosophila. By heterologous gain of human ERG in Drosophila, here we reveal Chip, which codes for a transcriptional coactivator, LIM-domain-binding (LDB) protein, as its novel target. ERG represses Drosophila Chip via its direct binding and, indirectly, via E(z)-mediated silencing of its promoter. Downregulation of Chip disrupts LIM-HD complex formed between Chip and Tailup (Tup)-a LIM-HD transcription factor-in the developing notum. A consequent activation of N-driven Wg signaling leads to notum-to-wing transdetermination. These fallouts of ERG gain are arrested upon a simultaneous gain of Chip, sequestration of Wg ligand, and, alternatively, loss of N signaling or E(z) activity. Finally, we show that the human LDB1, a homolog of Drosophila Chip, is repressed in ERG-positive prostate cancer cells. Besides identifying an elusive target of human ERG, our study unravels an underpinning of its lineage-specific carcinogenesis.
Asunto(s)
Proteínas de Drosophila , Drosophila , Masculino , Animales , Humanos , Drosophila/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Proteínas Oncogénicas/metabolismo , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismoRESUMEN
The human ether-a-go-go-related gene (hERG) K+ channel conducts a rapidly activating delayed rectifier K+ current (IKr), which is essential for normal electrical activity of the heart. Precise regulation of hERG channel biogenesis is critical for serving its physiological functions, and deviations from the regulation result in human diseases. However, the mechanism underlying the precise regulation of hERG channel biogenesis remains elusive. Here, by using forward genetic screen, we found that PATR-1, the Caenorhabditis elegans homolog of the yeast DNA topoisomerase 2-associated protein PAT1, is a critical regulator for the biogenesis of UNC-103, the ERG K+ channel in C. elegans. A loss-of-function mutation in patr-1 down-regulates the expression level of UNC-103 proteins and suppresses the phenotypic defects resulted from a gain-of-function mutation in the unc-103 gene. Furthermore, downregulation of PATL1 and PATL2, the human homologs of PAT1, decreases protein levels and the current density of native hERG channels in SH-SY5Y cells and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Knockdown of PATL1 and PATL2 elongates the duration of action potentials in hiPSC-CMs, suggesting that PATL1 and PATL2 affect the function of hERG channels and hence electrophysiological characteristics in the human heart. Further studies found that PATL1 and PATL2 interact with TFIIE, a general transcription factor required for forming the RNA polymerase II preinitiation complex, and dual-luciferase reporter assays indicated that PATL1 and PATL2 facilitate the transcription of hERG mRNAs. Together, our study discovers that evolutionarily conserved DNA topoisomerase 2-associated proteins regulate the biogenesis of hERG channels via a transcriptional mechanism.
Asunto(s)
Canales de Potasio Éter-A-Go-Go , Neuroblastoma , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Miocitos Cardíacos/metabolismo , Neuroblastoma/metabolismo , Proteínas de Unión al ADN/metabolismoRESUMEN
The formation and differentiation of planetary bodies are dated using radioactive decay systems, including the short-lived 146Sm-142Nd (T½ = 103 or 68 Ma) and long-lived 147Sm-143Nd (T½ = 106 Ga) radiogenic pairs that provide relative and absolute ages, respectively. However, the initial abundance and half-life of the extinct radioactive isotope 146Sm are still debated, weakening the interpretation of 146Sm-142Nd systematics obtained for early planetary processes. Here, we apply the short-lived 26Al-26Mg, 146Sm-142Nd, and long-lived 147Sm-143Sm chronometers to the oldest known andesitic meteorite, Erg Chech 002 (EC 002), to constrain the Solar System initial abundance of 146Sm. The 26Al-26Mg mineral isochron of EC 002 provides a tightly constrained initial δ26Mg* of −0.009 ± 0.005 and (26Al/27Al)0 of (8.89 ± 0.09) × 10−6. This initial abundance of 26Al is the highest measured so far in an achondrite and corresponds to a crystallization age of 1.80 ± 0.01 Myr after Solar System formation. The 146Sm-142Nd mineral isochron returns an initial 146Sm/144Sm ratio of 0.00830 ± 0.00032. By combining the Al-Mg crystallization age and initial 146Sm/144Sm ratio of EC 002 with values for refractory inclusions, achondrites, and lunar samples, the best-fit half-life for 146Sm is 102 ± 9 Ma, corresponding to the physically measured value of 103 ± 5 Myr, rather than the latest and lower revised value of 68 ± 7 Ma. Using a half-life of 103 Ma for 146Sm, the 146Sm/144Sm abundance of EC 002 translates into an initial Solar System 146Sm/144Sm ratio of 0.00840 ± 0.00032, which represents the most reliable and precise estimate to date and makes EC 002 an ideal anchor for the 146Sm-142Nd clock.
RESUMEN
The ETS transcription factor ERG is aberrantly expressed in approximately 50% of prostate tumors due to chromosomal rearrangements such as TMPRSS2/ERG. The ability of ERG to drive oncogenesis in prostate epithelial cells requires interaction with distinct coactivators, such as the RNA-binding protein EWS. Here, we find that ERG has both direct and indirect interactions with EWS, and the indirect interaction is mediated by the poly-A RNA-binding protein PABPC1. PABPC1 directly bound both ERG and EWS. ERG expression in prostate cells promoted PABPC1 localization to the nucleus and recruited PABPC1 to ERG/EWS-binding sites in the genome. Knockdown of PABPC1 in prostate cells abrogated ERG-mediated phenotypes and decreased the ability of ERG to activate transcription. These findings define a complex including ERG and the RNA-binding proteins EWS and PABPC1 that represents a potential therapeutic target for ERG-positive prostate cancer and identify a novel nuclear role for PABPC1.
Asunto(s)
Proteína I de Unión a Poli(A) , Próstata , Proteínas Proto-Oncogénicas c-ets , Proteína EWS de Unión a ARN , Humanos , Masculino , Línea Celular Tumoral , Núcleo Celular/metabolismo , Genoma Humano/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Próstata/citología , Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Activación Transcripcional , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismoRESUMEN
Candida parapsilosis has recently emerged as a major threat due to the worldwide emergence of fluconazole-resistant strains causing clonal outbreaks in hospitals and poses a therapeutic challenge due to the limited antifungal armamentarium. Here, we used precise genome editing using CRISPR-Cas9 to gain further insights into the contribution of mutations in ERG11, ERG3, MRR1, and TAC1 genes and the influence of allelic dosage to antifungal resistance in C. parapsilosis. Seven of the most common amino acid substitutions previously reported in fluconazole-resistant clinical isolates (including Y132F in ERG11) were engineered in two fluconazole-susceptible C. parapsilosis lineages (ATCC 22019 and STZ5). Each mutant was then challenged in vitro against a large array of antifungals, with a focus on azoles. Any possible change in virulence was also assessed in a Galleria mellonella model. We successfully generated a total of 19 different mutants, using CRISPR-Cas9. Except for R398I (ERG11), all remaining amino acid substitutions conferred reduced susceptibility to fluconazole. However, the impact on fluconazole in vitro susceptibility varied greatly according to the engineered mutation, the stronger impact being noted for G583R acting as a gain-of-function mutation in MRR1. Cross-resistance with newer azoles, non-medical azoles, but also non-azole antifungals such as flucytosine, was occasionally noted. Posaconazole and isavuconazole remained the most active in vitro. Except for G583R, no fitness cost was associated with the acquisition of fluconazole resistance. We highlight the distinct contributions of amino acid substitutions in ERG11, ERG3, MRR1, and TAC1 genes to antifungal resistance in C. parapsilosis.
RESUMEN
Candida parapsilosis is a common cause of non-albicans candidemia. It can be transmitted in healthcare settings resulting in serious healthcare-associated infections and can develop drug resistance to commonly used antifungal agents. Following a significant increase in the percentage of fluconazole (FLU)-nonsusceptible isolates from sterile site specimens of patients in two Ontario acute care hospital networks, we used whole genome sequence (WGS) analysis to retrospectively investigate the genetic relatedness of isolates and to assess potential in-hospital spread. Phylogenomic analysis was conducted on all 19 FLU-resistant and seven susceptible-dose dependent (SDD) isolates from the two hospital networks, as well as 13 FLU susceptible C. parapsilosis isolates from the same facilities and 20 isolates from patients not related to the investigation. Twenty-five of 26 FLU-nonsusceptible isolates (resistant or SDD) and two susceptible isolates from the two hospital networks formed a phylogenomic cluster that was highly similar genetically and distinct from other isolates. The results suggest the presence of a persistent strain of FLU-nonsusceptible C. parapsilosis causing infections over a 5.5-year period. Results from WGS were largely comparable to microsatellite typing. Twenty-seven of 28 cluster isolates had a K143R substitution in lanosterol 14-α-demethylase (ERG11) associated with azole resistance. As the first report of a healthcare-associated outbreak of FLU-nonsusceptible C. parapsilosis in Canada, this study underscores the importance of monitoring local antimicrobial resistance trends and demonstrates the value of WGS analysis to detect and characterize clusters and outbreaks. Timely access to genomic epidemiological information can inform targeted infection control measures.
Asunto(s)
Candida parapsilosis , Fluconazol , Humanos , Fluconazol/farmacología , Estudios Retrospectivos , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Genómica , Hospitales , OntarioRESUMEN
Recent preclinical studies have shown that the intake of nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin and naproxen could be an effective intervention strategy against TMPRSS2-ERG fusion-driven prostate tumorigenesis. Herein, as a follow-up mechanistic study, employing TMPRSS2-ERG (fusion) positive tumors and plasma from TMPRSS2-ERG. Ptenflox/flox mice, we profiled the stage specific proteomic changes (focused on inflammatory circulating and prostate tissue/tumor-specific cytokines, chemokines, and growth factors/growth signaling-associated molecules) that contribute to prostate cancer (PCa) growth and progression in the TMPRSS2-ERG fusion-driven mouse model of tumorigenesis. In addition, the association of the protective effects of NSAIDs (aspirin 1400 ppm and naproxen 400 ppm) with the modulation of these specific molecular pathways was determined. A sandwich Elisa based membrane array-proteome profiler identifying 111 distinct signaling molecules was employed. Overall, the plasma and prostate tissue sample analyses identified 54 significant and differentially expressed cytokines, chemokines, and growth factors/growth signaling-associated molecules between PCa afflicted mice (TMPRSS2-ERG. Ptenflox/flox, age-matched noncancerous controls, NSAIDs-supplemented and no-drug controls). Bioinformatic analysis of the array outcomes indicated that the protective effect of NSAIDs was associated with reduced expression of (a) tumor promoting inflammatory molecules (M-CSF, IL-33, CCL22, CCL12, CX3CL1, CHI3L1, and CD93), (b) growth factors- growth signaling-associated molecules (Chemerin, FGF acidic, Flt-3 ligand, IGFBP-5, and PEDF), and (c) tumor microenvironment/stromal remodeling proteins MMP2 and MMP9. Overall, our findings corroborate the pathological findings that protective effects of NSAIDs in TMPSS2-ERG fusion-driven prostate tumorigenesis are associated with antiproliferative and anti-inflammatory effects and possible modulation of the immune cell enriched microenvironment.
Asunto(s)
Antiinflamatorios no Esteroideos , Aspirina , Carcinogénesis , Naproxeno , Fusión de Oncogenes , Próstata , Neoplasias de la Próstata , Serina Endopeptidasas , Regulador Transcripcional ERG , Animales , Masculino , Ratones , Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Citocinas/sangre , Citocinas/metabolismo , Inflamación , Naproxeno/farmacología , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteómica , Fosfohidrolasa PTEN/genética , Serina Endopeptidasas/genética , Regulador Transcripcional ERG/genética , Neoplasias Experimentales/sangre , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patologíaRESUMEN
BACKGROUND: Vascular dysregulation is one of the major risk factors of glaucoma, and endothelin-1 (ET-1) may have a role in the pathogenesis of vascular-related glaucoma. Fruit extract from Lycium Barbarum (LB) exhibits anti-ageing and multitarget mechanisms in protecting retinal ganglion cells (RGC) in various animal models. To investigate the therapeutic efficacy of LB glycoproteins (LbGP) in ET-1 induced RGC degeneration, LbGP was applied under pre- and posttreatment conditions to an ET-1 mouse model. Retina structural and functional outcomes were characterised using clinical-based techniques. METHODS: Adult C57BL/6 mice were randomly allocated into four experimental groups, namely vehicle control (n = 9), LbGP-Pretreatment (n = 8), LbGP-Posttreatment (day 1) (n = 8) and LbGP-Posttreatment (day 5) (n = 7). Oral administration of LbGP 1 mg/Kg or PBS for vehicle control was given once daily. Pre- and posttreatment (day 1 or 5) were commenced at 1 week before and 1 or 5 days after intravitreal injections, respectively, and were continued until postinjection day 28. Effects of treatment on retinal structure and functions were evaluated using optical coherence tomography (OCT), doppler OCT and electroretinogram measurements at baseline, post-injection days 10 and 28. RGC survival was evaluated by using RBPMS immunostaining on retinal wholemounts. RESULTS: ET-1 injection in vehicle control induced transient reductions in arterial flow and retinal functions, leading to significant RNFL thinning and RGC loss at day 28. Although ET-1 induced a transient loss in blood flow or retinal functions in all LbGP groups, LbGP treatments facilitated better restoration of retinal flow and retinal functions as compared with the vehicle control. Also, all three LbGP treatment groups (i.e. pre- and posttreatments from days 1 or 5) significantly preserved thRNFL thickness and RGC densities. No significant difference in protective effects was observed among the three LbGP treatment groups. CONCLUSION: LbGP demonstrated neuroprotective effects in a mouse model of ET-1 induced RGC degeneration, with treatment applied either as a pretreatment, immediate or delayed posttreatment. LbGP treatment promoted a better restoration of retinal blood flow, and protected the RNFL, RGC density and retinal functions. This study showed the translational potential of LB as complementary treatment for glaucoma management.
Asunto(s)
Endotelina-1 , Ratones Endogámicos C57BL , Neuroprotección , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Endotelina-1/metabolismo , Neuroprotección/efectos de los fármacos , Electrorretinografía , Lycium/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/patología , Tomografía de Coherencia Óptica , Masculino , Ratones , Degeneración Nerviosa/patología , Degeneración Nerviosa/tratamiento farmacológicoRESUMEN
Monoterpenes and monoterpenoids such as (S)-limonene and geraniol are valuable chemicals with a wide range of applications, including cosmetics, pharmaceuticals, and biofuels. Saccharomyces cerevisiae has proven to be an effective host to produce various terpenes and terpenoids. (S)-limonene and geraniol are produced from geranyl pyrophosphate (GPP) through the enzymatic actions of limonene synthase (LS) and geraniol synthase (GES), respectively. However, a major hurdle in their production arises from the dual functionality of the Erg20, a farnesyl pyrophosphate (FPP) synthase, responsible for generating GPP. Erg20 not only synthesizes GPP by condensing isopentenyl pyrophosphate (IPP) with dimethylallyl pyrophosphate but also catalyzes further condensation of IPP with GPP to produce FPP. In this study, we have tackled this issue by harnessing previously developed Erg20 mutants, Erg20K197G (Erg20G) and Erg20F96W, N127W (Erg20WW), which enhance GPP accumulation. Through a combination of these mutants, we generated a novel Erg20WWG mutant with over four times higher GPP accumulating capability than Erg20WW, as observed through geraniol production levels. The Erg20WWG mutant was fused to the LS from Mentha spicata or the GES from Catharanthus roseus for efficient conversion of GPP to (S)-limonene and geraniol, respectively. Further improvements were achieved by localizing the entire mevalonate pathway and the Erg20WWG-fused enzymes in peroxisomes, while simultaneously downregulating the essential ERG20 gene using the glucose-sensing HXT1 promoter. In the case of (S)-limonene production, additional Erg20WWG-LS was expressed in the cytosol. As a result, the final strains produced 1063 mg/L of (S)-limonene and 1234 mg/L of geraniol by fed-batch biphasic fermentations with ethanol feeding. The newly identified Erg20WWG mutant opens doors for the efficient production of various other GPP-derived chemicals including monoterpene derivatives and cannabinoids.
Asunto(s)
Monoterpenos Acíclicos , Limoneno , Saccharomyces cerevisiae , Terpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Limoneno/metabolismo , Terpenos/metabolismo , Monoterpenos Acíclicos/metabolismo , Ingeniería Metabólica , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Diterpenos/metabolismo , DifosfatosRESUMEN
PURPOSE: TMPRSS2:ERG gene fusion negatively regulates PSMA expression in prostate adenocarcinoma (PCa) cell lines. Therefore, immunohistochemical (IHC) ERG expression, a surrogate for an underlying ERG rearrangement, and PSMA expression patterns in radical prostatectomy (RPE) specimens of primary PCa, including corresponding PSMA-PET scans were investigated. METHODS: Two cohorts of RPE samples (total n=148): In cohort #1 (n=62 patients) with available RPE and preoperative [68Ga]Ga-PSMA-11 PET, WHO/ISUP grade groups, IHC-ERG (positive vs. negative) and IHC-PSMA expression (% PSMA-negative tumour area, PSMA%neg) were correlated with the corresponding SUVmax. In the second cohort #2 (n=86 patients) including RPE only, same histopathological parameters were evaluated. RESULTS: Cohort #1: PCa with IHC-ERG expression (35.5%) showed significantly lower IHC-PSMA expression and lower SUVmax values on the corresponding PET scans. Eight of 9 PCa with negative PSMA-PET scans had IHC-ERG positivity, and confirmed TMPRSS2::ERG rearrangement. In IHC-PSMA positive PCa, IHC-ERG positivity was significantly associated with lower SUVmax values. In cohort #2, findings of higher IHC-PSMA%neg and IHC-ERG expression was confirmed with only 0-10% PSMA%neg tumour areas in IHC-ERG-negative PCa. CONCLUSION: IHC-ERG expression is significantly associated with more heterogeneous and lower IHC-PSMA tissue expression in two independent RPE cohorts. There is a strong association of ERG positivity in RPE tissue with lower [68Ga]Ga-PSMA-11 uptake on corresponding PET scans. Results may serve as a base for future biomarker development to enable tumour-tailored, individualized imaging approaches.
RESUMEN
The steep increase in acquired drug resistance in Candida isolates has posed a great challenge in the clinical management of candidiasis globally. Information of genes and codon sites that are positively selected during evolution can provide insights into the mechanisms driving antifungal resistance in Candida. This study aimed to create a manually curated list of genes of Candida spp. reported to be associated with antifungal resistance in literature, and further investigate the structure-function implications of positively selected genes and mutation sites. Sequence analysis of antifungal drug resistance associated gene sequences from various species and strains of Candida revealed that ERG11 and MRR1 of C. albicans were positively selected during evolution. Four sites in ERG11 and two sites in MRR1 of C. albicans were positively selected and associated with drug resistance. These four sites (132, 405, 450, and 464) of ERG11 are predictive markers for azole resistance and have evolved over time. A well-characterized crystal structure of sterol-14-α-demethylase (CYP51) encoded by ERG11 is available in PDB. Therefore, the stability of CYP51 in complex with fluconazole was evaluated using MD simulations and molecular docking studies for two mutations (Y132F and Y132H) reported to be associated with azole resistance in literature. These mutations induced high flexibility in functional motifs of CYP51. It was also observed that residues such as I304, G308, and I379 of CYP51 play a critical role in fluconazole binding affinity. The insights gained from this study can further guide drug design strategies addressing antimicrobial resistance.
Asunto(s)
Antifúngicos , Candida albicans , Farmacorresistencia Fúngica , Fluconazol , Proteínas Fúngicas , Mutación , Farmacorresistencia Fúngica/genética , Candida albicans/genética , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Antifúngicos/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Fluconazol/farmacología , Esterol 14-Desmetilasa/genética , Esterol 14-Desmetilasa/metabolismo , Esterol 14-Desmetilasa/química , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Sistema Enzimático del Citocromo P-450RESUMEN
BACKGROUND: It is still debatable whether the mechanisms underlying photophobia are related to altered visual cortex excitability or specific abnormalities of colour-related focal macular retino-thalamic information processing. METHODS: This cross-sectional study examined Ganzfeld blue-red (B-R) and blue-yellow (B-Y) focal macular cone flash ERG (ffERG) and focal-flash visual evoked potentials (ffVEPs) simultaneously in a group of migraine patients with (n = 18) and without (n = 19) aura during the interictal phase, in comparison to a group of healthy volunteers (HVs) (n = 20). We correlate the resulting retinal and cortical electrophysiological responses with subjective discomfort from exposure to bright light verified on a numerical scale. RESULTS: Compared to HVs, the amplitude and phase of the first and second harmonic of ffERG and ffVEPs were non-significantly different in migraine patients without aura and migraine patients with aura for both the B-R and the B-Y focal stimuli. Pearson's correlation test did not disclose correlations between clinical variables, including the photophobia scale and electrophysiological variables. CONCLUSIONS: These results do not favour interictal functional abnormalities in L-M- and S-cone opponent visual pathways in patients with migraine. They also suggest that the discomfort resulting from exposure to bright light is not related to focal macular retinal-to-visual cortex pathway.
Asunto(s)
Electrorretinografía , Potenciales Evocados Visuales , Trastornos Migrañosos , Fotofobia , Células Fotorreceptoras Retinianas Conos , Humanos , Fotofobia/fisiopatología , Femenino , Masculino , Adulto , Potenciales Evocados Visuales/fisiología , Estudios Transversales , Trastornos Migrañosos/fisiopatología , Células Fotorreceptoras Retinianas Conos/fisiología , Persona de Mediana Edad , Estimulación Luminosa/métodos , Adulto JovenRESUMEN
Early pioneering studies by Autrum on terrestrial arthropods first revealed that the visual systems of arthropods reflected their lifestyles and habitats. Subsequent studies have examined and confirmed Autrum's hypothesis that visual adaptions are driven by predator-prey interactions and activity cycles, with rapidly moving predatory diurnal species generally possessing better temporal resolution than slower moving nocturnal species. However, few studies have compared the vision between diurnal herbivores and nocturnal predators. In this study, the visual physiology of a nocturnal fast-moving predatory crab, the Atlantic ghost crab (Ocypode quadrata) and a diurnal herbivorous crab, the mangrove tree crab (Aratus pisonii), was examined. Spectral sensitivity, irradiance sensitivity and temporal resolution of the crabs were quantified using the electroretinogram (ERG), while the spatial resolution was calculated utilizing morphological methods. Both O. quadrata and A. pisonii had a single dark-adapted spectral sensitivity peak (494 and 499â nm, respectively) and chromatic adaptation had no effect on their spectral sensitivity, indicating that both species have monochromatic visual systems. The temporal resolution of O. quadrata was not significantly different from that of A. pisonii, but O. quadrata did possess a significantly greater spatial resolution and irradiance sensitivity. Both species possess an acute zone in the anterior region of their eyes. The data presented in this study will aid in the current understanding of the correlation between visual physiology and the life history of the animal.
Asunto(s)
Braquiuros , Animales , Braquiuros/fisiología , Ecosistema , Ojo , Electrorretinografía , Fenómenos Fisiológicos OcularesRESUMEN
PURPOSE: High-risk localized prostate cancer (HRLPC) commonly progresses to metastatic disease after local treatment. Neoadjuvant androgen deprivation therapy (nADT) before radical prostatectomy (RP) has recently been suggested to improve early oncological outcomes in HRLPC. We aimed to perform an exploratory analysis of the pathological outcomes from a prospective trial testing nADT before RP. METHODS: Prospective, single-centered, phase II, randomized trial performed between October 2018 and July 2021. Random assignment (1:1) for nADT modalities: goserelin (10.8 mg) plus abiraterone acetate (1000 mg/d) plus prednisone (5 mg/d), with or without apalutamide (240 mg/d) for 12 weeks, followed by RP (within 30 days) and extended lymph node dissection. Baseline clinical and pathological variables were assessed in needle biopsies before nADT. Tumor regression was histologically evaluated in surgical specimens using the residual cancer burden index (RCB). RESULTS: Sixty-two patients reached the surgical phase. Good response (RCB ≤ 0.25 cm³) was achieved in 14 patients (22.5%). Overall stage migration rate between baseline status (MRI before nADT) and final status (after surgery) was 27.4%. Late stage detection (high tumor burden, perineural invasion) and altered PTEN/ERG immunostatus showed significant association with poor response in univariate analysis. Higher baseline tumor burden was the only independent factor related to poor response in multivariate analysis. CONCLUSIONS: There are subgroups of patients, such as those with low baseline cancer burden and PTEN/ERG wild-type status, more likely to achieve good response with nADT. In the case of long term oncological benefit to be proven, nADT might be an additional therapeutic resource for these patients.
Asunto(s)
Goserelina , Terapia Neoadyuvante , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Anciano , Persona de Mediana Edad , Estudios Prospectivos , Goserelina/uso terapéutico , Resultado del Tratamiento , Prostatectomía/métodos , Acetato de Abiraterona/uso terapéutico , Antagonistas de Andrógenos/uso terapéutico , Prednisona/uso terapéutico , Antineoplásicos Hormonales/uso terapéutico , Tiohidantoínas/uso terapéuticoRESUMEN
Our understanding of fungal epidemiology and the burden of antifungal drug resistance in COVID-19-associated candidemia (CAC) patients is limited. Therefore, we conducted a retrospective multicenter study in Iran to explore clinical and microbiological profiles of CAC patients. Yeast isolated from blood, were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and subjected to antifungal susceptibility testing (AFST) using the broth microdilution method M27-A3 protocol. A total of 0.6% of the COVID-19 patients acquired CAC (43/6174). Fluconazole was the most widely used antifungal, and 37% of patients were not treated. Contrary to historic candidemia patients, Candida albicans and C. tropicalis were the most common species. In vitro resistance was high and only noted for azoles; 50%, 20%, and 13.6% of patients were infected with azole-non-susceptible (ANS) C. tropicalis, C. parapsilosis, and C. albicans isolates, respectively. ERG11 mutations conferring azole resistance were detected for C. parapsilosis isolates (Y132F), recovered from an azole-naïve patient. Our study revealed an unprecedented rise in ANS Candida isolates, including the first C. parapsilosis isolate carrying Y132F, among CAC patients in Iran, which potentially threatens the efficacy of fluconazole, the most widely used drug in our centers. Considering the high mortality rate and 37% of untreated CAC cases, our study underscores the importance of infection control strategies and antifungal stewardship to minimize the emergence of ANS Candida isolates during COVID-19.
Asunto(s)
COVID-19 , Candidemia , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candidemia/tratamiento farmacológico , Candidemia/epidemiología , Candidemia/microbiología , Candidemia/veterinaria , Fluconazol/uso terapéutico , Azoles/farmacología , Azoles/uso terapéutico , Pruebas de Sensibilidad Microbiana/veterinaria , COVID-19/epidemiología , COVID-19/veterinaria , Candida , Candida albicans , Candida tropicalis , Candida parapsilosis , Farmacorresistencia FúngicaRESUMEN
BACKGROUND: The molecular pathogenesis of acute myeloid leukemia (AML) was dramatically clarified over the latest two decades. Several important molecular markers were discovered in patients with AML that have helped to improve the risk stratification. However, developing new treatment strategies for relapsed/refractory acute myeloid leukemia (AML) is crucial due to its poor prognosis. PROCEDURE: To overcome this difficulty, we performed an assay for transposase-accessible chromatin with sequencing (ATAC-seq) in 10 AML patients with various gene alterations. ATAC-seq is based on direct in vitro sequencing adaptor transposition into native chromatin, and is a rapid and sensitive method for integrative epigenomic analysis. ATAC-seq analysis revealed increased accessibility of the DOCK1 gene in patients with AML harboring poor prognostic factors. Following the ATAC-seq results, quantitative reverse transcription polymerase chain reaction was used to measure DOCK1 gene expression levels in 369 pediatric patients with de novo AML. RESULTS: High DOCK1 expression was detected in 132 (37%) patients. The overall survival (OS) and event-free survival (EFS) among patients with high DOCK1 expression were significantly worse than those patients with low DOCK1 expression (3-year EFS: 34% vs. 60%, p < .001 and 3-year OS: 60% vs. 80%, p < .001). To investigate the significance of high DOCK1 gene expression, we transduced DOCK1 into MOLM14 cells, and revealed that cytarabine in combination with DOCK1 inhibitor reduced the viability of these leukemic cells. CONCLUSIONS: Our results indicate that a DOCK1 inhibitor might reinforce the effects of cytarabine and other anti-cancer agents in patients with AML with high DOCK1 expression.
Asunto(s)
Biomarcadores de Tumor , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Niño , Masculino , Femenino , Pronóstico , Preescolar , Adolescente , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Lactante , Tasa de Supervivencia , Estudios de Seguimiento , Pueblos del Este de Asia , Proteínas de Unión al GTP racRESUMEN
Club cells are a type of bronchiolar epithelial cell that serve a protective role in the lung and regenerate damaged lung epithelium. Single-cell RNA sequencing (scRNA-seq) of young adult human prostate and urethra identified cell populations in the prostatic urethra and collecting ducts similar in morphology and transcriptomic profile to lung club cells. We further identified club cell-like epithelial cells by scRNA-seq of prostate peripheral zone tissues. Here, we aimed to identify and spatially localize club cells in situ in the prostate, including in the peripheral zone. We performed chromogenic RNA in situ hybridization for five club cell markers (CP, LTF, MMP7, PIGR, SCGB1A1) in a series of (1) nondiseased organ donor prostate and (2) radical prostatectomy specimens from individuals with prostate cancer. We report that expression of club cell genes in the peripheral zone is associated with inflammation and limited to luminal epithelial cells classified as intermediate cells in proliferative inflammatory atrophy (PIA). Club-like cells were enriched in radical prostatectomy specimens compared to nondiseased prostates and associated with high-grade prostate cancer. We previously reported that luminal epithelial cells in PIA can rarely harbor oncogenic TMPRSS2:ERG (ERG+) gene fusions, and we now demonstrate that club cells are present in association with ERG+ PIA that is transitioning to early adenocarcinoma. Finally, prostate epithelial organoids derived from prostatectomy specimens demonstrate that club-like epithelial cells can be established in organoids and are sensitive to anti-androgen-directed treatment in vitro in terms of decreased androgen signaling gene expression signatures compared to basal or hillock cells. Overall, our study identifies a population of club-like cells in PIA and proposes that these cells play an analogous role to that of club cells in bronchiolar epithelium. Our results further suggest that inflammation drives lineage plasticity in the human prostate and that club cells in PIA may be prone to oncogenic transformation. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.