Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.808
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 175(1): 171-185.e25, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30146162

RESUMEN

CKIα ablation induces p53 activation, and CKIα degradation underlies the therapeutic effect of lenalidomide in a pre-leukemia syndrome. Here we describe the development of CKIα inhibitors, which co-target the transcriptional kinases CDK7 and CDK9, thereby augmenting CKIα-induced p53 activation and its anti-leukemic activity. Oncogene-driving super-enhancers (SEs) are highly sensitive to CDK7/9 inhibition. We identified multiple newly gained SEs in primary mouse acute myeloid leukemia (AML) cells and demonstrate that the inhibitors abolish many SEs and preferentially suppress the transcription elongation of SE-driven oncogenes. We show that blocking CKIα together with CDK7 and/or CDK9 synergistically stabilize p53, deprive leukemia cells of survival and proliferation-maintaining SE-driven oncogenes, and induce apoptosis. Leukemia progenitors are selectively eliminated by the inhibitors, explaining their therapeutic efficacy with preserved hematopoiesis and leukemia cure potential; they eradicate leukemia in MLL-AF9 and Tet2-/-;Flt3ITD AML mouse models and in several patient-derived AML xenograft models, supporting their potential efficacy in curing human leukemia.


Asunto(s)
Caseína Quinasa Ialfa/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Caseína Quinasa Ialfa/fisiología , Proliferación Celular/efectos de los fármacos , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/fisiología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/fisiología , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Elementos de Facilitación Genéticos/genética , Hematopoyesis , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Proteína p53 Supresora de Tumor/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cell ; 173(1): 234-247.e7, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551264

RESUMEN

Dicer proteins are known to produce small RNAs (sRNAs) from long double-stranded RNA (dsRNA) templates. These sRNAs are bound by Argonaute proteins, which select the guide strand, often with a 5' end sequence bias. However, Dicer proteins have never been shown to have sequence cleavage preferences. In Paramecium development, two classes of sRNAs that are required for DNA elimination are produced by three Dicer-like enzymes: Dcl2, Dcl3, and Dcl5. Through in vitro cleavage assays, we demonstrate that Dcl2 has a strict size preference for 25 nt and a sequence preference for 5' U and 5' AGA, while Dcl3 has a sequence preference for 5' UNG. Dcl5, however, has cleavage preferences for 5' UAG and 3' CUAC/UN, which leads to the production of RNAs precisely matching short excised DNA elements with corresponding end base preferences. Thus, we characterize three Dicer-like enzymes that are involved in Paramecium development and propose a biological role for their sequence-biased cleavage products.


Asunto(s)
Paramecium/genética , Proteínas Protozoarias/metabolismo , Ribonucleasa III/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Elementos Transponibles de ADN/genética , Paramecium/metabolismo , Filogenia , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , División del ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Ribonucleasa III/clasificación , Ribonucleasa III/genética , Alineación de Secuencia , Análisis de Secuencia de ARN
3.
Immunity ; 56(9): 2105-2120.e13, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37527657

RESUMEN

Childhood neglect and/or abuse can induce mental health conditions with unknown mechanisms. Here, we identified stress hormones as strong inducers of astrocyte-mediated synapse phagocytosis. Using in vitro, in vivo, and human brain organoid experiments, we showed that stress hormones increased the expression of the Mertk phagocytic receptor in astrocytes through glucocorticoid receptor (GR). In post-natal mice, exposure to early social deprivation (ESD) specifically activated the GR-MERTK pathway in astrocytes, but not in microglia. The excitatory post-synaptic density in cortical regions was reduced in ESD mice, and there was an increase in the astrocytic engulfment of these synapses. The loss of excitatory synapses, abnormal neuronal network activities, and behavioral abnormalities in ESD mice were largely prevented by ablating GR or MERTK in astrocytes. Our work reveals the critical roles of astrocytic GR-MERTK activation in evoking stress-induced abnormal behaviors in mice, suggesting GR-MERTK signaling as a therapeutic target for stress-induced mental health conditions.


Asunto(s)
Astrocitos , Fagocitosis , Estrés Psicológico , Animales , Niño , Humanos , Ratones , Astrocitos/metabolismo , Tirosina Quinasa c-Mer/genética , Hormonas/metabolismo , Sinapsis/metabolismo , Estrés Psicológico/metabolismo
4.
Cell ; 168(6): 990-999.e7, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28283070

RESUMEN

In the ciliated protozoan Paramecium tetraurelia, Piwi-associated small RNAs are generated upon the elimination of tens of thousands of short transposon-derived DNA segments as part of development. These RNAs then target complementary DNA for elimination in a positive feedback process, contributing to germline defense and genome stability. In this work, we investigate the formation of these RNAs, which we show to be transcribed directly from the short (length mode 27 bp) excised DNA segments. Our data support a mechanism whereby the concatenation and circularization of excised DNA segments provides a template for RNA production. This process allows the generation of a double-stranded RNA for Dicer-like protein cleavage to give rise to a population of small regulatory RNAs that precisely match the excised DNA sequences. VIDEO ABSTRACT.


Asunto(s)
ADN Concatenado , Paramecium tetraurelia/genética , Núcleo Celular/metabolismo , ADN Ligasa (ATP)/metabolismo , Elementos Transponibles de ADN , Exodesoxirribonucleasas/metabolismo , Paramecium tetraurelia/citología , Paramecium tetraurelia/metabolismo , ARN/genética , Transcripción Genética
5.
Annu Rev Cell Dev Biol ; 31: 779-805, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26436703

RESUMEN

The assembly of functional neural circuits requires the combined action of progressive and regressive events. Regressive events encompass a variety of inhibitory developmental processes, including axon and dendrite pruning, which facilitate the removal of exuberant neuronal connections. Most axon pruning involves the removal of axons that had already made synaptic connections; thus, axon pruning is tightly associated with synapse elimination. In many instances, these developmental processes are regulated by the interplay between neurons and glial cells that act instructively during neural remodeling. Owing to the importance of axon and dendritic pruning, these remodeling events require precise spatial and temporal control, and this is achieved by a range of distinct molecular mechanisms. Disruption of these mechanisms results in abnormal pruning, which has been linked to brain dysfunction. Therefore, understanding the mechanisms of axon and dendritic pruning will be instrumental in advancing our knowledge of neural disease and mental disorders.


Asunto(s)
Axones/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Humanos , Neuroglía/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología
6.
EMBO J ; 42(24): e115076, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37987153

RESUMEN

In most metazoans, centrioles are lost during oogenesis, ensuring that the zygote is endowed with the correct number of two centrioles, which are paternally contributed. How centriole architecture is dismantled during oogenesis is not understood. Here, we analyze with unprecedent detail the ultrastructural and molecular changes during oogenesis centriole elimination in Caenorhabditis elegans. Centriole elimination begins with loss of the so-called central tube and organelle widening, followed by microtubule disassembly. The resulting cluster of centriolar proteins then disappears gradually, usually moving in a microtubule- and dynein-dependent manner to the plasma membrane. Our analysis indicates that neither Polo-like kinases nor the PCM, which modulate oogenesis centriole elimination in Drosophila, do so in C. elegans. Furthermore, we demonstrate that the central tube protein SAS-1 normally departs initially from the organelle, which loses integrity earlier in sas-1 mutants. Overall, our work provides novel mechanistic insights regarding the fundamental process of oogenesis centriole elimination.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Centriolos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Drosophila/metabolismo , Oogénesis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(6): e2313596120, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285948

RESUMEN

Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into the cortex where they make connections with locally produced excitatory glutamatergic neurons. Cortical function critically depends on the number of cINs, which is also key to establishing the appropriate inhibitory/excitatory balance. The final number of cINs is determined during a postnatal period of programmed cell death (PCD) when ~40% of the young cINs are eliminated. Previous work shows that the loss of clustered gamma protocadherins (Pcdhgs), but not of genes in the Pcdha or Pcdhb clusters, dramatically increased BAX-dependent cIN PCD. Here, we show that PcdhγC4 is highly expressed in cINs of the mouse cortex and that this expression increases during PCD. The sole deletion of the PcdhγC4 isoform, but not of the other 21 isoforms in the Pcdhg gene cluster, increased cIN PCD. Viral expression of the PcdhγC4, in cIN lacking the function of the entire Pcdhg cluster, rescued most of these cells from cell death. We conclude that PcdhγC4 plays a critical role in regulating the survival of cINs during their normal period of PCD. This highlights how a single isoform of the Pcdhg cluster, which has been linked to human neurodevelopmental disorders, is essential to adjust cIN cell numbers during cortical development.


Asunto(s)
Interneuronas , Protocadherinas , Ratones , Animales , Humanos , Interneuronas/fisiología , Neuronas/metabolismo , Apoptosis/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Corteza Cerebral/fisiología
8.
Semin Cell Dev Biol ; 159-160: 66-73, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394822

RESUMEN

B chromosomes are intriguing "selfish" genetic elements, many of which exhibit higher-than-Mendelian transmission. This perspective highlights a group of B chromosomes known as Paternal Sex Ratio chromosomes (PSRs), which are found in several insects with haplo-diploid reproduction. PSRs harshly alter the organism's reproduction to facilitate their own inheritance. A manifestation of this effect is the conversion of female destined individuals into males. Key to this conversion is the mysterious ability of PSRs to cause elimination of the sperm-inherited half of the genome during zygote formation. Here we discuss how PSRs were discovered, what is known about how they alter paternal chromatin dynamics to cause sex conversion, and how PSR-induced genome elimination is different from other forms of programmed genome elimination in different insects. PSRs also stand out because their DNA sequence compositions differ in remarkable ways from their insect's essential chromosomes, a characteristic suggestive of interspecies origins. Broadly, we also highlight poorly understood aspects of PSR dynamics that need to be investigated.


Asunto(s)
Avispas , Humanos , Animales , Masculino , Femenino , Avispas/genética , Semen , Cromosomas/genética , Genoma , Secuencia de Bases
9.
Trends Genet ; 39(2): 94-97, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36371355

RESUMEN

Most eukaryotes employ a combination of transcriptional and post-transcriptional silencing mechanisms to suppress transposons, yet ciliates employ a more extreme approach. They separate germline and somatic functions into distinct nuclei, enabling the elimination of transposons from the active somatic genome through diverse small RNA-mediated genome rearrangement pathways during sexual processes.


Asunto(s)
Cilióforos , ARN , Reordenamiento Génico/genética , Cilióforos/genética , Genoma/genética , Núcleo Celular/genética
10.
Proc Natl Acad Sci U S A ; 120(4): e2213985120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669106

RESUMEN

During their development following sexual conjugation, ciliates excise numerous internal eliminated sequences (IESs) from a copy of the germline genome to produce the functional somatic genome. Most IESs are thought to have originated from transposons, but the presumed homology is often obscured by sequence decay. To obtain more representative perspectives on the nature of IESs and ciliate genome editing, we assembled 40,000 IESs of Blepharisma stoltei, a species belonging to a lineage (Heterotrichea) that diverged early from those of the intensively studied model ciliate species. About a quarter of IESs were short (<115 bp), largely nonrepetitive, and with a pronounced ~10 bp periodicity in length; the remainder were longer (up to 7 kbp) and nonperiodic and contained abundant interspersed repeats. Contrary to the expectation from current models, the assembled Blepharisma germline genome encodes few transposases. Instead, its most abundant repeat (8,000 copies) is a Miniature Inverted-repeat Transposable Element (MITE), apparently a deletion derivative of a germline-limited Pogo-family transposon. We hypothesize that MITEs are an important source of IESs whose proliferation is eventually self-limiting and that rather than defending the germline genomes against mobile elements, transposase domestication actually facilitates the accumulation of junk DNA.


Asunto(s)
Cilióforos , Elementos Transponibles de ADN , Edición Génica , Humanos , Cilióforos/genética , Elementos Transponibles de ADN/genética , ADN Protozoario/genética , Células Germinativas/metabolismo , Transposasas/genética , Transposasas/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(16): e2221002120, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036993

RESUMEN

A satisfactory material with high adsorption capacity is urgently needed to solve the serious problem of environment and human health caused by lead pollution. Herein, hydrogen-substituted graphdiyne (HsGDY) was successfully fabricated and employed to remove lead ions from sewage and lead-containing blood. The as-prepared HsGDY exhibits the highest adsorption capacity of lead among the reported materials with a maximum adsorption capacity of 2,390 mg/g, i.e., ~five times larger than that of graphdiyne (GDY). The distinguished hexagonal hole and stack mode of HsGDY allows the adsorption of more lead via its inner side adsorption mode in one single unit space. In addition, the Pb 6s and H 1s hybridization promotes the strong bonding of lead atom adsorbed at the acetylenic bond of HsGDY, contributing to the high adsorption capacity. HsGDY can be easily regenerated by acid treatment and showed excellent regeneration ability and reliability after six adsorption-regeneration cycles. Langmuir isotherm model, pseudo second order, and density functional theory (DFT) demonstrated that the lead adsorption process in HsGDY is monolayer chemisorption. Furthermore, the HsGDY-based portable filter can handle 1,000 µg/L lead-containing aqueous solution up to 1,000 mL, which is nearly 6.67 times that of commercial activated carbon particles. And, the HsGDY shows good biocompatibility and excellent removal efficiency to 100 µg/L blood lead, which is 1.7 times higher than that of GDY. These findings suggest that HsGDY could be a promising adsorbent for practical lead and other heavy metal removal.

12.
Cancer Metastasis Rev ; 43(3): 1015-1035, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38530545

RESUMEN

Despite enormous efforts being invested in the development of novel therapies for brain malignancies, there remains a dire need for effective treatments, particularly for pediatric glioblastomas. Their poor prognosis has been attributed to the fact that conventional therapies target tumoral cells, but not glioblastoma stem cells (GSCs). GSCs are characterized by self-renewal, tumorigenicity, poor differentiation, and resistance to therapy. These characteristics represent the fundamental tools needed to recapitulate the tumor and result in a relapse. The mechanisms by which GSCs alter metabolic cues and escape elimination by immune cells are discussed in this article, along with potential strategies to harness effector immune cells against GSCs. As cellular immunotherapy is making significant advances in a variety of cancers, leveraging this underexplored reservoir may result in significant improvements in the treatment options for brain malignancies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células Madre Neoplásicas , Humanos , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/terapia , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Animales , Inmunoterapia/métodos
13.
Trends Genet ; 38(5): 483-500, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35227512

RESUMEN

Programmed elimination of DNA during development yields somatic cell nuclei with dramatically different DNA sequence and content relative to germline nuclei, profoundly influencing genome architecture and stability. Whole-genome sequencing has significantly expanded the list of taxa known to exhibit this trait and has revealed the identity of excised genes and transposable elements (TEs) in certain taxa. Here, we compare the diverse mechanisms employed by ciliates, nematodes, copepods, and lamprey to downsize their genomes during development and propose tests of hypotheses about the evolution and/or maintenance of this trait. We explore possible functional roles that programmed DNA elimination (PDE) could play in genomic defense (especially against TEs), regulation of development, sex determination, co-option, and modulating nucleotypic effects, which together argue for a place in the mainstream investigation of genome evolution.


Asunto(s)
Elementos Transponibles de ADN , Genómica , Secuencia de Bases , Núcleo Celular/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Células Germinativas
14.
EMBO J ; 40(15): e107121, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34013588

RESUMEN

Glia contribute to synapse elimination through phagocytosis in the central nervous system. Despite the important roles of this process in development and neurological disorders, the identity and regulation of the "eat-me" signal that initiates glia-mediated phagocytosis of synapses has remained incompletely understood. Here, we generated conditional knockout mice with neuronal-specific deletion of the flippase chaperone Cdc50a, to induce stable exposure of phosphatidylserine, a well-known "eat-me" signal for apoptotic cells, on the neuronal outer membrane. Surprisingly, acute Cdc50a deletion in mature neurons causes preferential phosphatidylserine exposure in neuronal somas and specific loss of inhibitory post-synapses without effects on other synapses, resulting in abnormal excitability and seizures. Ablation of microglia or the deletion of microglial phagocytic receptor Mertk prevents the loss of inhibitory post-synapses and the seizure phenotype, indicating that microglial phagocytosis is responsible for inhibitory post-synapse elimination. Moreover, we found that phosphatidylserine is used for microglia-mediated pruning of inhibitory post-synapses in normal brains, suggesting that phosphatidylserine serves as a general "eat-me" signal for inhibitory post-synapse elimination.


Asunto(s)
Microglía/metabolismo , Fosfatidilserinas/metabolismo , Convulsiones/fisiopatología , Sinapsis/fisiología , Tirosina Quinasa c-Mer/metabolismo , Animales , Encéfalo/fisiopatología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fagocitosis/fisiología , Convulsiones/genética , Tirosina Quinasa c-Mer/genética
15.
EMBO J ; 40(21): e107915, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34585770

RESUMEN

Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an "eat me" signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses.


Asunto(s)
Proteínas de la Membrana/genética , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fosfatidilserinas/farmacología , Receptores Acoplados a Proteínas G/genética , Sinapsis/efectos de los fármacos , Animales , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/citología , Microglía/metabolismo , Plasticidad Neuronal , Neuronas/citología , Neuronas/metabolismo , Fosfatidilserinas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapsis/genética , Sinapsis/metabolismo , Transmisión Sináptica , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato , Proteína Fluorescente Roja
16.
J Cell Sci ; 136(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37309190

RESUMEN

Spatial organization within an organ is essential and needs to be maintained during development. This is largely implemented via compartment boundaries that serve as barriers between distinct cell types. Biased accumulation of junctional non-muscle Myosin II along the interface between differently fated groups of cells contributes to boundary integrity and maintains its shape via increased tension. Here, using the Drosophila wing imaginal disc, we tested whether interfacial tension driven by accumulation of Myosin is responsible for the elimination of aberrantly specified cells that would otherwise compromise compartment organization. To this end, we genetically reduced Myosin II levels in three different patterns: in both wild-type and misspecified cells, only in misspecified cells, and specifically at the interface between wild-type and aberrantly specified cells. We found that the recognition and elimination of aberrantly specified cells do not strictly rely on tensile forces driven by interfacial Myosin cables. Moreover, apical constriction of misspecified cells and their separation from wild-type neighbours occurred even when Myosin levels were greatly reduced. Thus, we conclude that the forces that drive elimination of aberrantly specified cells are largely independent of Myosin II accumulation.


Asunto(s)
Miosina Tipo II , Animales , Células Clonales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Morfogénesis , Miosina Tipo II/metabolismo , Discos Imaginales/metabolismo
17.
Gastroenterology ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39181168

RESUMEN

BACKGROUND & AIMS: Chronic hepatitis C-related decompensated cirrhosis is associated with lower sustained virologic response (SVR)-12 rates and variable regression of disease severity after direct-acting antiviral agents. We assessed rates of SVR-12, recompensation (Baveno VII criteria), and survival in such patients. METHODS: Between July 2018 and July 2023, patients with decompensated chronic hepatitis C-related cirrhosis after direct-acting antiviral agents treatment were evaluated for SVR-12 and then had 6-monthly follow-up. RESULTS: Of 6516 patients with cirrhosis, 1152 with decompensated cirrhosis (age 53.2 ± 11.5 years; 63% men; Model for End-stage Liver Disease-Sodium [MELD-Na]: 16.5 ± 4.6; 87% genotype 3) were enrolled. SVR-12 was 81.8% after 1 course; ultimately SVR was 90.8% after additional treatment. Decompensation events included ascites (1098; 95.3%), hepatic encephalopathy (191; 16.6%), and variceal bleeding (284; 24.7%). Ascites resolved in 86% (diuretic withdrawal achieved in 24% patients). Recompensation occurred in 284 (24.7%) at a median time of 16.5 (interquartile range, 14.5-20.5) months. On multivariable Cox proportional hazards analysis, low bilirubin (adjusted hazard ratio [aHR], 0.6; 95% confidence interval [CI], 0.5-0.8; P < 0.001), international normalized ratio (aHR, 0.2; 95% CI, 0.1-0.3; P < 0.001), absence of large esophageal varices (aHR, 0.4; 95% CI, 0.2-0.9; P = 0.048), or gastric varices (aHR, 0.5; 95% CI, 0.3-0.7; P = 0.022) predicted recompensation. Portal hypertension progressed in 158 (13.7%) patients, with rebleed in 4%. Prior decompensation with variceal bleeding (aHR, 1.6; 95% CI, 1.2-2.8; P = 0.042), and presence of large varices (aHR, 2.9; 95% CI, 1.3-6.5; P < 0.001) were associated with portal hypertension progression. Further decompensation was seen in 221 (19%); 145 patients died and 6 underwent liver transplantation. A decrease in MELDNa of ≥3 was seen in 409 (35.5%) and a final MELDNa score of <10 was seen in 335 (29%), but 2.9% developed hepatocellular carcinoma despite SVR-12. CONCLUSIONS: SVR-12 in hepatitis C virus-related decompensated cirrhosis in a predominant genotype 3 population led to recompensation in 24.7% of patients over a follow-up of 4 years in a public health setting. Despite SVR-12, new hepatic decompensation evolved in 19% and hepatocellular carcinoma developed in 2.9% of patients. (ClinicalTrials.gov, Number: NCT03488485).

18.
Chromosome Res ; 32(4): 12, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39390295

RESUMEN

Mouse embryonic stem cells (ESCs) possess a pluripotent developmental potential and a stable karyotype. An exception is the frequent loss of one X chromosome in female ESCs derived from inbred mice. In contrast, female ESCs from crosses between different Mus musculus subspecies often maintain two X chromosomes and can model X chromosome inactivation. Here we report that combined mutations of Hira and Cdk8 induce rapid loss of one X chromosome in a Mus musculus castaneus hybrid female ESC line that originally maintains two X chromosomes. We show that MEK1 inhibition, which is used for culturing naive pluripotent ESCs is sufficient to induce X chromosome loss. In conventional ESC media, Hira and Cdk8 mutant ESCs maintain both X chromosomes. Induction of X chromosome loss by switching to naive culture media allows us to perform kinetic measurements for calculating the chromosome loss rate. Our analysis shows that X chromosome loss is not explained by selection of XO cells, but likely driven by a process of chromosome elimination. We show that elimination of the X chromosome occurs with a rate of 0.3% per cell per division, which exceeds reported autosomal loss rates by 3 orders of magnitude. We show that chromosomes 8 and 11 are stably maintained. Notably, Xist expression from one of the two X chromosomes rescues X chromosomal instability in ΔHiraΔCdk8 ESCs. Our study defines mutations of Hira and Cdk8 as molecular drivers for X chromosome elimination in naive female ESCs and describes a cell system for elucidating the underlying mechanism.


Asunto(s)
Quinasa 8 Dependiente de Ciclina , Células Madre Embrionarias de Ratones , Mutación , Inactivación del Cromosoma X , Cromosoma X , Animales , Femenino , Ratones , Cromosoma X/genética , Quinasa 8 Dependiente de Ciclina/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteínas de Ciclo Celular/genética , Factores de Transcripción/genética
19.
Methods ; 229: 133-146, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944134

RESUMEN

Asparagine peptide lyase (APL) is among the seven groups of proteases, also known as proteolytic enzymes, which are classified according to their catalytic residue. APLs are synthesized as precursors or propeptides that undergo self-cleavage through autoproteolytic reaction. At present, APLs are grouped into 10 families belonging to six different clans of proteases. Recognizing their critical roles in many biological processes including virus maturation, and virulence, accurate identification and characterization of APLs is indispensable. Experimental identification and characterization of APLs is laborious and time-consuming. Here, we developed APLpred, a novel support vector machine (SVM) based predictor that can predict APLs from the primary sequences. APLpred was developed using Boruta-based optimal features derived from seven encodings and subsequently trained using five machine learning algorithms. After evaluating each model on an independent dataset, we selected APLpred (an SVM-based model) due to its consistent performance during cross-validation and independent evaluation. We anticipate APLpred will be an effective tool for identifying APLs. This could aid in designing inhibitors against these enzymes and exploring their functions. The APLpred web server is freely available at https://procarb.org/APLpred/.


Asunto(s)
Máquina de Vectores de Soporte , Aprendizaje Automático , Biología Computacional/métodos , Programas Informáticos , Secuencia de Aminoácidos/genética , Bases de Datos de Proteínas
20.
Mol Ther ; 32(9): 2992-3011, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582962

RESUMEN

Cellular senescence associates with pathological aging and tissue dysfunctions. Studies utilizing mouse models for cell lineage tracings have emphasized the importance of senescence heterogeneity in different organs and cell types. Here, we constructed a p21- (Akaluc - tdTomato - Diphtheria Toxin Receptor [DTR]) (ATD) mouse model to specifically study the undefined mechanism for p21-expressing senescent cells in the aged and liver injury animals. The successful expressions of these genes enabled in vitro flow cytometric sorting, in vivo tracing, and elimination of p21-expressing senescent cells. During the natural aging process, p21-expressing cells were found in various tissues of p21-ATD mice. Eliminating p21-expressing cells in the aged p21-ATD mice recovered their multiple biological functions. p21-ATD/Fah-/- mice, bred from p21-ATD mice and fumarylacetoacetate hydrolase (Fah)-/- mice of liver injury, showed that the majority of their senescent hepatocytes were the phenotype of p21+ rather than p16+. Furthermore, eliminating the p21-expressing hepatocytes significantly promoted the engraftment of grafted hepatocytes and facilitated liver repopulation, resulting in significant recovery from liver injury. Our p21-ATD mouse model serves as an optimal model for studying the pattern and function of p21-expressing senescent cells under the physical and pathological conditions during aging.


Asunto(s)
Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Modelos Animales de Enfermedad , Hepatocitos , Regeneración Hepática , Animales , Ratones , Senescencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/patología , Hidrolasas/genética , Hidrolasas/metabolismo , Ratones Transgénicos , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA