Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37823343

RESUMEN

The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 µM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.


Asunto(s)
Ectodermo , Células Madre Embrionarias de Ratones , Animales , Ratones , Ectodermo/metabolismo , Prolina/metabolismo , Transducción de Señal , Células Madre Embrionarias , Diferenciación Celular/genética
2.
Proc Natl Acad Sci U S A ; 120(52): e2313200120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38113263

RESUMEN

In female mice, the gene dosage from X chromosomes is adjusted by a process called X chromosome inactivation (XCI) that occurs in two steps. An imprinted form of XCI (iXCI) that silences the paternally inherited X chromosome (Xp) is initiated at the 2- to 4-cell stages. As extraembryonic cells including trophoblasts keep the Xp silenced, epiblast cells that give rise to the embryo proper reactivate the Xp and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI require the lncRNA Xist, which is expressed from the X to be inactivated. The X-linked E3 ubiquitin ligase Rlim (Rnf12) in conjunction with its target protein Rex1 (Zfp42), a critical repressor of Xist, have emerged as major regulators of iXCI. However, their roles in rXCI remain controversial. Investigating early mouse development, we show that the Rlim-Rex1 axis is active in pre-implantation embryos. Upon implantation Rex1 levels are downregulated independently of Rlim specifically in epiblast cells. These results provide a conceptual framework of how the functional dynamics between Rlim and Rex1 ensures regulation of iXCI but not rXCI in female mice.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Animales , Femenino , Ratones , Embrión de Mamíferos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo , Inactivación del Cromosoma X/genética
3.
Dev Biol ; 507: 20-33, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38154769

RESUMEN

The neural tube, the embryonic precursor to the brain and spinal cord, begins as a flat sheet of epithelial cells, divided into non-neural and neural ectoderm. Proper neural tube closure requires that the edges of the neural ectoderm, the neural folds, to elevate upwards and fuse along the dorsal midline of the embryo. We have previously shown that members of the claudin protein family are required for the early phases of chick neural tube closure. Claudins are transmembrane proteins, localized in apical tight junctions within epithelial cells where they are essential for regulation of paracellular permeability, strongly involved in apical-basal polarity, cell-cell adhesion, and bridging the tight junction to cytoplasmic proteins. Here we explored the role of Claudin-3 (Cldn3), which is specifically expressed in the non-neural ectoderm. We discovered that depletion of Cldn3 causes folic acid-insensitive primarily spinal neural tube defects due to a failure in neural fold fusion. Apical cell surface morphology of Cldn3-depleted non-neural ectodermal cells exhibited increased membrane blebbing and smaller apical surfaces. Although apical-basal polarity was retained, we observed altered Par3 and Pals1 protein localization patterns within the apical domain of the non-neural ectodermal cells in Cldn3-depleted embryos. Furthermore, F-actin signal was reduced at apical junctions. Our data presents a model of spina bifida, and the role that Cldn3 is playing in regulating essential apical cell processes in the non-neural ectoderm required for neural fold fusion.


Asunto(s)
Ectodermo , Cresta Neural , Embrión de Pollo , Animales , Ectodermo/metabolismo , Cresta Neural/metabolismo , Pollos/metabolismo , Claudina-3/metabolismo , Tubo Neural , Claudinas/genética , Claudinas/metabolismo , Uniones Estrechas/metabolismo
4.
Dev Biol ; 515: 30-45, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38971398

RESUMEN

The ectoderm is the outermost of the three germ layers of the early embryo that arise during gastrulation. Once the germ layers are established, the complex interplay of cellular proliferation, differentiation, and migration results in organogenesis. The ectoderm is the progenitor of both the surface ectoderm and the neural ectoderm. Notably, the surface ectoderm develops into the epidermis and its associated appendages, nails, external exocrine glands, olfactory epithelium, and the anterior pituitary. Specification, development, and homeostasis of these organs demand a tightly orchestrated gene expression program that is often dictated by epigenetic regulation. In this review, we discuss the recent discoveries that have highlighted the importance of chromatin regulatory mechanisms mediated by transcription factors, histone and DNA modifications that aid in the development of surface ectodermal organs and maintain their homeostasis post-development.


Asunto(s)
Cromatina , Ectodermo , Regulación del Desarrollo de la Expresión Génica , Homeostasis , Ectodermo/metabolismo , Ectodermo/embriología , Animales , Cromatina/metabolismo , Epigénesis Genética , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Diferenciación Celular/genética , Histonas/metabolismo
5.
Dev Biol ; 506: 85-94, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040078

RESUMEN

The gill slits of fishes develop from an iterative series of pharyngeal endodermal pouches that contact and fuse with surface ectoderm on either side of the embryonic head. We find in the skate (Leucoraja erinacea) that all gill slits form via a stereotypical sequence of epithelial interactions: 1) endodermal pouches approach overlying surface ectoderm, with 2) focal degradation of ectodermal basement membranes preceding endoderm-ectoderm contact; 3) endodermal pouches contact and intercalate with overlying surface ectoderm, and finally 4) perforation of a gill slit occurs by epithelial remodelling, without programmed cell death, at the site of endoderm-ectoderm intercalation. Skate embryos express Fgf8 and Fgf3 within developing pharyngeal epithelia during gill slit formation. When we inhibit Fgf signalling by treating skate embryos with the Fgf receptor inhibitor SU5402 we find that endodermal pouch formation, basement membrane degradation and endodermal-ectodermal intercalation are unaffected, but that epithelial remodelling and gill slit perforation fail to occur. These findings point to a role for Fgf signalling in epithelial remodelling during gill slit formation in the skate and, more broadly, to an ancestral role for Fgf signalling during pharyngeal pouch epithelial morphogenesis in vertebrate embryos.


Asunto(s)
Ectodermo , Branquias , Animales , Endodermo , Vertebrados , Morfogénesis
6.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35451459

RESUMEN

Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.


Asunto(s)
Actomiosina , Ectodermo , Actomiosina/metabolismo , Animales , Ectodermo/metabolismo , Morfogénesis/fisiología , Cadenas Pesadas de Miosina , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Xenopus laevis/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(28): e2118938119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867760

RESUMEN

The vertebrate inner ear arises from a pool of progenitors with the potential to contribute to all the sense organs and cranial ganglia in the head. Here, we explore the molecular mechanisms that control ear specification from these precursors. Using a multiomics approach combined with loss-of-function experiments, we identify a core transcriptional circuit that imparts ear identity, along with a genome-wide characterization of noncoding elements that integrate this information. This analysis places the transcription factor Sox8 at the top of the ear determination network. Introducing Sox8 into the cranial ectoderm not only converts non-ear cells into ear progenitors but also activates the cellular programs for ear morphogenesis and neurogenesis. Thus, Sox8 has the unique ability to remodel transcriptional networks in the cranial ectoderm toward ear identity.


Asunto(s)
Oído Interno , Ectodermo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción SOXE , Animales , Oído Interno/embriología , Ectodermo/embriología , Factores de Transcripción SOXE/fisiología , Cráneo , Vertebrados/embriología
8.
Dev Dyn ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940489

RESUMEN

BACKGROUND: Previous studies have claimed that pharyngeal teeth in medaka (Oryzias latipes) are induced independent of retinoic acid (RA) signaling, unlike in zebrafish (Danio rerio). In zebrafish, pharyngeal tooth formation depends on a proper physical contact between the embryonic endodermal pouch anterior to the site of tooth formation, and the adjacent ectodermal cleft, an RA-dependent process. Here, we test the hypothesis that a proper pouch-cleft contact is required for pharyngeal tooth formation in embryonic medaka, as it is in zebrafish. We used 4-[diethylamino]benzaldehyde (DEAB) to pharmacologically inhibit RA production, and thus pouch-cleft contacts, in experiments strictly controlled in time, and analyzed these using high-resolution imaging. RESULTS: Pharyngeal teeth in medaka were present only when the corresponding anterior pouch had reached the ectoderm (i.e., a physical pouch-cleft contact established), similar to the situation in zebrafish. Oral teeth were present even when the treatment started approximately 4 days before normal oral tooth appearance. CONCLUSIONS: RA dependency for pharyngeal tooth formation is not different between zebrafish and medaka. We propose that the differential response to DEAB of oral versus pharyngeal teeth in medaka could be ascribed to the distinct germ layer origin of the epithelia involved in tooth formation in these two regions.

9.
Genesis ; 62(1): e23580, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37974491

RESUMEN

Bop1 can promote cell proliferation and is a component of the Pes1-Bop1-WDR12 (PeBoW) complex that regulates ribosomal RNA processing and biogenesis. In embryos, however, bop1 mRNA is highly enriched in the neural plate, cranial neural crest and placodes, and potentially may interact with Six1, which also is expressed in these tissues. Recent work demonstrated that during development, Bop1 is required for establishing the size of the tadpole brain, retina and cranial cartilages, as well as controlling neural tissue gene expression levels. Herein, we extend this work by assessing the effects of Bop1 knockdown at neural plate and larval stages. Loss of Bop1 expanded neural plate gene expression domains (sox2, sox11, irx1) and reduced neural crest (foxd3, sox9), placode (six1, sox11, irx1, sox9) and epidermal (dlx5) expression domains. At larval stages, Bop1 knockdown reduced the expression of several otic vesicle genes (six1, pax2, irx1, sox9, dlx5, otx2, tbx1) and branchial arch genes that are required for chondrogenesis (sox9, tbx1, dlx5). The latter was not the result of impaired neural crest migration. Together these observations indicate that Bop1 is a multifunctional protein that in addition to its well-known role in ribosomal biogenesis functions during early development to establish the craniofacial precursor domains.


Asunto(s)
Cresta Neural , Factores de Transcripción , Cresta Neural/metabolismo , Factores de Transcripción/metabolismo , Cabeza , Cráneo/metabolismo , Ribosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica
10.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34414417

RESUMEN

Branchio-oto-renal syndrome (BOR) is a disorder characterized by hearing loss, and craniofacial and/or renal defects. Variants in the transcription factor Six1 and its co-factor Eya1, both of which are required for otic development, are linked to BOR. We previously identified Sobp as a potential Six1 co-factor, and SOBP variants in mouse and humans cause otic phenotypes; therefore, we asked whether Sobp interacts with Six1 and thereby may contribute to BOR. Co-immunoprecipitation and immunofluorescence experiments demonstrate that Sobp binds to and colocalizes with Six1 in the cell nucleus. Luciferase assays show that Sobp interferes with the transcriptional activation of Six1+Eya1 target genes. Experiments in Xenopus embryos that either knock down or increase expression of Sobp show that it is required for formation of ectodermal domains at neural plate stages. In addition, altering Sobp levels disrupts otic vesicle development and causes craniofacial cartilage defects. Expression of Xenopus Sobp containing the human variant disrupts the pre-placodal ectoderm similar to full-length Sobp, but other changes are distinct. These results indicate that Sobp modifies Six1 function and is required for vertebrate craniofacial development, and identify Sobp as a potential candidate gene for BOR.


Asunto(s)
Desarrollo Óseo , Proteínas de Homeodominio/metabolismo , Metaloproteínas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Síndrome Branquio Oto Renal/embriología , Síndrome Branquio Oto Renal/genética , Núcleo Celular/metabolismo , Oído Interno/embriología , Oído Interno/metabolismo , Ectodermo/embriología , Ectodermo/metabolismo , Expresión Génica , Proteínas de Homeodominio/genética , Larva/crecimiento & desarrollo , Metaloproteínas/genética , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Proteínas Tirosina Fosfatasas/metabolismo , Activación Transcripcional , Proteínas de Xenopus/genética , Xenopus laevis
11.
Stem Cells ; 41(1): 26-38, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36153788

RESUMEN

The inner ear is derived from the otic placode, one of the numerous cranial sensory placodes that emerges from the pre-placodal ectoderm (PPE) along its anterior-posterior axis. However, the molecular dynamics underlying how the PPE is regionalized are poorly resolved. We used stem cell-derived organoids to investigate the effects of Wnt signaling on early PPE differentiation and found that modulating Wnt signaling significantly increased inner ear organoid induction efficiency and reproducibility. Alongside single-cell RNA sequencing, our data reveal that the canonical Wnt signaling pathway leads to PPE regionalization and, more specifically, medium Wnt levels during the early stage induce (1) expansion of the caudal neural plate border (NPB), which serves as a precursor for the posterior PPE, and (2) a caudal microenvironment that is required for otic specification. Our data further demonstrate Wnt-mediated induction of rostral and caudal cells in organoids and more broadly suggest that Wnt signaling is critical for anterior-posterior patterning in the PPE.


Asunto(s)
Oído Interno , Vía de Señalización Wnt , Animales , Ratones , Reproducibilidad de los Resultados , Oído Interno/metabolismo , Diferenciación Celular , Ectodermo/metabolismo , Organoides , Células Madre , Regulación del Desarrollo de la Expresión Génica
12.
Adv Exp Med Biol ; 1441: 125-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884708

RESUMEN

This chapter discusses the role of cardiac neural crest cells in the formation of the septum that divides the cardiac arterial pole into separate systemic and pulmonary arteries. Further, cardiac neural crest cells directly support the normal development and patterning of derivatives of the caudal pharyngeal arches, including the great arteries, thymus, thyroid, and parathyroids. Recently, cardiac neural crest cells have also been shown to indirectly influence the development of the secondary heart field, another derivative of the caudal pharynx, by modulating signaling in the pharynx. The contribution and function of the cardiac neural crest cells has been learned in avian models; most of the genes associated with cardiac neural crest function have been identified using mouse models. Together these studies show that the neural crest cells may not only critical for normal cardiovascular development but also may be involved secondarily because they represent a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Cardiac neural crest cells span from the caudal pharynx into the outflow tract, and therefore may be susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations resulting from genetic and/or environmental insults necessarily requires better understanding the role of cardiac neural crest cells in cardiac development.


Asunto(s)
Cresta Neural , Cresta Neural/embriología , Cresta Neural/citología , Cresta Neural/metabolismo , Animales , Humanos , Corazón/embriología , Ratones
13.
Dev Dyn ; 252(12): 1407-1427, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37597164

RESUMEN

BACKGROUND: Members of the sulfotransferase superfamily (SULT) influence the activity of a wide range of hormones, neurotransmitters, metabolites and xenobiotics. However, their roles in developmental processes are not well characterized even though they are expressed during embryogenesis. We previously found in a microarray screen that Six1 up-regulates LOC100037047, which encodes XB5850668.L, an uncharacterized sulfotransferase. RESULTS: Since Six1 is required for patterning the embryonic ectoderm into its neural plate, neural crest, preplacodal and epidermal domains, we used loss- and gain-of function assays to characterize the role of XB5850668.L during this process. Knockdown of endogenous XB5850668.L resulted in the reduction of epidermal, neural crest, cranial placode and otic vesicle gene expression domains, concomitant with neural plate expansion. Increased levels had minimal effects, but infrequently expanded neural plate and neural crest gene domains, and infrequently reduced cranial placode and otic vesicle gene domains. Mutation of two key amino acids in the sulfotransferase catalytic domain required for PAPS binding and enzymatic activity tended to reduce the effects of overexpressing the wild-type protein. CONCLUSIONS: Our analyses indicates that XB5850668.L is a member of the SULT2 family that plays important roles in patterning the embryonic ectoderm. Some aspects of its influence likely depend on sulfotransferase activity.


Asunto(s)
Ectodermo , Cresta Neural , Cresta Neural/metabolismo , Cráneo/metabolismo , Desarrollo Embrionario/genética , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Regulación del Desarrollo de la Expresión Génica
14.
Dev Biol ; 488: 81-90, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35598626

RESUMEN

Pre-placodal ectoderm (PPE), a horseshoe-shaped narrow region formed during early vertebrate development, gives rise to multiple types of sensory organs and ganglia. For PPE induction, a certain level of FGF signal activation is required. However, it is difficult to reproducibly induce the narrow region with variations in gene expression, including FGF, among individuals. An intracellular regulatory factor of FGF signaling, Dusp6, is expressed by FGF signal activation and inactivates a downstream regulator, ERK1/2, in adult tissues; however, its role in early development is not well known. Here, we reveal that Dusp6 is expressed in an FGF-dependent manner in Xenopus PPE. Gain- and loss-of-function experiments showed that Dusp6 is required for expression of a PPE gene, Six1, and patterning of adjacent regions, neural plate, and neural crest. To reveal the importance of Dusp6 in variable FGF production, we performed Dusp6 knockdown with FGF-bead implantation, which resulted in varying Six1 expression patterns. Taken together, these results suggest that Dusp6 is required for PPE formation and that it contributes to the robust patterning of PPE by mediating FGF signaling.


Asunto(s)
Ectodermo , Placa Neural , Animales , Fosfatasa 6 de Especificidad Dual/genética , Fosfatasa 6 de Especificidad Dual/metabolismo , Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Humanos , Cresta Neural/metabolismo , Placa Neural/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
15.
Dev Biol ; 483: 128-142, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038441

RESUMEN

Brachyury is a T-box family transcription factor and plays pivotal roles in morphogenesis. In sea urchin embryos, Brachyury is expressed in the invaginating endoderm, and in the oral ectoderm of the invaginating mouth opening. The oral ectoderm is hypothesized to serve as a signaling center for oral (ventral)-aboral (dorsal) axis formation and to function as a ventral organizer. Our previous results of a single-cell RNA-seq (scRNA-seq) atlas of early Strongylocentrotus purpuratus embryos categorized the constituent cells into 22 clusters, in which the endoderm consists of three clusters and the oral ectoderm four clusters (Foster et al., 2020). Here we examined which clusters of cells expressed Brachyury in relation to the morphogenesis and the identity of the ventral organizer. Our results showed that cells of all three endoderm clusters expressed Brachyury in blastulae. Based on expression profiles of genes involved in the gene regulatory networks (GRNs) of sea urchin embryos, the three clusters are distinguishable, two likely derived from the Veg2 tier and one from the Veg1 tier. On the other hand, of the four oral-ectoderm clusters, cells of two clusters expressed Brachyury at the gastrula stage and genes that are responsible for the ventral organizer at the late blastula stage, but the other two clusters did not. At a single-cell level, most cells of the two oral-ectoderm clusters expressed organizer-related genes, nearly a half of which coincidently expressed Brachyury. This suggests that the ventral organizer contains Brachyury-positive cells which invaginate to form the stomodeum. This scRNA-seq study therefore highlights significant roles of Brachyury-expressing cells in body-plan formation of early sea urchin embryos, though cellular and molecular mechanisms for how Brachyury functions in these processes remain to be elucidated in future studies.


Asunto(s)
Ectodermo/citología , Ectodermo/metabolismo , Desarrollo Embrionario/genética , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , RNA-Seq/métodos , Erizos de Mar/embriología , Erizos de Mar/genética , Análisis de la Célula Individual/métodos , Proteínas de Dominio T Box/metabolismo , Animales , Blástula/metabolismo , Ectodermo/embriología , Endodermo/embriología , Endodermo/metabolismo , Gástrula/metabolismo , Redes Reguladoras de Genes , Transducción de Señal/genética
16.
Development ; 147(4)2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31988190

RESUMEN

Epibranchial placodes are the geniculate, petrosal and nodose placodes that generate parts of cranial nerves VII, IX and X, respectively. How the three spatially separated placodes are derived from the common posterior placodal area is poorly understood. Here, we reveal that the broad posterior placode area is first patterned into a Vgll2+/Irx5+ rostral domain and a Sox2+/Fgf3+/Etv5+ caudal domain relative to the first pharyngeal cleft. This initial rostral and caudal patterning is then sequentially repeated along each pharyngeal cleft for each epibranchial placode. The caudal domains give rise to the neuronal and non-neuronal cells in the placode, whereas the rostral domains are previously unrecognized structures, serving as spacers between the final placodes. Notch signalling regulates the balance between the rostral and caudal domains: high levels of Notch signalling expand the caudal domain at the expense of the rostral domain, whereas loss of Notch signalling produces the converse phenotype. Collectively, these data unravel a new patterning principle for the early phases of epibranchial placode development and a role for Notch signalling in orchestrating epibranchial placode segregation and differentiation.


Asunto(s)
Región Branquial/embriología , Nervios Craneales/embriología , Ectodermo/embriología , Receptores Notch/fisiología , Animales , Tipificación del Cuerpo , Diferenciación Celular , Linaje de la Célula , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genotipo , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Fenotipo , Dominios Proteicos , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética
17.
Genet Med ; 25(1): 143-150, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36260083

RESUMEN

PURPOSE: Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown. METHODS: We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro. RESULTS: We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3. CONCLUSION: Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.


Asunto(s)
Microtia Congénita , Síndrome de Goldenhar , Micrognatismo , Humanos , Síndrome de Goldenhar/genética , Microtia Congénita/genética , Oído/anomalías , Cara
18.
J Exp Zool B Mol Dev Evol ; 340(2): 131-142, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35451554

RESUMEN

Egg size is a fast-evolving trait among Drosophilids expected to change the spatial distribution of morphogens that pattern the embryonic axes. Here we asked whether the patterning of the dorsal region of the embryo by the Decapentaplegic/Bone Morphogenetic Protein-4 (DPP/BMP-4) gradient is scaled among Drosophila species with different egg sizes. This region specifies the extra-embryonic tissue amnioserosa and the ectoderm. We find that the entire dorsal region scales with embryo size, but the gene expression patterns regulated by DPP are not proportional, suggesting that the DPP gradient is differentially scaled during evolution. To further test whether the DPP gradient can scale or not in Drosophila melanogaster, we created embryos with expanded dorsal regions that mimic changes in scale seen in other species and measured the resulting domains of DPP-target genes. We find that the proportions of these domains are not maintained, suggesting that the DPP gradient is unable to scale in the embryo. These and previous findings suggest that the embryonic dorso-ventral patterning lack scaling in the ventral and dorsal sides but is robust in the lateral region where the neuroectoderm is specified and two opposing gradients, Dorsal/NFkappa-B and DPP, intersect. We propose that the lack of scaling of the DPP gradient may contribute to changes in the size of the amnioserosa and the numbers of ectodermal cells with specific cortical tensions, which are expected to generate distinct mechanical forces for gastrulating embryos of different sizes.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fenotipo , Tipificación del Cuerpo/genética
19.
Dev Growth Differ ; 65(3): 153-160, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36726238

RESUMEN

Neural tissue is derived from three precursor regions: neural plate, neural crest, and preplacodal ectoderm. These regions are determined by morphogen-mediated signaling. Morphogen distribution is generally regulated by binding to an extracellular matrix component, heparan sulfate (HS) proteoglycan. HS is modified by many enzymes, such as N-deacetyl sulfotransferase 1 (Ndst1), which is highly expressed in early development. However, functions of HS modifications in ectodermal patterning are largely unknown. In this study, we analyzed the role of Ndst1 using Xenopus embryos. We found that ndst1 was expressed in anterior neural plate and the trigeminal region at the neurula stage. ndst1 overexpression expanded the neural crest (NC) region, whereas translational inhibition reduced not only the trigeminal region, but also the adjacent NC region, especially the anterior part. At a later stage, ndst1 knocked-down embryos showed defects in cranial ganglion formation. We also found that Ndst1 activates Wnt signaling pathway at the neurula stage. Taken together, our results suggest that N-sulfonated HS accumulates Wnt ligand and activates Wnt signaling in ndst1-expressing cells, but that it inhibits signaling in non-ndst1-expressing cells, leading to proper neuroectodermal patterning.


Asunto(s)
Placa Neural , Sulfotransferasas , Vía de Señalización Wnt , Animales , Heparitina Sulfato/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética
20.
Am J Med Genet A ; 191(1): 253-258, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36286624

RESUMEN

Keratitis-ichthyosis-deafness (KID) syndrome is a rare genetic disease caused by pathogenic variants in connexin 26 (gene GJB2), which is part of the transmembrane channels of the epithelia. Connexin 26 is expressed mainly in the cornea, the sensory epithelium of the inner ear, and in the skin keratinocytes, which are the three main target organs in KID syndrome. Approximately a dozen pathogenic variants have been described to date, including some lethal forms. Patients with lethal pathogenic variants present with severe symptoms from birth and die from sepsis during the first year of life. We present a premature female patient with KID syndrome carrying the lethal p.Ala88Val pathogenic variant in GJB2. In addition to the respiratory distress associated with this variant, our patient presented severe hypercalcemia of unexplained origin refractory to treatment. This abnormality has not been reported earlier in other patients with KID syndrome with the same variant.


Asunto(s)
Conexinas , Sordera , Humanos , Femenino , Conexina 26/genética , Conexinas/genética , Mutación , Síndrome , Sordera/diagnóstico , Sordera/genética , Sordera/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA