RESUMEN
The endoplasmic reticulum (ER) and the mitochondrial network are two highly interconnected cellular structures. By proteinaceous tethers, specialized membrane domains of the ER are tightly associated with the outer membrane of mitochondria, allowing the assembly of signaling platforms where different cell functions take place or are modulated, such as lipid biosynthesis, Ca2+ homeostasis, inflammation, autophagy and apoptosis. The ER-mitochondria coupling is highly dynamic and contacts between the two organelles can be modified in their number, extension and thickness by different stimuli. Importantly, several pathological conditions, such as cancer, neurodegenerative diseases and metabolic syndromes show alterations in this feature, underlining the key role of ER-mitochondria crosstalk in cell physiology. In this contribution, we will focus on one of the major modulator of ER-mitochondria apposition, Mitofusin 2, discussing the structure of the protein and its debated role on organelles tethering. Moreover, we will critically describe different techniques commonly used to investigate this crucial issue, highlighting their advantages, drawbacks and limits.
Asunto(s)
Retículo Endoplásmico/fisiología , GTP Fosfohidrolasas/fisiología , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Animales , Humanos , Dinámicas MitocondrialesRESUMEN
Alzheimer's disease (AD) is characterized by complex etiology, long-lasting pathogenesis, and cell-type-specific alterations. Currently, there is no cure for AD, emphasizing the urgent need for a comprehensive understanding of cell-specific pathology. Astrocytes, principal homeostatic cells of the central nervous system, are key players in the pathogenesis of neurodegenerative diseases, including AD. Cellular models greatly facilitate the investigation of cell-specific pathological alterations and the dissection of molecular mechanisms and pathways. Tumor-derived and immortalized astrocytic cell lines, alongside the emerging technology of adult induced pluripotent stem cells, are widely used to study cellular dysfunction in AD. Surprisingly, no stable cell lines were available from genetic mouse AD models. Recently, we established immortalized hippocampal astroglial cell lines from amyloid-ß precursor protein/presenilin-1/Tau triple-transgenic (3xTg)-AD mice (denominated as wild type (WT)- and 3Tg-iAstro cells) using retrovirus-mediated transduction of simian virus 40 large T-antigen and propagation without clonal selection, thereby maintaining natural heterogeneity of primary cultures. Several groups have successfully used 3Tg-iAstro cells for single-cell and omics approaches to study astrocytic AD-related alterations of calcium signaling, mitochondrial dysfunctions, disproteostasis, altered homeostatic and signaling support to neurons, and blood-brain barrier models. Here we provide a comparative overview of the most used models to study astrocytes in vitro, such as primary culture, tumor-derived cell lines, immortalized astroglial cell lines, and induced pluripotent stem cell-derived astrocytes. We conclude that immortalized WT- and 3Tg-iAstro cells provide a non-competitive but complementary, low-cost, easy-to-handle, and versatile cellular model for dissection of astrocyte-specific AD-related alterations and preclinical drug discovery.
RESUMEN
Mitofusin 2 (Mfn2) is a transmembrane GTPase located on the mitochondrial outer membrane that contributes to mitochondrial network regulation. It is an essential multifunctional protein that participates in various biological processes under physical and pathological conditions, including mitochondrial fusion, reticulum-mitochondria contacts, mitochondrial quality control, and apoptosis. Mfn2 dysfunctions have been found to contribute to cardiovascular diseases, such as ischemia-reperfusion injury, heart failure, and dilated cardiomyopathy. Here, this review mainly focuses on what is known about the structure and function of Mfn2 and its crucial role in heart failure.