Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 34(7-8): 495-510, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32139423

RESUMEN

Obesity-induced diabetes affects >400 million people worldwide. Uncontrolled lipolysis (free fatty acid release from adipocytes) can contribute to diabetes and obesity. To identify future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrated that ß-adrenergic stimulation stabilizes ERK3, leading to the formation of a complex with the cofactor MAP kinase-activated protein kinase 5 (MK5), thereby driving lipolysis. Mechanistically, we identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Thus, ERK3/MK5 represents a previously unrecognized signaling axis in adipose tissue and an attractive target for future therapies aiming to combat obesity-induced diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Metabolismo Energético/genética , Lipólisis/genética , Proteína Quinasa 6 Activada por Mitógenos/genética , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Obesidad/complicaciones , Células 3T3 , Tejido Adiposo/enzimología , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Proteína Forkhead Box O1/metabolismo , Eliminación de Gen , Células HEK293 , Humanos , Hipoglucemiantes/uso terapéutico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipasa/genética , Lipasa/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética
2.
Arch Biochem Biophys ; 751: 109825, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37992885

RESUMEN

Extracellular signal-regulated kinase 3 (ERK3 also designated MAPK6 - mitogen-activated protein kinase 6) is a ubiquitously expressed kinase participating in the regulation of a broad spectrum of physiological and pathological processes. Targeted inhibition of the kinase may allow the development of novel treatment strategies for a variety of types of cancer and somatic pathologies, as well as preserving metabolic health, combat obesity and diabetes. We chose and synthesized three triazolo [4,5-d]pyrimidin-5-amines proposed previously as putative ERK3 inhibitors to assess their selectivity and biological effects in terms of metabolic state impact in living cells. As it was previously shown that ERK3 is a major regulator of lipolysis in adipocytes, we focused on this process. Our new results indicate that in addition to the previously identified lipolytic enzyme ATGL, ERK3 also regulates hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL). Moreover, this kinase also promotes the abundance of fatty acid synthase (FASN) as well as protein kinase cAMP-activated catalytic subunit alpha (PKACα). To investigate various effects of putative ERK3 inhibitors on lipolysis, we utilized different adipocyte models. We demonstrated that molecules exhibit lipolysis-modulating effects; however, the effects of triazolo [4,5-d]pyrimidin-5-amines based inhibitors on lipolysis are not dependent on ERK3. Subsequently, we revealed a wide range of the compounds' possible targets using a machine learning-based prediction. Therefore, the tested compounds inhibit ERK3 in vitro, but the biological effect of this inhibition is significantly overlapped and modified by some other molecular events related to the non-selective binding to other targets.


Asunto(s)
Adipocitos , Lipólisis
3.
J Cell Physiol ; 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576983

RESUMEN

Extracellular signal-regulated kinase 3 (ERK3) is a poorly characterized member of the mitogen-activated protein (MAP) kinase family. Functional analysis of the ERK3 signaling pathway has been hampered by a lack of knowledge about the substrates and downstream effectors of the kinase. Here, we used large-scale quantitative phosphoproteomics and targeted gene silencing to identify direct ERK3 substrates and gain insight into its cellular functions. Detailed validation of one candidate substrate identified the gelsolin/villin family member supervillin (SVIL) as a bona fide ERK3 substrate. We show that ERK3 phosphorylates SVIL on Ser245 to regulate myosin II activation and cytokinesis completion in dividing cells. Depletion of SVIL or ERK3 leads to increased cytokinesis failure and multinucleation, a phenotype rescued by wild type SVIL but not by the non-phosphorylatable S245A mutant. Our results unveil a new function of the atypical MAP kinase ERK3 in cell division and the regulation of cell ploidy.

4.
Biochem Biophys Res Commun ; 612: 119-125, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35523049

RESUMEN

Kinases represent one of the largest druggable families of proteins. Importantly, many kinases are aberrantly activated/de-activated in multiple organs during obesity, which contributes to the development of diabetes and associated diseases. Previous results indicate that the complex between Extracellular-regulated kinase 3 (ERK3) and Mitogen-Activated Protein Kinase (MAPK)-activated protein kinase 5 (MK5) suppresses energy dissipation and promotes fatty acids (FAs) output in adipose tissue and, therefore promotes obesity and diabetes. However, the therapeutic potential of targeting this complex at the systemic level has not been fully explored. Here we applied a translational approach to target the ERK3/MK5 complex in mice. Importantly, deletion of ERK3 in the whole body or administration of MK5-specific inhibitor protects against obesity and promotes insulin sensitivity. Finally, we show that the expression of ERK3 and MK5 correlates with the degree of obesity and that ERK3/MK5 complex regulates energy dissipation in human adipocytes. Altogether, we demonstrate that ERK3/MK5 complex can be targeted in vivo to preserve metabolic health and combat obesity and diabetes.


Asunto(s)
Diabetes Mellitus , Proteínas Serina-Treonina Quinasas , Animales , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Obesidad
5.
BMC Cancer ; 21(1): 155, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579235

RESUMEN

BACKGROUND: p63, a member of the p53 gene family, is an important regulator for epithelial tissue growth and development. ∆Np63α is the main isoform of p63 and highly expressed in Non-melanoma skin cancer (NMSC). Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose biochemical features and cellular regulation are distinct from those of conventional MAPKs such as ERK1/2. While ERK3 has been shown to be upregulated in lung cancers and head and neck cancers, in which it promotes cancer cell migration and invasion, little is known about the implication of ERK3 in NMSCs. METHODS: Fluorescent immunohistochemistry was performed to evaluate the expression levels of ΔNp63α and ERK3 in normal and NMSC specimens. Dunnett's test was performed to compare mean fluorescence intensity (MFI, indicator of expression levels) of p63 or ERK3 between normal cutaneous samples and NMSC samples. A mixed effects (ANOVA) test was used to determine the correlation between ΔNp63α and ERK3 expression levels (MFI). The regulation of ERK3 by ΔNp63α was studied by qRT-PCR, Western blot and luciferase assay. The effect of ERK3 regulation by ΔNp63α on cell migration was measured by performing trans-well migration assay. RESULTS: The expression level of ∆Np63α is upregulated in NMSCs compared to normal tissue. ERK3 level is significantly upregulated in AK and SCC in comparison to normal tissue and there is a strong positive correlation between ∆Np63α and ERK3 expression in normal skin and skin specimens of patients with AK, SCC or BCC. Further, we found that ∆Np63α positively regulates ERK3 transcript and protein levels in A431 and HaCaT skin cells, underlying the upregulation of ERK3 expression and its positive correlation with ∆Np63α in NMSCs. Moreover, similar to the effect of ∆Np63α depletion, silencing ERK3 greatly enhanced A431 cell migration. Restoration of ERK3 expression under the condition of silencing ∆Np63α counteracted the increase in cell migration induced by the depletion of ∆Np63α. Mechanistically, ERK3 inhibits the phosphorylation of Rac1 G-protein and the formation of filopodia of A431 skin SCC cells. CONCLUSIONS: ERK3 is positively regulated by ∆Np63α and mediates the role of ∆Np63α in suppressing cell migration in NMSC.


Asunto(s)
Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Neoplasias Cutáneas/patología , Factores de Transcripción/metabolismo , Activación Transcripcional , Proteínas Supresoras de Tumor/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Línea Celular , Línea Celular Tumoral , Humanos , Proteína Quinasa 6 Activada por Mitógenos/genética , Fosforilación , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Proteína de Unión al GTP rac1/genética
6.
Biol Pharm Bull ; 44(11): 1662-1669, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34719643

RESUMEN

Glutamate differentially affects the levels extracellular signal-regulated kinase (ERK)1/2 and ERK3 and the protective effect of B355252, an aryl thiophene compound, 4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl)phenoxy)thiophene-2-sulfonamide, is associated with suppression of ERK1/2. The objectives of this study were to further investigate the impact of B355252 on ERK3 and its downstream signaling pathways affected by glutamate exposure in the mouse hippocampal HT-22 neuronal cells. Murine hippocampal HT22 cells were incubated with glutamate and treated with B355252. Cell viability was assessed, protein levels of pERK3, ERK3, mitogen-activated protein kinase-activated protein kinase-5 (MAPKAPK-5), steroid receptor coactivator 3 (SRC-3), p-S6 and S6 were measured using Western blotting, and immunoreactivity of p-S6 was determined by immunocytochemistry. The results reveal that glutamate markedly diminished the protein levels of p-ERK3 and its downstream targets MK-5 and SRC-3 and increased p-S6, an indicator for mechanistic target of rapamycin (mTOR) activation. Conversely, treatment with B355252 protected the cells from glutamate-induced damage and prevented the glutamate-caused declines of p-ERK3, MK-5 and SRC-3 and increase of p-S6. Our study demonstrates that one of the mechanisms that glutamate mediates its cytotoxicity is through suppression of ERK3 and that B355252 rescues the cells from glutamate toxicity by reverting ERK3 level.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/toxicidad , Hipocampo/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Fármacos Neuroprotectores/farmacología , Tiofenos/farmacología , Animales , Western Blotting , Línea Celular , Relación Dosis-Respuesta a Droga , Técnica del Anticuerpo Fluorescente , Ratones
7.
Bioorg Med Chem Lett ; 30(22): 127551, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32927028

RESUMEN

Triazolo[4,5-d]pyrimidin-5-amines were identified from kinase selectivity screening as novel ERK3 inhibitors with sub-100 nanomolar potencies in a biochemical assay using MK5 as substrate and with an attractive kinase selectivity profile. ERK3 crystal structures clarified the inhibitor binding mode in the ATP pocket with impact on A-loop, GC-loop and αC-helix conformations suggesting a potential structural link towards MK5 interaction via the FHIEDE motif. The inhibitors also showed sub-100 nM potencies in a cellular ERK3 NanoBRET assay and with excellent correlation to the biochemical IC50s. This novel series provides valuable tool compounds to further investigate the biological function and activation mechanism of ERK3.


Asunto(s)
Proteína Quinasa 6 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
8.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114754

RESUMEN

Extracellular signal-regulated kinase 3 (ERK3), known also as mitogen-activated protein kinase 6 (MAPK6), is an atypical member of MAPK kinase family, which has been poorly studied. Little is known regarding its function in biological processes, yet this atypical kinase has been suggested to play important roles in the migration and invasiveness of certain cancers. The lack of tools, such as a selective inhibitor, hampers the study of ERK3 biology. Here, we report the crystal structure of the kinase domain of this atypical MAPK kinase, providing molecular insights into its distinct ATP binding pocket compared to the classical MAPK ERK2, explaining differences in their inhibitor binding properties. Medium-scale small molecule screening identified a number of inhibitors, several of which unexpectedly exhibited remarkably high inhibitory potencies. The crystal structure of CLK1 in complex with CAF052, one of the most potent inhibitors identified for ERK3, revealed typical type-I binding mode of the inhibitor, which by structural comparison could likely be maintained in ERK3. Together with the presented structural insights, these diverse chemical scaffolds displaying both reversible and irreversible modes of action, will serve as a starting point for the development of selective inhibitors for ERK3, which will be beneficial for elucidating the important functions of this understudied kinase.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteína Quinasa 6 Activada por Mitógenos/química , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Sitios de Unión , Cristalografía por Rayos X , Humanos , Proteína Quinasa 6 Activada por Mitógenos/antagonistas & inhibidores , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Bibliotecas de Moléculas Pequeñas/química
9.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32516969

RESUMEN

Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family. It harbors a kinase domain in the N-terminus and a long C-terminus extension. The C-terminus extension comprises a conserved in ERK3 and ERK4 (C34) region and a unique C-terminus tail, which was shown to be required for the interaction of ERK3 with the cytoskeletal protein septin 7. Recent studies have elucidated the role of ERK3 signaling in promoting the motility and invasiveness of cancer cells. However, little is known about the intramolecular regulation of the enzymatic activity and cellular functions of ERK3. In this study, we investigated the role of the elongated C-terminus extension in regulating ERK3 kinase activity and its ability to promote cancer cell migration and invasion. Our study revealed that the deletion of the C-terminus tail greatly diminishes the ability of ERK3 to promote the migration and invasion of lung cancer cells. We identified two molecular mechanisms underlying this effect. Firstly, the deletion of the C-terminus tail decreases the kinase activity of ERK3 towards substrates, including the oncogenic protein steroid receptor co-activator 3 (SRC-3), an important downstream target for ERK3 signaling in cancer. Secondly, in line with the previous finding that the C-terminus tail mediates the interaction of ERK3 with septin 7, we found that the depletion of septin 7 abolished the ability of ERK3 to promote migration, indicating that septin 7 acts as a downstream effector for ERK3-induced cancer cell migration. Taken together, the findings of this study advance our understanding of the molecular regulation of ERK3 signaling by unraveling the role of the C-terminus tail in regulating ERK3 kinase activity and functions in cancer cells. These findings provide useful insights for the development of therapeutic agents targeting ERK3 signaling in cancer.


Asunto(s)
Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Dominios y Motivos de Interacción de Proteínas , Movimiento Celular/genética , Activación Enzimática , Humanos , Proteína Quinasa 6 Activada por Mitógenos/química , Proteína Quinasa 6 Activada por Mitógenos/genética , Neoplasias/patología , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Transducción de Señal
10.
IUBMB Life ; 69(10): 785-794, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28941148

RESUMEN

MAP kinase-activated protein kinases (MKs), protein serine/threonine kinases downstream of the MAPKs, regulate a number of biological functions. MK5 was initially identified as a substrate for p38 MAPK but subsequent studies revealed that MK5 activity is regulated by atypical MAPKs ERK3 and ERK4. However, the roles of these MAPKs in activating MK5 remain controversial. The interactome and physiological function of MK5 are just beginning to be understood. Here, we provide an overview of the structure-function of MK5 including recent progress in determining its role in cardiac structure and function. The cardiac phenotype of MK5 haplodeficient mice, and the effect of reduced MK5 expression on cardiac remodeling, is also discussed. © 2017 IUBMB Life, 69(10):785-794, 2017.


Asunto(s)
Fibroblastos/enzimología , Ventrículos Cardíacos/enzimología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Quinasa 6 Activada por Mitógenos/genética , Miocardio/enzimología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Fibroblastos/citología , Regulación de la Expresión Génica , Ventrículos Cardíacos/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Miocardio/citología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Remodelación Ventricular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Am J Obstet Gynecol ; 215(3): 384.e1-384.e89, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27143398

RESUMEN

BACKGROUND: Neonatal respiratory distress syndrome in preterm infants is a leading cause of neonatal death. Pulmonary insufficiency-related infant mortality rates have improved with antenatal glucocorticoid treatment and neonatal surfactant replacement. However, the mechanism of glucocorticoid-promoted fetal lung maturation is not understood fully, despite decades of clinical use. We previously have shown that genetic deletion of Erk3 in mice results in growth restriction, cyanosis, and early neonatal lethality because of pulmonary immaturity and respiratory distress. Recently, we demonstrated that the addition of postnatal surfactant administration to antenatal dexamethasone treatment resulted in enhanced survival of neonatal Erk3-null mice. OBJECTIVE: To better understand the molecular underpinnings of corticosteroid-mediated lung maturation, we used high-throughput transcriptomic and high-resolution morphologic analysis of the murine fetal lung. We sought to examine the alterations in fetal lung structure and function that are associated with neonatal respiratory distress and antenatal glucocorticoid treatment. STUDY DESIGN: Dexamethasone (0.4 mg/kg) or saline solution was administered to pregnant dams on embryonic days 16.5 and 17.5. Fetal lungs were collected and analyzed by microCT and RNA-seq for differential gene expression and pathway interactions with genotype and treatment. Results from transcriptomic analysis guided further investigation of candidate genes with the use of immunostaining in murine and human fetal lung tissue. RESULTS: Erk3(-/-) mice exhibited atelectasis with decreased overall porosity and saccular space relative to wild type, which was ameliorated by glucocorticoid treatment. Of 596 differentially expressed genes (q < 0.05) that were detected by RNA-seq, pathway analysis revealed 36 genes (q < 0.05) interacting with dexamethasone, several with roles in lung development, which included corticotropin-releasing hormone and surfactant protein B. Corticotropin-releasing hormone protein was detected in wild-type and Erk3(-/-) lungs at E14.5, with significantly temporally altered expression through embryonic day 18.5. Antenatal dexamethasone attenuated corticotropin-releasing hormone at embryonic day 18.5 in both wild-type and Erk3(-/-) lungs (0.56-fold and 0.67-fold; P < .001). Wild type mice responded to glucocorticoid administration with increased pulmonary surfactant protein B (P = .003). In contrast, dexamethasone treatment in Erk3(-/-) mice resulted in decreased surfactant protein B (P = .012). In human validation studies, we confirmed that corticotropin-releasing hormone protein is present in the fetal lung at 18 weeks of gestation and increases in expression with progression towards viability (22 weeks of gestation; P < .01). CONCLUSION: Characterization of whole transcriptome gene expression revealed glucocorticoid-mediated regulation of corticotropin-releasing hormone and surfactant protein B via Erk3-independent and -dependent mechanisms, respectively. We demonstrated for the first time the expression and temporal regulation of corticotropin-releasing hormone protein in midtrimester human fetal lung. This unique model allows the effects of corticosteroids on fetal pulmonary morphologic condition to be distinguished from functional gene pathway regulation. These findings implicate Erk3 as a potentially important molecular mediator of antenatal glucocorticoid action in promoting surfactant protein production in the preterm neonatal lung and expanding our understanding of key mechanisms of clinical therapy to improve neonatal survival.


Asunto(s)
Dexametasona/administración & dosificación , Glucocorticoides/administración & dosificación , Pulmón/patología , Proteína Quinasa 6 Activada por Mitógenos/deficiencia , Animales , Animales Recién Nacidos , Hormona Liberadora de Corticotropina/metabolismo , Modelos Animales de Enfermedad , Femenino , Factor II del Crecimiento Similar a la Insulina/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Pulmón/fisiopatología , Ratones Noqueados , Embarazo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Síndrome de Dificultad Respiratoria del Recién Nacido/patología , Microtomografía por Rayos X
12.
Physiol Rep ; 12(11): e16108, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872461

RESUMEN

ERK3/MAPK6 activates MAP kinase-activated protein kinase (MK)-5 in selected cell types. Male MK5 haplodeficient mice show reduced hypertrophy and attenuated increase in Col1a1 mRNA in response to increased cardiac afterload. In addition, MK5 deficiency impairs cardiac fibroblast function. This study determined the effect of reduced ERK3 on cardiac hypertrophy following transverse aortic constriction (TAC) and fibroblast biology in male mice. Three weeks post-surgery, ERK3, but not ERK4 or p38α, co-immunoprecipitated with MK5 from both sham and TAC heart lysates. The increase in left ventricular mass and myocyte diameter was lower in TAC-ERK3+/- than TAC-ERK3+/+ hearts, whereas ERK3 haploinsufficiency did not alter systolic or diastolic function. Furthermore, the TAC-induced increase in Col1a1 mRNA abundance was diminished in ERK3+/- hearts. ERK3 immunoreactivity was detected in atrial and ventricular fibroblasts but not myocytes. In both quiescent fibroblasts and "activated" myofibroblasts isolated from adult mouse heart, siRNA-mediated knockdown of ERK3 reduced the TGF-ß-induced increase in Col1a1 mRNA. In addition, intracellular type 1 collagen immunoreactivity was reduced following ERK3 depletion in quiescent fibroblasts but not myofibroblasts. Finally, knocking down ERK3 impaired motility in both atrial and ventricular myofibroblasts. These results suggest that ERK3 plays an important role in multiple aspects of cardiac fibroblast biology.


Asunto(s)
Fibroblastos , Animales , Masculino , Ratones , Fibroblastos/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Miocardio/metabolismo , Miocardio/citología , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Proteína Quinasa 6 Activada por Mitógenos/genética , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Células Cultivadas , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Miocitos Cardíacos/metabolismo
13.
FEBS J ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348153

RESUMEN

Impaired kinase signalling leads to various diseases, including cancer. At the same time, kinases make up the majority of the druggable genome and targeting kinase activity has proven to be a successful first-line therapy for many cancers. Among the best-studied kinases are the mitogen-activated protein kinases (MAPKs), which regulate cell proliferation, differentiation, motility, and survival. However, the MAPK family also contains the atypical members ERK3 (MAPK6), ERK4 (MAPK4), ERK7/ERK8 (MAPK15), and NLK that are functionally and structurally different from their conventional family members and have long been neglected. Nevertheless, in recent years, important roles in carcinogenesis, actin cytoskeleton regulation and the immune system have been discovered, underlining the physiological importance of atypical MAPKs and the need to better understand their functions. This review highlights the distinctive features of the atypical MAPKs and summarizes the evidence on their regulation, physiological roles, and potential targeting strategies for cancer therapies.

14.
Cancers (Basel) ; 16(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38611058

RESUMEN

Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose structural and regulatory features are distinct from those of conventional MAPKs, such as ERK1/2. Since its identification in 1991, the regulation, substrates and functions of ERK3 have remained largely unknown. However, recent years have witnessed a wealth of new findings about ERK3 signaling. Several important biological functions for ERK3 have been revealed, including its role in neuronal morphogenesis, inflammation, metabolism, endothelial cell tube formation and epithelial architecture. In addition, ERK3 has been recently shown to play important roles in cancer cell proliferation, migration, invasion and chemoresistance in multiple types of cancers. Furthermore, accumulating studies have uncovered various molecular mechanisms by which the expression level, protein stability and activity of ERK3 are regulated. In particular, several post-translational modifications (PTMs), including ubiquitination, hydroxylation and phosphorylation, have been shown to regulate the stability and activity of ERK3 protein. In this review, we discuss recent findings regarding biochemical and cellular functions of ERK3, with a main focus on its roles in cancers, as well as the molecular mechanisms of regulating its expression and activity.

15.
Cancers (Basel) ; 16(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38201533

RESUMEN

Snail is a key regulator of the epithelial-mesenchymal transition (EMT), the key step in the tumorigenesis and metastasis of tumors. Although induction of Snail transcription precedes the induction of EMT, the post-translational regulation of Snail is also important in determining Snail protein levels, stability, and its ability to induce EMT. Several kinases are known to enhance the stability of the Snail protein by preventing its ubiquitination; however, the precise molecular mechanisms by which these kinases prevent Snail ubiquitination remain unclear. Here, we identified ERK3 as a novel kinase that interacts with Snail and enhances its protein stability. Although ERK3 could not directly phosphorylate Snail, Erk3 increased Snail protein stability by inhibiting the binding of FBXO11, an E3 ubiquitin ligase that can induce Snail ubiquitination and degradation, to Snail. Importantly, functional studies and analysis of clinical samples indicated the crucial role of ERK3 in the regulation of Snail protein stability in pancreatic cancer. Therefore, we conclude that ERK3 is a key regulator for enhancing Snail protein stability in pancreatic cancer cells by inhibiting the interaction between Snail and FBXO11.

16.
Elife ; 122023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37057894

RESUMEN

The actin cytoskeleton is tightly controlled by RhoGTPases, actin binding-proteins and nucleation-promoting factors to perform fundamental cellular functions. We have previously shown that ERK3, an atypical MAPK, controls IL-8 production and chemotaxis (Bogueka et al., 2020). Here, we show in human cells that ERK3 directly acts as a guanine nucleotide exchange factor for CDC42 and phosphorylates the ARP3 subunit of the ARP2/3 complex at S418 to promote filopodia formation and actin polymerization, respectively. Consistently, depletion of ERK3 prevented both basal and EGF-dependent RAC1 and CDC42 activation, maintenance of F-actin content, filopodia formation, and epithelial cell migration. Further, ERK3 protein bound directly to the purified ARP2/3 complex and augmented polymerization of actin in vitro. ERK3 kinase activity was required for the formation of actin-rich protrusions in mammalian cells. These findings unveil a fundamentally unique pathway employed by cells to control actin-dependent cellular functions.


Asunto(s)
Actinas , Proteína Quinasa 6 Activada por Mitógenos , Animales , Humanos , Actinas/metabolismo , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Polimerizacion , Movimiento Celular , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Mamíferos/metabolismo , Proteína de Unión al GTP rac1/metabolismo
17.
Cell Mol Immunol ; 20(11): 1379-1392, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37828081

RESUMEN

Vogt-Koyanagi-Harada (VKH) disease is a leading cause of blindness in young and middle-aged people. However, the etiology of VKH disease remains unclear. Here, we performed the first trio-based whole-exome sequencing study, which enrolled 25 VKH patients and 50 controls, followed by a study of 2081 VKH patients from a Han Chinese population to uncover detrimental mutations. A total of 15 de novo mutations in VKH patients were identified, with one of the most important being the membrane palmitoylated protein 2 (MPP2) p.K315N (MPP2-N315) mutation. The MPP2-N315 mutation was highly deleterious according to bioinformatic predictions. Additionally, this mutation appears rare, being absent from the 1000 Genome Project and Genome Aggregation Database, and it is highly conserved in 10 species, including humans and mice. Subsequent studies showed that pathological phenotypes and retinal vascular leakage were aggravated in MPP2-N315 mutation knock-in or MPP2-N315 adeno-associated virus-treated mice with experimental autoimmune uveitis (EAU). In vitro, we used clustered regularly interspaced short palindromic repeats (CRISPR‒Cas9) gene editing technology to delete intrinsic MPP2 before overexpressing wild-type MPP2 or MPP2-N315. Levels of cytokines, such as IL-1ß, IL-17E, and vascular endothelial growth factor A, were increased, and barrier function was destroyed in the MPP2-N315 mutant ARPE19 cells. Mechanistically, the MPP2-N315 mutation had a stronger ability to directly bind to ANXA2 than MPP2-K315, as shown by LC‒MS/MS and Co-IP, and resulted in activation of the ERK3/IL-17E pathway. Overall, our results demonstrated that the MPP2-K315N mutation may increase susceptibility to VKH disease.


Asunto(s)
Síndrome Uveomeningoencefálico , Animales , Humanos , Ratones , Persona de Mediana Edad , Cromatografía Liquida , Secuenciación del Exoma , Interleucina-17/genética , Mutación Missense , Espectrometría de Masas en Tándem , Síndrome Uveomeningoencefálico/genética , Síndrome Uveomeningoencefálico/epidemiología , Factor A de Crecimiento Endotelial Vascular
18.
Front Cell Dev Biol ; 11: 1192221, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287450

RESUMEN

Extracellular signal-regulated kinase 3 (ERK3) promotes cell migration and tumor metastasis in multiple cancer types, including lung cancer. The extracellular-regulated kinase 3 protein has a unique structure. In addition to the N-terminal kinase domain, ERK3 includes a central conserved in extracellular-regulated kinase 3 and ERK4 (C34) domain and an extended C-terminus. However, relatively little is known regarding the role(s) of the C34 domain. A yeast two-hybrid assay using extracellular-regulated kinase 3 as bait identified diacylglycerol kinase ζ (DGKζ) as a binding partner. DGKζ was shown to promote migration and invasion in some cancer cell types, but its role in lung cancer cells is yet to be described. The interaction of extracellular-regulated kinase 3 and DGKζ was confirmed by co-immunoprecipitation and in vitro binding assays, consistent with their co-localization at the periphery of lung cancer cells. The C34 domain of ERK3 was sufficient for binding to DGKζ, while extracellular-regulated kinase 3 bound to the N-terminal and C1 domains of DGKζ. Surprisingly, in contrast to extracellular-regulated kinase 3, DGKζ suppresses lung cancer cell migration, suggesting DGKζ might inhibit ERK3-mediated cell motility. Indeed, co-overexpression of exogenous DGKζ and extracellular-regulated kinase 3 completely blocked the ability of ERK3 to promote cell migration, but DGKζ did not affect the migration of cells with stable ERK3 knockdown. Furthermore, DGKζ had little effect on cell migration induced by overexpression of an ERK3 mutant missing the C34 domain, suggesting DGKζ requires this domain to prevent ERK3-mediated increase in cell migration. In summary, this study has identified DGKζ as a new binding partner and negative regulator of extracellular-regulated kinase 3 in controlling lung cancer cell migration.

19.
Mol Oncol ; 16(5): 1184-1199, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34719109

RESUMEN

ERK3, officially known as mitogen-activated protein kinase 6 (MAPK6), is a poorly studied mitogen-activated protein kinase (MAPK). Recent studies have revealed the upregulation of ERK3 expression in cancer and suggest an important role for ERK3 in promoting cancer cell growth and invasion in some cancers, in particular lung cancer. However, it is unknown whether ERK3 plays a role in spontaneous tumorigenesis in vivo. To determine the role of ERK3 in lung tumorigenesis, we created a conditional ERK3 transgenic mouse line in which ERK3 transgene expression is controlled by Cre recombinase. By crossing these transgenic mice with a mouse line harboring a lung tissue-specific Cre recombinase transgene driven by a club cell secretory protein gene promoter (CCSP-iCre), we have found that conditional ERK3 overexpression cooperates with phosphatase and tensin homolog (PTEN) deletion to induce the formation of lung adenocarcinomas (LUADs). Mechanistically, ERK3 overexpression stimulates activating phosphorylations of erb-b2 receptor tyrosine kinases 2 and 3 (ERBB2 and ERBB3) by upregulating Sp1 transcription factor (SP1)-mediated gene transcription of neuregulin 1 (NRG1), a potent ligand for ERBB2/ERBB3. Our study has revealed a bona fide tumor-promoting role for ERK3 using genetically engineered mouse models. Together with previous findings showing the roles of ERK3 in cultured cells and in a xenograft lung tumor model, our findings corroborate that ERK3 acts as an oncoprotein in promoting LUAD development and progression.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Animales , Carcinogénesis , Humanos , Neoplasias Pulmonares/patología , Ratones , Proteína Quinasa 6 Activada por Mitógenos/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación
20.
Cancers (Basel) ; 14(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36497211

RESUMEN

Background: Metastatic dissemination of prostate cancer (PCa) accounts for the majority of PCa-related deaths. However, the exact mechanism of PCa cell spread is still unknown. We uncovered a novel interaction between two unrelated promotility factors, tousled-like kinase 1 (TLK1) and MAPK-activated protein kinase 5 (MK5), that initiates a signaling cascade promoting metastasis. In PCa, TLK1−MK5 signaling might be crucial, as androgen deprivation therapy (ADT) leads to increased expression of both TLK1 and MK5 in metastatic patients, but in this work, we directly investigated the motility, invasive, and metastatic capacity of PCa cells following impairment of the TLK1 > MK5 axis. Results: We conducted scratch wound repair and transwell invasion assays with LNCaP and PC3 cells to determine if TLK1 and MK5 can regulate motility and invasion. Both genetic depletion and pharmacologic inhibition of TLK1 and MK5 resulted in reduced migration and invasion through a Matrigel plug. We further elucidated the potential mechanisms underlying these effects and found that this is likely due to the reorganization of the actin fibers at lamellipodia and the focal adhesions network, in conjunction with increased expression of some MMPs that can affect penetration through the ECM. PC3, a highly metastatic cell line when assayed in xenografts, was further tested in a tail-vein injection/lung metastasis model, and we showed that, following inoculation, treatment with GLPG0259 (MK5 specific inhibitor) or J54 (TLK1 inhibitor) resulted in the lung tumor nodules being greatly diminished in number, and for J54, also in size. Conclusion: Our data support that the TLK1−MK5 axis is functionally involved in driving PCa cell metastasis and clinical aggressiveness; hence, disruption of this axis may inhibit the metastatic capacity of PCa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA