Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 809
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 49(6): 1021-1033.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566880

RESUMEN

Metabolic engagement is intrinsic to immune cell function. Prostaglandin E2 (PGE2) has been shown to modulate macrophage activation, yet how PGE2 might affect metabolism is unclear. Here, we show that PGE2 caused mitochondrial membrane potential (Δψm) to dissipate in interleukin-4-activated (M(IL-4)) macrophages. Effects on Δψm were a consequence of PGE2-initiated transcriptional regulation of genes, particularly Got1, in the malate-aspartate shuttle (MAS). Reduced Δψm caused alterations in the expression of 126 voltage-regulated genes (VRGs), including those encoding resistin-like molecule α (RELMα), a key marker of M(IL-4) cells, and genes that regulate the cell cycle. The transcription factor ETS variant 1 (ETV1) played a role in the regulation of 38% of the VRGs. These results reveal ETV1 as a Δψm-sensitive transcription factor and Δψm as a mediator of mitochondrial-directed nuclear gene expression.


Asunto(s)
Núcleo Celular/efectos de los fármacos , Dinoprostona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Animales , Núcleo Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Interleucina-4/farmacología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(24): e2322009121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38843187

RESUMEN

Follicular helper T (TFH) cells mediate germinal center reactions to generate high affinity antibodies against specific pathogens, and their excessive production is associated with the pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus (SLE). ETV5, a member of the ETS transcription factor family, promotes TFH cell differentiation in mice. In this study, we examined the role of ETV5 in the pathogenesis of lupus in mice and humans. T cell-specific deletion of Etv5 alleles ameliorated TFH cell differentiation and autoimmune phenotypes in lupus mouse models. Further, we identified SPP1 as an ETV5 target that promotes TFH cell differentiation in both mice and humans. Notably, extracellular osteopontin (OPN) encoded by SPP1 enhances TFH cell differentiation by activating the CD44-AKT signaling pathway. Furthermore, ETV5 and SPP1 levels were increased in CD4+ T cells from patients with SLE and were positively correlated with disease activity. Taken together, our findings demonstrate that ETV5 is a lupus-promoting transcription factor, and secreted OPN promotes TFH cell differentiation.


Asunto(s)
Diferenciación Celular , Lupus Eritematoso Sistémico , Osteopontina , Factores de Transcripción , Animales , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/patología , Osteopontina/metabolismo , Osteopontina/genética , Ratones , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Femenino , Modelos Animales de Enfermedad , Ratones Noqueados
3.
Hum Mol Genet ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077833

RESUMEN

This study delves into the molecular intricacies of hypopharyngeal squamous cell carcinoma (HSCC), specifically focusing on the pivotal role played by ETS translocation variant 4 (ETV4) in aerobic glycolysis. The objective is to uncover new targets for early diagnosis and treatment of HSCC. ETV4 expression in HSCC tissues was rigorously examined, revealing its association with patient survival. Through comprehensive experimentation, we demonstrated that ETV4 activation promotes HSCC cell proliferation and invasion while inhibiting apoptosis. Furthermore, in vivo experiments confirmed the tumor-promoting effect of ETV4 activation. The study elucidated the binding of ETV4 to the NSUN2 promoter and its influence on PKM2 expression, thereby regulating glycolysis and cellular functions in HSCC.

4.
Development ; 149(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35531980

RESUMEN

The endocardium plays important roles in the development and function of the vertebrate heart; however, few molecular markers of this tissue have been identified and little is known about what regulates its differentiation. Here, we describe the Gt(SAGFF27C); Tg(4xUAS:egfp) line as a marker of endocardial development in zebrafish. Transcriptomic comparison between endocardium and pan-endothelium confirms molecular distinction between these populations and time-course analysis suggests differentiation as early as eight somites. To investigate what regulates endocardial identity, we employed npas4l, etv2 and scl loss-of-function models. Endocardial expression is lost in npas4l mutants, significantly reduced in etv2 mutants and only modestly affected upon scl loss-of-function. Bmp signalling was also examined: overactivation of Bmp signalling increased endocardial expression, whereas Bmp inhibition decreased expression. Finally, epistasis experiments showed that overactivation of Bmp signalling was incapable of restoring endocardial expression in etv2 mutants. By contrast, overexpression of either npas4l or etv2 was sufficient to rescue endocardial expression upon Bmp inhibition. Together, these results describe the differentiation of the endocardium, distinct from vasculature, and place npas4l and etv2 downstream of Bmp signalling in regulating its differentiation.


Asunto(s)
Endocardio , Pez Cebra , Animales , Endocardio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
5.
Genes Dev ; 31(14): 1456-1468, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28827401

RESUMEN

CIC (also known as Capicua) is a transcriptional repressor negatively regulated by RAS/MAPK signaling. Whereas the functions of Cic have been well characterized in Drosophila, little is known about its role in mammals. CIC is inactivated in a variety of human tumors and has been implicated recently in the promotion of lung metastases. Here, we describe a mouse model in which we inactivated Cic by selectively disabling its DNA-binding activity, a mutation that causes derepression of its target genes. Germline Cic inactivation causes perinatal lethality due to lung differentiation defects. However, its systemic inactivation in adult mice induces T-cell acute lymphoblastic lymphoma (T-ALL), a tumor type known to carry CIC mutations, albeit with low incidence. Cic inactivation in mice induces T-ALL by a mechanism involving derepression of its well-known target, Etv4 Importantly, human T-ALL also relies on ETV4 expression for maintaining its oncogenic phenotype. Moreover, Cic inactivation renders T-ALL insensitive to MEK inhibitors in both mouse and human cell lines. Finally, we show that Ras-induced mouse T-ALL as well as human T-ALL carrying mutations in the RAS/MAPK pathway display a genetic signature indicative of Cic inactivation. These observations illustrate that CIC inactivation plays a key role in this human malignancy.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Represoras/genética , Proteínas E1A de Adenovirus/metabolismo , Alelos , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Desarrollo Embrionario/genética , Fibroblastos/metabolismo , Genes ras , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Mutación , Oligodendroglioma/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Transcripción Genética
6.
J Cell Mol Med ; 28(4): e18081, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38358034

RESUMEN

Atractylodes macrocephala III (ATL III), with anti-inflammatory and antitumor effects, is the main compound of Atractylodes macrocephala. Whether ATL III has an effect on cervical cancer and the specific mechanism are still unclear. Here, we investigated the effects of ATL III on cervical cancer cells at different concentrations and found that ATL III downregulates insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), which was found to be highly expressed in cervical cancer tissue by RNA-Seq. In this study, we found that ATL III promotes apoptosis and regulates epithelial-mesenchymal transition (EMT) in cervical cancer cells (HeLa and SiHa cells) and that IGF2BP3 is a common target gene of ATL III in HeLa and SiHa cells. The expression level of IGF2BP3 in cervical cancer cells was proportional to their migration and invasion abilities. This was verified by transfection of cells with a small interfering RNA and an IGF2BP3 overexpression plasmid. After ATL III treatment, the migration and invasion abilities of cervical cancer cells were obviously reduced, but these effects were attenuated after overexpression of IGF2BP3. In addition, the transcription factor IGF2BP3 was predicted by the JASPAR system. After intersection with our sequencing results, we verified the promotional effect of ETV5 (ETS translocation variant 5) on IGF2BP3 and found that ALT III inhibited ETV5. In general, our research showed that ATL III inhibits the migration and invasion of cervical cancer cells by regulating IGF2BP3 through ETV5.


Asunto(s)
Atractylodes , Neoplasias del Cuello Uterino , Femenino , Humanos , Atractylodes/química , Neoplasias del Cuello Uterino/patología , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Transición Epitelial-Mesenquimal/genética , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ADN/genética
7.
J Cell Mol Med ; 28(16): e70005, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39159135

RESUMEN

The E-twenty-six variant 1 (ETV1)-dependent transcriptome plays an important role in atrial electrical and structural remodelling and the occurrence of atrial fibrillation (AF), but the underlying mechanism of ETV1 in AF is unclear. In this study, cardiomyocyte-specific ETV1 knockout (ETV1f/fMyHCCre/+, ETV1-CKO) mice were constructed to observe the susceptibility to AF and the underlying mechanism in AF associated with ETV1-CKO mice. AF susceptibility was examined by intraesophageal burst pacing, induction of AF was increased obviously in ETV1-CKO mice than WT mice. Electrophysiology experiments indicated shortened APD50 and APD90, increased incidence of DADs, decreased density of ICa,L in ETV1-CKO mice. There was no difference in VINACT,1/2 and VACT,1/2, but a significantly longer duration of the recovery time after inactivation in the ETV1-CKO mice. The recording of intracellular Ca2+ showed that there was significantly increased in the frequency of calcium spark, Ca2+ transient amplitude, and proportion of SCaEs in ETV1-CKO mice. Reduction of Cav1.2 rather than NCX1 and SERCA2a, increase RyR2, p-RyR2 and CaMKII was reflected in ETV1-CKO group. This study demonstrates that the increase in calcium spark and SCaEs corresponding to Ca2+ transient amplitude may trigger DAD in membrane potential in ETV1-CKO mice, thereby increasing the risk of AF.


Asunto(s)
Fibrilación Atrial , Calcio , Atrios Cardíacos , Ratones Noqueados , Miocitos Cardíacos , Factores de Transcripción , Animales , Miocitos Cardíacos/metabolismo , Ratones , Fibrilación Atrial/metabolismo , Fibrilación Atrial/genética , Calcio/metabolismo , Atrios Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Señalización del Calcio , Potenciales de Acción , Potenciales de la Membrana , Masculino
8.
Dev Biol ; 501: 92-103, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353106

RESUMEN

During embryonic development, primitive and definitive waves of hematopoiesis take place to provide proper blood cells for each developmental stage, with the possible involvement of epigenetic factors. We previously found that lysine-specific demethylase 1 (LSD1/KDM1A) promotes primitive hematopoietic differentiation by shutting down the gene expression program of hemangioblasts in an Etv2/Etsrp-dependent manner. In the present study, we demonstrated that zebrafish LSD1 also plays important roles in definitive hematopoiesis in the development of hematopoietic stem and progenitor cells. A combination of genetic approaches and imaging analyses allowed us to show that LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Analysis of compound mutant lines with Etv2/Etsrp mutant zebrafish revealed that, unlike in primitive hematopoiesis, this function of LSD1 was independent of Etv2/Etsrp. The phenotype of LSD1 mutant zebrafish during the endothelial-to-hematopoietic transition was similar to that of previously reported compound knockout mice of Gfi1/Gfi1b, which forms a complex with LSD1 and represses endothelial genes. Moreover, co-knockdown of zebrafish Gfi1/Gfi1b genes inhibited the development of hematopoietic stem and progenitor cells. We therefore hypothesize that the shutdown of the Gfi1/Gfi1b-target genes during the endothelial-to-hematopoietic transition is one of the key evolutionarily conserved functions of LSD1 in definitive hematopoiesis.


Asunto(s)
Células Madre , Pez Cebra , Animales , Ratones , Diferenciación Celular , Hematopoyesis/genética , Histona Demetilasas/genética , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Angiogenesis ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969874

RESUMEN

The development of reliable methods for producing functional endothelial cells (ECs) is crucial for progress in vascular biology and regenerative medicine. In this study, we present a streamlined and efficient methodology for the differentiation of human induced pluripotent stem cells (iPSCs) into induced ECs (iECs) that maintain the ability to undergo vasculogenesis in vitro and in vivo using a doxycycline-inducible system for the transient expression of the ETV2 transcription factor. This approach mitigates the limitations of direct transfection methods, such as mRNA-mediated differentiation, by simplifying the protocol and enhancing reproducibility across different stem cell lines. We detail the generation of iPSCs engineered for doxycycline-induced ETV2 expression and their subsequent differentiation into iECs, achieving over 90% efficiency within four days. Through both in vitro and in vivo assays, the functionality and phenotypic stability of the derived iECs were rigorously validated. Notably, these cells exhibit key endothelial markers and capabilities, including the formation of vascular networks in a microphysiological platform in vitro and in a subcutaneous mouse model. Furthermore, our results reveal a close transcriptional and proteomic alignment between the iECs generated via our method and primary ECs, confirming the biological relevance of the differentiated cells. The high efficiency and effectiveness of our induction methodology pave the way for broader application and accessibility of iPSC-derived ECs in scientific research, offering a valuable tool for investigating endothelial biology and for the development of EC-based therapies.

10.
Funct Integr Genomics ; 24(1): 8, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200280

RESUMEN

Members of the E26 transformation-specific (ETS) variant transcription factor family act as either tumor suppressors or oncogenic factors in numerous types of cancer. ETS variant transcription factor 7 (ETV7) participates in the development of malignant tumors, whereas its involvement in colorectal cancer (CRC) is less clear. In this study, The Cancer Genome Atlas (TCGA) and immunochemistry staining were applied to check the clinical relevance of ETV7 and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in CRC patients. Overexpression and knockdown of ETV7 and IFIT3 were conducted by transfecting the cells with pCDNA3.1 plasmids and siRNAs, respectively. Western blotting was used to detect the protein expression of ETV7 in CRC cells. Cell Counting Kit-8, cell colony formation, and Transwell assays, as well as flow cytometry, were used to evaluate the proliferation, migration, cell cycle, and apoptosis of CRC cells. Furthermore, western blotting, RT-qPCR, and luciferase assay were used to explore the regulation of ETV7 on IFIT3. Rescue assay was used to investigate the significance of ETV7/IFIT3 axis on CRC progression. We found that ETV7 was upregulated in CRC tissues and cells. Overexpression of ETV7 stimulated the proliferation, migration, and cell cycle amplification, and reduced the apoptosis of CRC cells. Downregulation of ETV7 exerted the opposite effect on CRC cell progression. Moreover, we demonstrated that ETV7 stimulated the transcription activity, the mRNA and protein expression of IFIT3 in CRC cells. There was a positive correlation between ETV7 and IFIT3 in CRC patients. IFIT3 knockdown reversed the promotive effect exerted by overexpression of ETV7 on the amplification and migration of CRC cells. By contrast, overexpression of IFIT3 blocked the inhibitory effect of ETV7-targeting siRNA. In summary, ETV7 induces progression of CRC by activating the transcriptional expression of IFIT3. The EVT7/IFIT3 axis may be a novel target for CRC therapy.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Humanos , Regulación hacia Arriba , Regulación hacia Abajo , Apoptosis/genética , Neoplasias Colorrectales/genética , Proteínas Proto-Oncogénicas c-ets , Péptidos y Proteínas de Señalización Intracelular
11.
Cell Physiol Biochem ; 58(3): 250-272, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865588

RESUMEN

BACKGROUND/AIMS: Motivated by the vacuolar proton pump's importance in cancer, we investigate the effects of proton pump inhibition on breast cancer cell migration and proliferation, F-actin polymerization, lamin A/C, heterochromatin, and ETV7 expressions, nuclear size and shape, and AKT/mTOR signaling. METHODS: Lowly metastatic MCF7 and highly metastatic MDA-MB-231 breast cancer cells were treated with 120 nM of proton pump inhibitor Bafilomycin A1 for 24 hours. Cell migration was studied with wound- scratch assays, ATP levels with a chemiluminescent assay; cell proliferation was quantified by a cell area expansion assay. Nuclear size and shape were determined using DAPI nuclear stain and fluorescence microscopy. The levels of F-actin, lamin A/C, heterochromatin, and ETV7 were quantified using both immunocytochemistry and western blots; p-mTORC1, p-mTORC2, mTOR, p-AKT, and AKT were measured by western blots. RESULTS: We reveal that proton pump inhibition reduces F-actin polymerization, cell migration, proliferation, and increases heterochromatin in both lowly and highly metastatic cells. Surprisingly, Bafilomycin decreases lamin A/C in both cell lines. Inhibition has different effects on ETV7 expression in lowly and highly metastatic cells, as well as nuclear area, perimeter, and circularity. Bafilomycin also significantly decreases p-mTORC1, p-MTORC2, and MTOR expression in both cell lines, whereas it significantly decreases p-AKT in lowly metastatic cells and surprisingly significantly increases p-AKT in highly metastatic cells. Our proton pump inhibition protocol reduces V-ATPase levels (~25%) within three hours. V-ATPase levels vary in time for both control and inhibited cells, and inhibition reduces cellular ATP. CONCLUSION: Proton pumps promote F-actin polymerization and decrease heterochromatin, facilitating invasion. These pumps also upregulate both mTORC1 and mTORC2, thus highlighting the relevance of vacuolar proton pumps as metastatic cancer targets.


Asunto(s)
Actinas , Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Heterocromatina , Macrólidos , Diana Mecanicista del Complejo 2 de la Rapamicina , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , ATPasas de Translocación de Protón Vacuolares , Humanos , Actinas/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Transducción de Señal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Macrólidos/farmacología , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Heterocromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Células MCF-7
12.
J Transl Med ; 22(1): 547, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849954

RESUMEN

BACKGROUND: Enhancers are important gene regulatory elements that promote the expression of critical genes in development and disease. Aberrant enhancer can modulate cancer risk and activate oncogenes that lead to the occurrence of various cancers. However, the underlying mechanism of most enhancers in cancer remains unclear. Here, we aim to explore the function and mechanism of a crucial enhancer in melanoma. METHODS: Multi-omics data were applied to identify an enhancer (enh17) involved in melanoma progression. To evaluate the function of enh17, CRISPR/Cas9 technology were applied to knockout enh17 in melanoma cell line A375. RNA-seq, ChIP-seq and Hi-C data analysis integrated with luciferase reporter assay were performed to identify the potential target gene of enh17. Functional experiments were conducted to further validate the function of the target gene ETV4. Multi-omics data integrated with CUT&Tag sequencing were performed to validate the binding profile of the inferred transcription factor STAT3. RESULTS: An enhancer, named enh17 here, was found to be aberrantly activated and involved in melanoma progression. CRISPR/Cas9-mediated deletion of enh17 inhibited cell proliferation, migration, and tumor growth of melanoma both in vitro and in vivo. Mechanistically, we identified ETV4 as a target gene regulated by enh17, and functional experiments further support ETV4 as a target gene that is involved in cancer-associated phenotypes. In addition, STAT3 acts as a transcription factor binding with enh17 to regulate the transcription of ETV4. CONCLUSIONS: Our findings revealed that enh17 plays an oncogenic role and promotes tumor progression in melanoma, and its transcriptional regulatory mechanisms were fully elucidated, which may open a promising window for melanoma prevention and treatment.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Melanoma , Humanos , Melanoma/genética , Melanoma/patología , Línea Celular Tumoral , Elementos de Facilitación Genéticos/genética , Proliferación Celular/genética , Movimiento Celular/genética , Animales , Oncogenes/genética , Sistemas CRISPR-Cas/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Carcinogénesis/genética , Carcinogénesis/patología , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Secuencia de Bases , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética
13.
Stem Cells ; 41(2): 140-152, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36512477

RESUMEN

The ability to differentiate human-induced pluripotent stem cells (hiPSCs) efficiently into defined cardiac lineages, such as cardiomyocytes and cardiac endothelial cells, is crucial to study human heart development and model cardiovascular diseases in vitro. The mechanisms underlying the specification of these cell types during human development are not well understood which limits fine-tuning and broader application of cardiac model systems. Here, we used the expression of ETV2, a master regulator of hematoendothelial specification in mice, to identify functionally distinct subpopulations during the co-differentiation of endothelial cells and cardiomyocytes from hiPSCs. Targeted analysis of single-cell RNA-sequencing data revealed differential ETV2 dynamics in the 2 lineages. A newly created fluorescent reporter line allowed us to identify early lineage-predisposed states and show that a transient ETV2-high-state initiates the specification of endothelial cells. We further demonstrated, unexpectedly, that functional cardiomyocytes can originate from progenitors expressing ETV2 at a low level. Our study thus sheds light on the in vitro differentiation dynamics of 2 important cardiac lineages.


Asunto(s)
Células Endoteliales , Células Madre Pluripotentes Inducidas , Animales , Ratones , Humanos , Células Endoteliales/metabolismo , Miocitos Cardíacos/metabolismo , Regulación hacia Arriba , Diferenciación Celular/genética , Endotelio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Int Arch Allergy Immunol ; 185(9): 910-920, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781935

RESUMEN

INTRODUCTION: The occurrence and progression of lung adenocarcinoma (LUAD) impair T-cell immune responses, causing immune escape and subsequently affecting the efficacy of immunotherapy in patients. Aurora kinase A (AURKA) is upregulated in varying cancers, but its role in LUAD immune escape is elusive. This work attempted to explore molecular mechanisms of AURKA regulation in LUAD immune escape. METHODS: Through bioinformatics analysis, AURKA level in LUAD was evaluated, and potential upstream transcription factors of AURKA were predicted using hTFtarget. ETS variant transcription factor 4 (ETV4) expression in LUAD was analyzed through The Cancer Genome Atlas. Pearson's correlation analysis was then utilized to test the correlation between AURKA and ETV4. Interaction and binding between AURKA and ETV4 were validated through dual-luciferase assay and chromatin immunoprecipitation. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) tested relative mRNA expression of AURKA and ETV4 in LUAD cells, cell counting kit-8 assayed cell viability, and Western blot analysis was conducted to determine the protein level of programmed death-ligand 1 (PD-L1). Coculture of LUAD cells with activated CD8+ T cells was carried out, and an LDH assay was used to assess the cytotoxicity of CD8+ T cells against LUAD cells. Interferon-γ (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α) levels in the coculture system were assessed by enzyme-linked immunosorbent assay (ELISA). Western blot assessed protein levels of JAK2, p-JAK2, STAT3, and p-STAT3. RESULTS: Compared to normal tissues, AURKA and ETV4 were upregulated in tumor tissues, and AURKA presented a negative association with CD8+ T-cell immune infiltration but a positive association with PD-L1. qRT-PCR unveiled significantly upregulated mRNA of AURKA and ETV4 in LUAD cells compared to normal lung epithelial cells. Knockdown of AURKA significantly decreased cell viability and PD-L1 protein level in LUAD cells, enhanced cytotoxicity of CD8+ T cells against LUAD cells and IFN-γ, IL-2, and TNF-α expression, while overexpression of AURKA yielded opposite results. Furthermore, the knockdown of ETV4 could reverse the oncogenic characteristics of cells caused by AURKA overexpression. CONCLUSION: Our study illustrated that ETV4/AURKA axis promoted PD-L1 expression, suppressed CD8+ T-cell activity, and mediated immune escape in LUAD by regulating the JAK2/STAT3 signaling pathway.


Asunto(s)
Adenocarcinoma del Pulmón , Aurora Quinasa A , Antígeno B7-H1 , Neoplasias Pulmonares , Escape del Tumor , Humanos , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/inmunología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/genética , Escape del Tumor/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Línea Celular Tumoral , Proteínas E1A de Adenovirus/metabolismo , Proteínas E1A de Adenovirus/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas c-ets/inmunología
15.
Ann Hematol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105739

RESUMEN

ETV6::ABL1 is a rare fusion gene that found in MPN, ALL, and AML. It has a complex and diverse formation mechanism due to the reciprocal orientations of the ETV6 and ABL1 genes relative to the centromeres. NPM1 is frequently mutated in adult AML, often accompanied by FLT3-ITD, which suggests molecular synergisms in AML pathogenesis. Previous reports on ETV6::ABL1 mostly focus on FLT3-ITD. In this study, we present a case of AML with ETV6::ABL1, along with NPM1 and FLT3-ITD. The patient showed a rapid increase in primitive cells at the initial stage, along with the presence of immature granulocytes and erythrocytes. Through cytogenetic analysis, fluorescence in situ hybridization (FISH), and RNA-seq, we elucidated the mechanism behind the formation of the ETV6::ABL1 fusion gene. Despite conventional chemotherapy failure and rapid tumor proliferation, we attempted to add FLT3 inhibitor sorafenib to the treatment, along with chemotherapy bridging to haploidentical transplantation. After haplo-HSCT, a combination of sorafenib and dasatinib was administered as maintenance therapy. The patient achieved complete remission (CR) and maintained it for 11 months. The intricate genetic landscape observed in this case presents diagnostic dilemmas and therapeutic challenges, emphasizing the importance of a comprehensive understanding of its implications for disease classification, risk stratification, and treatment selection.

16.
Ann Hematol ; 103(9): 3801-3804, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992279

RESUMEN

ETV6::ABL1 fusion gene is a rare but recurrent genomic rearrangement in hematological malignancies with poor prognosis. Here, we report 1 case of Ph negative myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) who carry ETV6::ABL1 fusion gene. The patient achieved clinical remission after treatment with imatinib. However, disease progression of blast crisis was observed around 2 years later. The patient was treated with second-generation tyrosine kinase inhibitor of flumatinib, yielded a short term second therapeutic response. ETV6::ABL1 positive myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) is rare and may be misdiagnosed by conventional cytogenetical analysis. Early treatment with TKIs, particularly second-generation TKIs, may be beneficial to improve treatment results.


Asunto(s)
Crisis Blástica , Proteína ETS de Variante de Translocación 6 , Proteínas de Fusión Oncogénica , Proteínas Proto-Oncogénicas c-ets , Humanos , Crisis Blástica/tratamiento farmacológico , Crisis Blástica/genética , Proteínas de Fusión Oncogénica/genética , Masculino , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Persona de Mediana Edad , Mesilato de Imatinib/uso terapéutico , Aminopiridinas/uso terapéutico , Femenino
17.
J Gastroenterol Hepatol ; 39(6): 1190-1197, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480009

RESUMEN

BACKGROUND AND AIM: The benefits of entecavir (ETV) versus tenofovir disoproxil fumarate (TDF) in reducing the development of chronic hepatitis B (CHB)-related hepatocellular carcinoma remain controversial. Whether mortality rates differ between patients with CHB treated with ETV and those treated with TDF is unclear. METHODS: A total of 2542 patients with CHB treated with either ETV or TDF were recruited from a multinational cohort. A 1:1 propensity score matching was performed to balance the differences in baseline characteristics between the two patient groups. We aimed to compare the all-cause, liver-related, and non-liver-related mortality between patients receiving ETV and those receiving TDF. RESULTS: The annual incidence of all-cause mortality in the entire cohort was 1.0/100 person-years (follow-up, 15 757.5 person-years). Patients who received TDF were younger and had a higher body mass index, platelet count, hepatitis B virus deoxyribonucleic acid levels, and proportion of hepatitis B e-antigen seropositivity than those who received ETV. The factors associated with all-cause mortality were fibrosis-4 index > 6.5 (hazard ratio [HR]/confidence interval [CI]: 3.13/2.15-4.54, P < 0.001), age per year increase (HR/CI: 1.05/1.04-1.07, P < 0.001), alanine aminotransferase level per U/L increase (HR/CI: 0.997/0.996-0.999, P = 0.003), and γ-glutamyl transferase level per U/L increase (HR/CI: 1.002/1.001-1.003, P < 0.001). No significant difference in all-cause mortality was observed between the ETV and TDF groups (log-rank test, P = 0.69). After propensity score matching, no significant differences in all-cause, liver-related, or non-liver-related mortality were observed between the two groups. CONCLUSIONS: Long-term outcomes of all-cause mortality and liver-related and non-liver-related mortality did not differ between patients treated with ETV and those receiving TDF.


Asunto(s)
Antivirales , Guanina , Hepatitis B Crónica , Tenofovir , Humanos , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/mortalidad , Tenofovir/uso terapéutico , Guanina/análogos & derivados , Guanina/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Antivirales/uso terapéutico , Adulto , Estudios de Cohortes , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/mortalidad , Puntaje de Propensión
18.
J Cutan Pathol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010330

RESUMEN

CIC-rearranged sarcomas comprise a group of exceptionally aggressive round-cell sarcomas. These tumors most commonly demonstrate CIC::DUX4 fusion and show similar histopathology to Ewing sarcomas, though lesions mimicking vascular neoplasms have recently been described. Here, we describe a case of a patient with CIC::DUX4 fusion sarcoma identified using RNA-based molecular testing who was initially diagnosed with an endothelial neoplasm. The tumor showed extensive vasoformative growth, complete WT1 negativity, and global positive staining for ERG, CD31, and DUX4 by immunohistochemistry. Methylation testing of the tumor clustered more closely with angiosarcomas than with CIC-rearranged sarcomas. Our findings suggest that CIC::DUX4 fused neoplasms may demonstrate a more diverse phenotypic range than previously appreciated and offer evidence that both molecular and immunohistochemical studies are needed for accurate diagnosis.

19.
Cell Mol Biol Lett ; 29(1): 88, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877424

RESUMEN

Osteoarthritis (OA) is the most common degenerative joint disorder that causes disability in aged individuals, caused by functional and structural alterations of the knee joint. To investigate whether metabolic drivers might be harnessed to promote cartilage repair, a liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics approach was carried out to screen serum biomarkers in osteoarthritic rats. Based on the correlation analyses, α-ketoglutarate (α-KG) has been demonstrated to have antioxidant and anti-inflammatory properties in various diseases. These properties make α-KG a prime candidate for further investigation of OA. Experimental results indicate that α-KG significantly inhibited H2O2-induced cartilage cell matrix degradation and apoptosis, reduced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione (GSH)/glutathione disulfide (GSSG) levels, and upregulated the expression of ETV4, SLC7A11 and GPX4. Further mechanistic studies observed that α-KG, like Ferrostatin-1 (Fer-1), effectively alleviated Erastin-induced apoptosis and ECM degradation. α-KG and Fer-1 upregulated ETV4, SLC7A11, and GPX4 at the mRNA and protein levels, decreased ferrous ion (Fe2+) accumulation, and preserved mitochondrial membrane potential (MMP) in ATDC5 cells. In vivo, α-KG treatment inhibited ferroptosis in OA rats by activating the ETV4/SLC7A11/GPX4 pathway. Thus, these findings indicate that α-KG inhibits ferroptosis via the ETV4/SLC7A11/GPX4 signaling pathway, thereby alleviating OA. These observations suggest that α-KG exhibits potential therapeutic properties for the treatment and prevention of OA, thereby having potential clinical applications in the future.


Asunto(s)
Ferroptosis , Ácidos Cetoglutáricos , Osteoartritis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Transducción de Señal , Ferroptosis/efectos de los fármacos , Animales , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Transducción de Señal/efectos de los fármacos , Ratas , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Masculino , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
20.
BMC Urol ; 24(1): 104, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730434

RESUMEN

BACKGROUND: Emerging evidence has indicated that a number of circular RNAs (circRNAs) participate in renal cell carcinoma (RCC) carcinogenesis. Nevertheless, the activity and molecular process of circPRELID2 (hsa_circ_0006528) in RCC progression remain unknown. METHODS: CircPRELID2, miR-22-3p and ETS variant 1 (ETV1) levels were gauged by qRT-PCR. Effect of the circPRELID2/miR-22-3p/ETV1 axis was evaluated by detecting cell growth, motility, and invasion. Immunoblotting assessed related protein levels. The relationships of circPRELID2/miR-22-3p and miR-22-3p/ETV1 were confirmed by RNA immunoprecipitation (RIP), luciferase reporter or RNA pull-down assay. RESULTS: CircPRELID2 was up-regulated in RCC. CircPRELID2 silencing suppressed RCC cell growth, motility and invasion. Moreover, circPRELID2 silencing weakened M2-type macrophage polarization in THP1-induced macrophage cells. CircPRELID2 sequestered miR-22-3p, and circPRELID2 increased ETV1 expression through miR-22-3p. Moreover, the inhibitory impact of circPRELID2 silencing on RCC cell malignant behaviors was mediated by the miR-22-3p/ETV1 axis. Furthermore, circPRELID2 knockdown in vivo hampered growth of xenograft tumors. CONCLUSION: Our study demonstrates that circPRELID2 silencing can mitigate RCC malignant development through the circPRELID2/miR-22-3p/ETV1 axis, highlighting new therapeutic targets for RCC treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , ARN Circular , MicroARNs/genética , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , ARN Circular/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Ratones , Animales , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA