Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Beilstein J Org Chem ; 20: 1278-1285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887574

RESUMEN

We present a new class of tunable aryl alkyl ionic liquids (TAAILs) based on 1-aryl-4,5-dimethylimidazolium cations with electron-withdrawing and -donating substituents in different positions of the phenyl ring and the bis(trifluoromethylsulfonyl)imide (NTf2) anion. We investigated the effect of additional methyl groups in the backbone of the imidazolium core on the physical properties regarding viscosity, conductivity and electrochemical window. With an electrochemical window of up to 6.3 V, which is unprecedented for TAAILs with an NTf2 anion, this new class of TAAILs demonstrates the opportunities that arise from modifications in the backbone of the imidazolium cation.

2.
Small ; : e2307505, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095459

RESUMEN

The development of solid-state electrolytes (SSEs) effectively solves the safety problem derived from dendrite growth and volume change of lithium during cycling. In the meantime, the SSEs possess non-flammability compared to conventional organic liquid electrolytes. Replacing liquid electrolytes with SSEs to assemble all-solid-state lithium metal batteries (ASSLMBs) has garnered significant attention as a promising energy storage/conversion technology for the future. Herein, a composite solid electrolyte containing two inorganic components (Li6.25 Al0.25 La3 Zr2 O12 , Al2 O3 ) and an organic polyvinylidene difluoride matrix is designed rationally. X-ray photoelectron spectroscopy and density functional theory calculation results demonstrate the synergistic effect among the components, which results in enhanced ionic conductivity, high lithium-ion transference number, extended electrochemical window, and outstanding dual interface compatibility. As a result, Li||Li symmetric battery maintains a stable cycle for over 2500 h. Moreover, all-solid-state lithium metal battery assembled with LiNi0.6 Co0.2 Mn0.2 O2 cathode delivers a high discharge capacity of 168 mAh g-1 after 360 cycles at 0.1 C at 25 °C, and all-solid-state lithium-sulfur battery also exhibits a high initial discharge capacity of 912 mAh g-1 at 0.1 C. This work demonstrates a long-life flexible composite solid electrolyte with excellent interface compatibility, providing an innovative way for the rational construction of next-generation high-energy-density ASSLMBs.

3.
Chemistry ; 29(7): e202202795, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508719

RESUMEN

Imidazolium-based ionic liquids are very popular for different applications because of their low viscosity and melting point. However, the hydrogen atom at the C2 position of the imidazolium cation can easily be deprotonated by a base, resulting in a reactive carbene. If an inert ionic liquid is needed, it is necessary to introduce an unreactive alkyl or aryl group at the C2 position to prevent deprotonation. Tunable aryl alkyl ionic liquids (TAAILs) were first introduced by our group in 2009 and are characterized by a phenyl group at the N1 position, which offers the possibility to fine-tune the physicochemical properties by using different electron-donating or -withdrawing substituents. In this work, we present a new series of TAAILs where the C2 position is blocked by a methyl, propyl or phenyl group. For each of the blocking groups, the phenyl and three different phenyl derivatives (2-Me, 4-OMe, 2,4-F2 ) are compared with respect to melting point, viscosity, conductivity and electrochemical window. In addition, the differences between blocked and unblocked TAAILs with regard to their electrochemical reduction potentials are investigated by quantum chemical methods.

4.
Molecules ; 28(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36677767

RESUMEN

Sulfonate-based ionic liquids (ILs) with allyl-containing cations have been previously obtained by us, however, the present study aims to investigate the thermal, electrochemical and curing properties of these ILs. To determine the temperature range in which ionic liquid maintains a liquid state, thermal properties must be examined using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Melting, cold crystallization and glass transition temperatures are discussed, as well as decomposition temperatures for imidazolium- and pyridinium-based ionic liquids. The conductivity and electrochemical stability ranges were studied in order to investigate their potential applicability as electrolytes. Finally, the potential of triflate-based ILs as polymerization initiators for epoxy resins was proven.

5.
Molecules ; 28(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36677883

RESUMEN

High-voltage potassium-based batteries are promising alternatives for lithium-ion batteries as next-generation energy storage devices. The stability and reversibility of such systems depend largely on the properties of the corresponding electrolytes. This review first presents major challenges for high-voltage electrolytes, such as electrolyte decomposition, parasitic side reactions, and current collector corrosion. Then, the state-of-the-art modification strategies for traditional ester and ether-based organic electrolytes are scrutinized and discussed, including high concentration, localized high concentration/weakly solvating strategy, multi-ion strategy, and addition of high-voltage additives. Besides, research advances of other promising electrolyte systems, such as potassium-based ionic liquids and solid-state-electrolytes are also summarized. Finally, prospective future research directions are proposed to further enhance the oxidative stability and non-corrosiveness of electrolytes for high-voltage potassium batteries.


Asunto(s)
Electrólitos , Potasio , Corrosión , Suministros de Energía Eléctrica , Ésteres
6.
Chemistry ; 27(62): 15554-15557, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34608692

RESUMEN

Tunable aryl alkyl ionic liquids (TAAILs) based on the imidazolium cation were first reported in 2009. Since then, a series of TAAILs with different properties due to the electron-donating or -withdrawing effect of the substituents at the aryl ring has been developed. Herein, a wide variety of those ionic liquids (ILs) is presented in terms of their cation structure. The authors synthesized ILs containing the bromide or bis(trifluoromethane)sulfonimide anion and 1-aryl-3-alkyl imidazolium cations with various substituents in the ortho and/ or para position of the phenyl ring and alkyl chains of different lengths varying from butyl to dodecyl. The differences of their physical properties (melting point, thermal decomposition, viscosity, electro-chemical window) of these ILs are reported according to their structure.

7.
Mikrochim Acta ; 187(4): 245, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32211982

RESUMEN

A disposable screen-printed carbon electrode (SPCE) modified with an ionic liquid/graphene composite (IL/G) exhibits a wider potential window, excellent conductivity, and specific surface area for the improvement in the voltammetric signal of rapamycin detection. The modified composite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of rapamycin at the modified SPCE was investigated by cyclic and square wave voltammetry in 60:40 EtOH: 0.1 M LiClO4 at pH 5.0. A high reproducible and well-defined peak with a high peak current were obtained for rapamycin detection at a position potential of + 0.98 V versus Ag/AgCl. Under the optimized conditions, the rapamycin concentration in the range 0.1 to 100 µM (R2 = 0.9986) had a good linear relation with the peak current. The detection limit of this method was 0.03 µM (3SD/slope). The proposed device can selectively detect rapamycin in the presence of commonly interfering compounds. Finally, the proposed method was successfully applied to determine rapamycin in urine and blood samples with excellent recoveries. These devices are disposable and cost-effective and might be used as an alternative tool for detecting rapamycin in biological samples and other biological compounds. Graphical abstract Schematic presentation of wide electrochemical window and disposable screen-printed sensor using ionic liquid/graphene composite for the determination of rapamycin. This composite can enhance the oxidation current and expand the potential for rapamycin detection.


Asunto(s)
Técnicas Electroquímicas/métodos , Sirolimus/análisis , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/normas , Electrodos , Grafito , Líquidos Iónicos , Límite de Detección , Sirolimus/sangre , Sirolimus/orina
8.
Chemistry ; 25(71): 16251-16256, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31743529

RESUMEN

A set of new tunable aryl alkyl ionic liquids (TAAILs) based on the 1-aryl-3-alkyl imidazolium motif has been synthesized, in which the following variables were systematically changed: alkyl chain length, aryl substitution (group and position), and counter ion. TAAILs with dicyanamide (DCA) and bis(trifluoromethylsulfonyl)imide (N(SO2 CF3 )2 , NTf2 ) anions showed remarkable differences of their physical properties: NTf2 ionic liquids were found to have high decomposition temperatures and viscosities well below those of the DCA TAAILs. In contrast, the dicyanamide anion increased the electrochemical stability leading to TAAILs with an extremely wide electrochemical window of up to 7.17 V. Additionally, both classes of TAAILs extract transition metals from aqueous solutions: TAAILs with the DCA anion extract both platinum and copper while TAAILs with the NTf2 anion are selective towards platinum. This demonstrates that minor changes of the molecular structure lead to TAAILs with drastically changed physicochemical properties.

9.
Anal Bioanal Chem ; 411(19): 4577-4585, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30450508

RESUMEN

Surface plasmon resonance (SPR) employs a gold (Au) thin film (ca. 50 nm in thickness) chip to generate a surface plasmonic wave (SPW) for in situ monitoring of the interface/surface, which makes it intrinsically compatible with electrochemistry for combined electrochemical surface plasmon resonance (EC-SPR) investigations. However, conventional SPR Au chips suffers from a high background signal, narrow electrochemical window, and limited electrochemical stability. Presented in this work is a novel SPR chip composed of the Au/long-chain alkane thiol self-assembled monolayer/single-layer graphene (Au/SAM/G) sandwich architecture to address these problems. On this chip, the single-layer graphene serves as a working electrode for electrochemical measurement, and the underlying Au film serves as the SPW support for SPR monitoring; the sandwiched thiol monolayer enables the electrical separation of the graphene and Au film to protect the Au film from electrochemical polarization. Our experiment indicates that the electrochemical window of such a chip extends beyond the hydrogen/oxygen evolution reaction potential on Au with significantly improved electrochemical stability and suppressed background signal. Moreover, its intrinsic SPR sensitivity is completely reserved even compared to that of the conventional SPR Au chip. This Au/SAM/G chip may offer a valuable solution to the EC-SPR investigations in harsh conditions. Graphical abstract ᅟ.

10.
ACS Nano ; 17(21): 21567-21584, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37883191

RESUMEN

The physical properties of ionic liquids (ILs) have led to intense research interest, but for many applications, high viscosity is problematic. Mixing the IL with a diluent that lowers viscosity offers a solution if the favorable IL physical properties are not compromised. Here we show that mixing an IL or IL electrolyte (ILE, an IL with dissolved metal ions) with a nonsolvating fluorous diluent produces a low viscosity mixture in which the local ion arrangements, and therefore key physical properties, are retained or enhanced. The locally concentrated ionic liquids (LCILs) examined are 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIM TFSI), 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate (HMIM FAP), or 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate (BMIM FAP) mixed with 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether (TFTFE) at 2:1, 1:1, and 1:2 (w/w) IL:TFTFE, as well as the locally concentrated ILEs (LCILEs) formed from 2:1 (w/w) HMIM TFSI-TFTFE with 0.25, 0.5, and 0.75 m lithium bis(trifluoromethylsulfonyl)imide (LiTFSI). Rheology and conductivity measurements reveal that the added TFTFE significantly reduces viscosity and increases ionic conductivity, and cyclic voltammetry (CV) reveals minimal reductions in electrochemical windows on gold and carbon electrodes. This is explained by the small- and wide-angle X-ray scattering (S/WAXS) and atomic force microscopy (AFM) data, which show that the local ion nanostructures are largely retained in LCILs and LCILEs in bulk and at gold and graphite electrodes for all potentials investigated.

11.
J Mol Graph Model ; 118: 108352, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36242864

RESUMEN

Physicochemical properties of the three series of task-specific ILs formed from methyl pyridinium [MPy]+, phenyl diazenyl methyl pyridinium [DMPy]+ and functionalized diazenyl methyl pyridinium [X-DMPy]+ (X: NH2, OH, OCH3, CH3, C2H5, H, F, CHO, CN and NO2) cations and benzoate ([Y1]-), benzenesulfonate ([Y2]-), nitrate ([Y3]-) and tetra fluoroborate ([Y4]-) anions were investigated using density functional theory (DFT) calculations at M06-2X/AUG-cc-pVDZ level of theory. For the introduced task-specific ILs the structural parameters, energetic, electronic and topological characteristics were calculated and discussed using electrostatic maps and indexes of NBO, QTAIM, ECW and NCI. The effect of the type of anions, functional group, variation of the substituents on the functional group at cationic part on the interaction energy as well as some of their physical, chemical and optical properties are taking into account.

12.
Nanomicro Lett ; 14(1): 98, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35394219

RESUMEN

Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety, environmental friendliness, and low cost. However, the freezing of aqueous electrolytes limits the normal operation of batteries at low temperatures. Herein, a series of high-performance and low-cost chloride hydrogel electrolytes with high concentrations and low freezing points are developed. The electrochemical windows of the chloride hydrogel electrolytes are enlarged by > 1 V under cryogenic conditions due to the obvious evolution of hydrogen bonds, which highly facilitates the operation of electrolytes at ultralow temperatures, as evidenced by the low-temperature Raman spectroscopy and linear scanning voltammetry. Based on the Hofmeister effect, the hydrogen-bond network of the cooperative chloride hydrogel electrolyte comprising 3 M ZnCl2 and 6 M LiCl can be strongly interrupted, thus exhibiting a sufficient ionic conductivity of 1.14 mS cm-1 and a low activation energy of 0.21 eV at -50 °C. This superior electrolyte endows a polyaniline/Zn battery with a remarkable discharge specific capacity of 96.5 mAh g-1 at -50 °C, while the capacity retention remains ~ 100% after 2000 cycles. These results will broaden the basic understanding of chloride hydrogel electrolytes and provide new insights into the development of ultralow-temperature aqueous batteries.

13.
ACS Appl Mater Interfaces ; 13(32): 38248-38255, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34344149

RESUMEN

Superconcentrated "water-in-salt" electrolytes have greatly widened the electrochemical stable window (ESW) of aqueous electrolytes, but they also generate new problems, including high costs, high viscosity, and low conductivity. Here we report a 2 m low concentration electrolyte using an N,N-dimethylformamide/water (DMF/H2O) hybrid solvent, which provides a wider ESW (2.89 V) than an aqueous electrolyte (2.66 V) and presents nonflammability, high conductivity, and low viscosity characteristics. In 2 m DMF/H2O hybrid electrolyte, the LUMO energy of the DMF solvent (-0.00931 a.u.) is lower than that of H2O (-0.00735 a.u.), which could effectively promote the degradation of FSI- and lead to stable solid electrolyte interphase formation. As a result, the electrochemical reversibility and cyclability of the KTi2(PO4)3@C (KTP@C) anode in the aqueous electrolyte have been significantly enhanced with the help of DMF addition. Moreover, the K2Zn3(Fe(CN)6)2 (KZnHCF)//KTP@C full potassium-ion battery exhibits highly efficient stability and rate capability with a long cycle performance over 10 000 cycles and delivers a specific discharge capacity of 33 mAh g-1 at a high current density of 20 A g-1. Low concentrations of DMF/H2O hybrid electrolytes can inhibit the hydrogen evolution reaction of aqueous electrolytes, providing more opportunities for the practical application of electrode materials. Not limited to DMF solvent, mixing organic and aqueous solvents will provide more available options and perspectives for improving the energy density and long cycle performance of the aqueous metal-ion battery.

14.
ACS Appl Mater Interfaces ; 13(43): 51048-51056, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34672626

RESUMEN

The water-in-salt electrolyte (WISE) features intimate interactions between a cation and anion, which induces the formation of an anion-derived solid electrolyte interphase (SEI) and expands the aqueous electrolyte voltage window to >3.0 V. Although further increasing the salt concentration (even to >60 molality (m)) can gradually improve water stability, issues about cost and practical feasibility are concerned. An alternative approach is to intensify ion-solvent interactions in the inner solvation structure by shielding off outward electrostatic attractions from nearby ions. Here, we design an "overcrowded" electrolyte using the non-polar, hydrogen-bonding 1,4-dioxane (DX) as an overcrowding agent, thereby achieving a robust LiF-enriched SEI and wide electrolyte operation window (3.7 V) with a low salt concentration (<2 m). As a result, the electrochemical performance of aqueous Li4Ti5O12/LiMn2O4 full cells can be substantially improved (88.5% capacity retention after 200 cycles, at 0.57 C). This study points out a promising strategy to develop low-cost and stable high-voltage aqueous batteries.

15.
ACS Appl Mater Interfaces ; 11(43): 39940-39950, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31576739

RESUMEN

The development of solid electrolytes (SEs) is expected to enhance the safety of lithium-ion batteries. Additionally, a viable SE could allow the use of a Li-metal negative electrode, which would increase energy density. Recently, several antiperovskites have been reported to exhibit high ionic conductivities, prompting investigations of their use as an SE. In addition to having a suitable conductivity, phenomena at the interface between an SE and an electrode are also of great importance in determining the viability of an SE. For example, interfacial interactions can change the positions of the band edges of the SE, altering its stability against undesirable oxidation or reduction. Furthermore, the wettability of the SE by the metallic anode is desired to enable low interfacial resistance and uniform metal plating and stripping during cycling. The present study probes several properties of the SE/electrode interface at the atomic scale. Adopting the antiperovskite SE Li3OCl (LOC)/Li-metal anode interface as a model system, the interfacial energy, work of adhesion, wettability, band edge shifts, and the electrochemical window are predicted computationally. The oxygen-terminated interface was determined to be the most thermodynamically stable. Moreover, the large calculated work of adhesion for this system implies that Li will wet LOC, suggesting the possibility for low interfacial resistance. Nevertheless, these strong interfacial interactions come at a cost to electrochemical stability: strong interfacial bonding lowers the energy of the conduction band minimum (CBM) significantly and narrows the local band gap by 30% in the vicinity of the interface. Despite this interface-induced reduction in electrochemical window, the CBM in LOC remains more negative than the Li/Li+ redox potential, implying stability against reduction by the anode. In sum, this study illustrates a comprehensive computational approach to assessing electrode/electrolyte interfacial properties in solid-state batteries.

16.
Nanoscale Res Lett ; 14(1): 366, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31807969

RESUMEN

Polyethylene oxide (PEO)-based solid polymer electrolytes (SPEs) have important significance for the development of next-generation rechargeable lithium-ion batteries. However, strong coordination between lithium ions and PEO chains results the ion conductivity usually lower than the expectation. In this study, sub-micron montmorillonite is incorporated into the PEO frames as Lewis base center which enables the lithium ions to escape the restraint of PEO chains. After involving montmorillonite (MMT) into the SPEs, the ionic conductivity of SPEs is 4.7 mS cm- 1 at 70 °C which shows a comparable value with that of liquid electrolyte. As coupling with LiFePO4 material, the battery delivers a high discharge capacity of 150.3 mAh g- 1 and an excellent rate performance with a capacity of 111.8 mAh g- 1 at 0.16 C and maintains 58.2 mAh g- 1 at 0.8 C. This study suggests that the customized incorporation of Lewis base materials could offer a promising solution for achieving high-performance PEO-based solid-state electrolyte.

17.
Adv Mater ; 31(12): e1807789, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30702774

RESUMEN

In response to the call for safer high-energy-density storage systems, high-voltage solid-state Li metal batteries have attracted extensive attention. Therefore, solid electrolytes are required to be stable against both Li anode and high-voltage cathodes; nevertheless, the requirements still cannot be completely satisfied. Herein, a heterogeneous multilayered solid electrolyte (HMSE) is proposed to broaden electrochemical window of solid electrolytes to 0-5 V, through different electrode/electrolyte interfaces to overcome the interfacial instability problems. Oxidation-resistance poly(acrylonitrile) (PAN) is in contact with the cathode, while reduction tolerant polyethylene glycol diacrylate contacts with Li metal anode. A Janus and flexible PAN@Li1.4 Al0.4 Ge1.6 (PO4 )3 (80 wt%) composite electrolyte is designed as intermediate layer to inhibit dendrite penetration and ensure compact interface. Paired with LiNi0.6 Co0.2 Mn0.2 O2 and LiNi0.8 Co0.1 Mn0.1 O2 cathodes, which are rarely used in solid-state batteries, the solid-state Li metal batteries with HMSE exhibit excellent electrochemical performance including high capacity and long cycle life. Besides, the Li||Li symmetric batteries maintain a stable polarization less than 40 mV for more than 1000 h under 2 mA cm-2 and effective inhibition of dendrite formation. This study offers a promising approach to extend the applications of solid electrolytes for high-voltage solid-state Li metal batteries.

18.
ACS Appl Mater Interfaces ; 11(50): 46965-46972, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31742374

RESUMEN

Sodium-metal batteries with conventional organic liquid electrolytes have disadvantages including dendrite deposition and safety concern. In this work, we report a low-flammable electrolyte (NaPF6-FRE) consisting of 1 M NaPF6 in 1,2-dimethoxyethane (DME), fluoroethylene carbonate (FEC), and 1,1,1,3,3,3-hexafluoroisopropylmethyl ether (HFPM) (2:1:2, in volume ratio). The symmetric Na and Na||Cu cells with a 1 M NaPF6-DME electrolyte absorbed in a porous separator, such as the porous glass-fiber, show very poor cycling performance. In addition, the cell with a Na3V2(PO4)3 (NVP) cathode and 1 M NaPF6-DME electrolyte shows low Coulombic efficiency. FEC was added into the NaPF6-DME-based electrolyte to reduce the irreversible capacity of the NVP cathode and improve the Coulombic efficiency of the cell. However, the high reactivity of FEC with the Na electrode leads to formation of an unstable solid electrolyte interphase (SEI) and large interfacial resistance, and HFPM was further added to stabilize the Na electrode surface by forming a new fluorine-containing organic layer. The new prepared low-flammable electrolyte (NaPF6-FRE) with 1 M NaPF6 in DME, FEC, and HFPM (2:1:2, in volume ratio) shows a wide electrochemical window of 5.2 V. The Na symmetric cells with this low-flammable electrolyte show superior cycling performance for 800 h with a stable voltage profile at 0.5 mA cm-2, 0.5 mA h cm-2 and 1 mA cm-2, 1 mA h cm-2, respectively. The NVP||Na cells show an excellent capacity retention of 94% after 2000 cycles and superior Coulombic efficiency of 99.9% on average at 5 C.

19.
ACS Appl Mater Interfaces ; 10(8): 7061-7068, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29400442

RESUMEN

Aqueous lithium-ion batteries are emerging as strong candidates for a great variety of energy storage applications because of their low cost, high-rate capability, and high safety. Exciting progress has been made in the search for anode materials with high capacity, low toxicity, and high conductivity; yet, most of the anode materials, because of their low equilibrium voltages, facilitate hydrogen evolution. Here, we show the application of olivine FePO4 and amorphous FePO4·2H2O as anode materials for aqueous lithium-ion batteries. Their capacities reached 163 and 82 mA h/g at a current rate of 0.2 C, respectively. The full cell with an amorphous FePO4·2H2O anode maintained 92% capacity after 500 cycles at a current rate of 0.2 C. The acidic aqueous electrolyte in the full cells prevented cathodic oxygen evolution, while the higher equilibrium voltage of FePO4 avoided hydrogen evolution as well, making them highly stable. A combination of in situ X-ray diffraction analyses and computational studies revealed that olivine FePO4 still has the biphase reaction in the aqueous electrolyte and that the intercalation pathways in FePO4·2H2O form a 2-D mesh. The low cost, high safety, and outstanding electrochemical performance make the full cells with olivine or amorphous hydrated FePO4 anodes commercially viable configurations for aqueous lithium-ion batteries.

20.
ACS Appl Mater Interfaces ; 8(38): 25229-42, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27588896

RESUMEN

The improved ionic conductivity (1.64 × 10(-4) S cm(-1) at room temperature) and excellent electrochemical stability of nanoporous ß-Li3PS4 make it one of the promising candidates for rechargeable all-solid-state lithium-ion battery electrolytes. Here, elastic properties, defect thermodynamics, phase diagram, and Li(+) migration mechanism of Li3PS4 (both γ and ß phases) are examined via the first-principles calculations. Results indicate that both γ- and ß-Li3PS4 phases are ductile while γ-Li3PS4 is harder under volume change and shear stress than ß-Li3PS4. The electrochemical window of Li3PS4 ranges from 0.6 to 3.7 V, and thus the experimentally excellent stability (>5 V) is proposed due to the passivation phenomenon. The dominant diffusion carrier type in Li3PS4 is identified over its electrochemical window. In γ-Li3PS4 the direct-hopping of Lii(+) along the [001] is energetically more favorable than other diffusion processes, whereas in ß-Li3PS4 the knock-off diffusion of Lii(+) along the [010] has the lowest migration barrier. The ionic conductivity is evaluated from the concentration and the mobility calculations using the Nernst-Einstein relationship and compared with the available experimental results. According to our calculated results, the Li(+) prefers to transport along the [010] direction. It is suggested that the enhanced ionic conductivity in nanostructured ß-Li3PS4 is due to the larger possibility of contiguous (010) planes provided by larger nanoporous ß-Li3PS4 particles. By a series of motivated and closely linked calculations, we try to provide a portable method, by which researchers could gain insights into the physicochemical properties of solid electrolyte.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA