Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(2): 305-326.e27, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36638792

RESUMEN

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.


Asunto(s)
Envejecimiento , Epigénesis Genética , Animales , Envejecimiento/genética , Metilación de ADN , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genética
2.
Cell ; 172(1-2): 176-190.e19, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328912

RESUMEN

The dogma that adaptive immunity is the only arm of the immune response with memory capacity has been recently challenged by several studies demonstrating evidence for memory-like innate immune training. However, the underlying mechanisms and location for generating such innate memory responses in vivo remain unknown. Here, we show that access of Bacillus Calmette-Guérin (BCG) to the bone marrow (BM) changes the transcriptional landscape of hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), leading to local cell expansion and enhanced myelopoiesis at the expense of lymphopoiesis. Importantly, BCG-educated HSCs generate epigenetically modified macrophages that provide significantly better protection against virulent M. tuberculosis infection than naïve macrophages. By using parabiotic and chimeric mice, as well as adoptive transfer approaches, we demonstrate that training of the monocyte/macrophage lineage via BCG-induced HSC reprogramming is sustainable in vivo. Our results indicate that targeting the HSC compartment provides a novel approach for vaccine development.


Asunto(s)
Células Madre Hematopoyéticas/inmunología , Inmunidad Innata , Memoria Inmunológica , Mycobacterium bovis/inmunología , Transcriptoma , Animales , Línea Celular , Células Cultivadas , Epigénesis Genética , Hematopoyesis , Ratones , Ratones Endogámicos C57BL , Tuberculosis/inmunología
3.
Cell ; 172(1-2): 162-175.e14, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328911

RESUMEN

Long-term epigenetic reprogramming of innate immune cells in response to microbes, also termed "trained immunity," causes prolonged altered cellular functionality to protect from secondary infections. Here, we investigated whether sterile triggers of inflammation induce trained immunity and thereby influence innate immune responses. Western diet (WD) feeding of Ldlr-/- mice induced systemic inflammation, which was undetectable in serum soon after mice were shifted back to a chow diet (CD). In contrast, myeloid cell responses toward innate stimuli remained broadly augmented. WD-induced transcriptomic and epigenomic reprogramming of myeloid progenitor cells led to increased proliferation and enhanced innate immune responses. Quantitative trait locus (QTL) analysis in human monocytes trained with oxidized low-density lipoprotein (oxLDL) and stimulated with lipopolysaccharide (LPS) suggested inflammasome-mediated trained immunity. Consistently, Nlrp3-/-/Ldlr-/- mice lacked WD-induced systemic inflammation, myeloid progenitor proliferation, and reprogramming. Hence, NLRP3 mediates trained immunity following WD and could thereby mediate the potentially deleterious effects of trained immunity in inflammatory diseases.


Asunto(s)
Reprogramación Celular , Dieta Occidental , Epigénesis Genética , Inmunidad Innata , Memoria Inmunológica , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Adulto , Anciano , Animales , Células Cultivadas , Femenino , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Células Mieloides/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sitios de Carácter Cuantitativo , Receptores de LDL/genética
4.
Immunity ; 56(12): 2699-2718.e11, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38091951

RESUMEN

Rewiring exhausted CD8+ T (Tex) cells toward functional states remains a therapeutic challenge. Tex cells are epigenetically programmed by the transcription factor Tox. However, epigenetic remodeling occurs as Tex cells transition from progenitor (Texprog) to intermediate (Texint) and terminal (Texterm) subsets, suggesting development flexibility. We examined epigenetic transitions between Tex cell subsets and revealed a reciprocally antagonistic circuit between Stat5a and Tox. Stat5 directed Texint cell formation and re-instigated partial effector biology during this Texprog-to-Texint cell transition. Constitutive Stat5a activity antagonized Tox and rewired CD8+ T cells from exhaustion to a durable effector and/or natural killer (NK)-like state with superior anti-tumor potential. Temporal induction of Stat5 activity in Tex cells using an orthogonal IL-2:IL2Rß-pair fostered Texint cell accumulation, particularly upon PD-L1 blockade. Re-engaging Stat5 also partially reprogrammed the epigenetic landscape of exhaustion and restored polyfunctionality. These data highlight therapeutic opportunities of manipulating the IL-2-Stat5 axis to rewire Tex cells toward more durably protective states.


Asunto(s)
Linfocitos T CD8-positivos , Factores de Transcripción , Factores de Transcripción/genética , Interleucina-2 , Regulación de la Expresión Génica , Receptor de Muerte Celular Programada 1/metabolismo
5.
Cell ; 170(1): 61-71.e11, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666125

RESUMEN

Transposon reactivation is an inherent danger in cells that lose epigenetic silencing during developmental reprogramming. In the mouse, long terminal repeat (LTR)-retrotransposons, or endogenous retroviruses (ERV), account for most novel insertions and are expressed in the absence of histone H3 lysine 9 trimethylation in preimplantation stem cells. We found abundant 18 nt tRNA-derived small RNA (tRF) in these cells and ubiquitously expressed 22 nt tRFs that include the 3' terminal CCA of mature tRNAs and target the tRNA primer binding site (PBS) essential for ERV reverse transcription. We show that the two most active ERV families, IAP and MusD/ETn, are major targets and are strongly inhibited by tRFs in retrotransposition assays. 22 nt tRFs post-transcriptionally silence coding-competent ERVs, while 18 nt tRFs specifically interfere with reverse transcription and retrotransposon mobility. The PBS offers a unique target to specifically inhibit LTR-retrotransposons, and tRF-targeting is a potentially highly conserved mechanism of small RNA-mediated transposon control.


Asunto(s)
Silenciador del Gen , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/metabolismo , Retroviridae/genética , Células Madre/virología , Animales , Células HeLa , Humanos , Ratones , Secuencias Repetidas Terminales
6.
Genes Dev ; 38(3-4): 131-150, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38453481

RESUMEN

Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.


Asunto(s)
Oocitos , Cigoto , Animales , Niño , Femenino , Humanos , Ratones , Proteínas Potenciadoras de Unión a CCAAT/genética , Citoplasma/genética , Citoplasma/metabolismo , Metilación de ADN/genética , Desarrollo Embrionario/genética , Impresión Genómica/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36323312

RESUMEN

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Asunto(s)
Interleucina-4 , Lipopolisacáridos , Ratones , Animales , Interleucina-4/metabolismo , Lipopolisacáridos/metabolismo , Ligandos , Epigenómica , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Epigénesis Genética , FN-kappa B/metabolismo
8.
Genes Dev ; 35(17-18): 1209-1228, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34413137

RESUMEN

The generation of myotubes from fibroblasts upon forced MyoD expression is a classic example of transcription factor-induced reprogramming. We recently discovered that additional modulation of signaling pathways with small molecules facilitates reprogramming to more primitive induced myogenic progenitor cells (iMPCs). Here, we dissected the transcriptional and epigenetic dynamics of mouse fibroblasts undergoing reprogramming to either myotubes or iMPCs using a MyoD-inducible transgenic model. Induction of MyoD in fibroblasts combined with small molecules generated Pax7+ iMPCs with high similarity to primary muscle stem cells. Analysis of intermediate stages of iMPC induction revealed that extinction of the fibroblast program preceded induction of the stem cell program. Moreover, key stem cell genes gained chromatin accessibility prior to their transcriptional activation, and these regions exhibited a marked loss of DNA methylation dependent on the Tet enzymes. In contrast, myotube generation was associated with few methylation changes, incomplete and unstable reprogramming, and an insensitivity to Tet depletion. Finally, we showed that MyoD's ability to bind to unique bHLH targets was crucial for generating iMPCs but dispensable for generating myotubes. Collectively, our analyses elucidate the role of MyoD in myogenic reprogramming and derive general principles by which transcription factors and signaling pathways cooperate to rewire cell identity.


Asunto(s)
Desarrollo de Músculos , Proteína MioD , Animales , Diferenciación Celular/genética , Ratones , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas , Músculo Esquelético , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/metabolismo , Células Madre/metabolismo
9.
Genes Dev ; 35(11-12): 841-846, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34016690

RESUMEN

Epigenetic reprogramming occurs during gametogenesis as well as during embryogenesis to reset the genome for early development. In flowering plants, many heterochromatic marks are maintained in sperm, but asymmetric DNA methylation is mostly lost. Asymmetric DNA methylation is dependent on small RNA but the re-establishment of silencing in embryo is not well understood. Here we demonstrate that small RNAs direct the histone H3 lysine 9 dimethylation during Arabidopsis thaliana embryonic development, together with asymmetric DNA methylation. This de novo silencing mechanism depends on the catalytic domain of SUVH9, a Su(Var)3-9 homolog thought to be catalytically inactive.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN/genética , Histonas/metabolismo , ARN de Planta/metabolismo , Semillas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigénesis Genética/genética , Silenciador del Gen , Semillas/genética
10.
Immunity ; 51(5): 794-811, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747581

RESUMEN

The consumption of Western-type calorically rich diets combined with chronic overnutrition and a sedentary lifestyle in Western societies evokes a state of chronic metabolic inflammation, termed metaflammation. Metaflammation contributes to the development of many prevalent non-communicable diseases (NCDs), and these lifestyle-associated pathologies represent a rising public health problem with global epidemic dimensions. A better understanding of how modern lifestyle and Western diet (WD) activate immune cells is essential for the development of efficient preventive and therapeutic strategies for common NCDs. Here, we review the current mechanistic understanding of how the Western lifestyle can induce metaflammation, and we discuss how this knowledge can be translated to protect the public from the health burden associated with their selected lifestyle.


Asunto(s)
Dieta Occidental , Sistema Inmunológico/fisiología , Animales , Dieta , Susceptibilidad a Enfermedades , Retroalimentación Fisiológica , Microbioma Gastrointestinal , Homeostasis , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Inflamación/etiología , Inflamación/metabolismo , Especificidad de Órganos
11.
EMBO J ; 42(9): e112962, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36929479

RESUMEN

Human in vitro oogenesis provides a framework for clarifying the mechanism of human oogenesis. To create its benchmark, it is vital to promote in vitro oogenesis using a model physiologically close to humans. Here, we establish a foundation for in vitro oogenesis in cynomolgus (cy) monkeys (Macaca fascicularis): cy female embryonic stem cells harboring one active and one inactive X chromosome (Xa and Xi, respectively) differentiate robustly into primordial germ cell-like cells, which in xenogeneic reconstituted ovaries develop efficiently into oogonia and, remarkably, further into meiotic oocytes at the zygotene stage. This differentiation entails comprehensive epigenetic reprogramming, including Xi reprogramming, yet Xa and Xi remain epigenetically asymmetric with, as partly observed in vivo, incomplete Xi reactivation. In humans and monkeys, the Xi epigenome in pluripotent stem cells functions as an Xi-reprogramming determinant. We further show that developmental pathway over-activations with suboptimal up-regulation of relevant meiotic genes impede in vitro meiotic progression. Cy in vitro oogenesis exhibits critical homology with the human system, including with respect to bottlenecks, providing a salient model for advancing human in vitro oogenesis.


Asunto(s)
Oocitos , Oogénesis , Animales , Femenino , Humanos , Macaca fascicularis , Oogénesis/fisiología , Ovario , Células Madre Embrionarias
12.
Immunity ; 48(4): 659-674.e6, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29669249

RESUMEN

T cell receptor (TCR) stimulation of naive CD8+ T cells initiates reprogramming of cis-regulatory landscapes that specify effector and memory cytotoxic T lymphocyte (CTL) differentiation. We mapped regions of hyper-accessible chromatin in naive cells during TCR stimulation and discovered that the transcription factor (TF) Runx3 promoted accessibility to memory CTL-specific cis-regulatory regions before the first cell division and was essential for memory CTL differentiation. Runx3 was specifically required for accessibility to regions highly enriched with IRF, bZIP and Prdm1-like TF motifs, upregulation of TFs Irf4 and Blimp1, and activation of fundamental CTL attributes in early effector and memory precursor cells. Runx3 ensured that nascent CTLs differentiated into memory CTLs by preventing high expression of the TF T-bet, slowing effector cell proliferation, and repressing terminal CTL differentiation. Runx3 overexpression enhanced memory CTL differentiation during iterative infections. Thus, Runx3 governs chromatin accessibility during TCR stimulation and enforces the memory CTL developmental program.


Asunto(s)
Cromatina/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Memoria Inmunológica/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/inmunología , Animales , Sitios de Unión/inmunología , Diferenciación Celular/inmunología , Línea Celular , Proliferación Celular , Chlorocebus aethiops , Cricetinae , Activación Enzimática/inmunología , Femenino , Humanos , Factores Reguladores del Interferón/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva/biosíntesis , Células Vero
13.
Mol Cell ; 75(6): 1147-1160.e5, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31420217

RESUMEN

Activated macrophages adapt their metabolic pathways to drive the pro-inflammatory phenotype, but little is known about the biochemical underpinnings of this process. Here, we find that lipopolysaccharide (LPS) activates the pentose phosphate pathway, the serine synthesis pathway, and one-carbon metabolism, the synergism of which drives epigenetic reprogramming for interleukin-1ß (IL-1ß) expression. Glucose-derived ribose and one-carbon units fed by both glucose and serine metabolism are synergistically integrated into the methionine cycle through de novo ATP synthesis and fuel the generation of S-adenosylmethionine (SAM) during LPS-induced inflammation. Impairment of these metabolic pathways that feed SAM generation lead to anti-inflammatory outcomes, implicating SAM as an essential metabolite for inflammatory macrophages. Mechanistically, SAM generation maintains a relatively high SAM:S-adenosylhomocysteine ratio to support histone H3 lysine 36 trimethylation for IL-1ß production. We therefore identify a synergistic effect of glucose and amino acid metabolism on orchestrating SAM availability that is intimately linked to the chromatin state for inflammation.


Asunto(s)
Histonas/metabolismo , Macrófagos Peritoneales/metabolismo , S-Adenosilmetionina/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Animales , Femenino , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos Peritoneales/patología , Masculino , Metilación/efectos de los fármacos , Ratones
14.
Genes Dev ; 33(1-2): 1-3, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602436

RESUMEN

The monoallelic parent of origin-specific expression of imprinted genes in mammals is regulated by differentially DNA methylated imprinting control regions (ICRs). In contrast to most of the genome, ICRs must maintain their DNA methylation and parental identity despite extensive epigenetic reprogramming that takes place after fertilization. Previous work demonstrated that the Krüppel-associated box (KRAB)-containing zinc finger protein (KZFP) ZFP57 protects select ICRs from demethylation and preserves parental identity. However, some loci are unaffected in Zfp57-null mice. Thus, it has been speculated that other KZFPs must be involved in this process. Takahashi and colleagues (pp. 49-54) now report one such KZFP: ZFP445.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Impresión Genómica/genética , Dedos de Zinc , Animales , Metilación de ADN , Epigenómica , Humanos , Ratones
15.
Genes Dev ; 33(1-2): 49-54, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602440

RESUMEN

Genomic imprinting is an epigenetic process regulated by germline-derived DNA methylation, causing parental origin-specific monoallelic gene expression. Zinc finger protein 57 (ZFP57) is critical for maintenance of this epigenetic memory during post-fertilization reprogramming, yet incomplete penetrance of ZFP57 mutations in humans and mice suggests additional effectors. We reveal that ZNF445/ZFP445, which we trace to the origins of imprinting, binds imprinting control regions (ICRs) in mice and humans. In mice, ZFP445 and ZFP57 act together, maintaining all but one ICR in vivo, whereas earlier embryonic expression of ZNF445 and its intolerance to loss-of-function mutations indicate greater importance in the maintenance of human imprints.


Asunto(s)
Metilación de ADN/genética , Impresión Genómica/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Secuencia Conservada , Células Madre Embrionarias , Células HEK293 , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Represoras , Factores de Transcripción/genética
16.
EMBO J ; 41(12): e109457, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35603814

RESUMEN

The mammalian germline is characterized by extensive epigenetic reprogramming during its development into functional eggs and sperm. Specifically, the epigenome requires resetting before parental marks can be established and transmitted to the next generation. In the female germline, X-chromosome inactivation and reactivation are among the most prominent epigenetic reprogramming events, yet very little is known about their kinetics and biological function. Here, we investigate X-inactivation and reactivation dynamics using a tailor-made in vitro system of primordial germ cell-like cell (PGCLC) differentiation from mouse embryonic stem cells. We find that X-inactivation in PGCLCs in vitro and in germ cell-competent epiblast cells in vivo is moderate compared to somatic cells, and frequently characterized by escaping genes. X-inactivation is followed by step-wise X-reactivation, which is mostly completed during meiotic prophase I. Furthermore, we find that PGCLCs which fail to undergo X-inactivation or reactivate too rapidly display impaired meiotic potential. Thus, our data reveal fine-tuned X-chromosome remodelling as a critical feature of female germ cell development towards meiosis and oogenesis.


Asunto(s)
Células Germinativas , Meiosis , Animales , Diferenciación Celular , Cromosomas , Mamíferos/genética , Meiosis/genética , Ratones , Inactivación del Cromosoma X/genética
17.
EMBO J ; 41(13): e110600, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35703121

RESUMEN

Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres-an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.


Asunto(s)
Epigénesis Genética , Células Germinativas , Animales , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , Epigenómica , Femenino , Células Germinativas/metabolismo , Masculino , Mamíferos/genética , Ratones , Espermatogonias
18.
Development ; 150(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37283046

RESUMEN

In mammals, a near complete resetting of DNA methylation (DNAme) is observed during germline establishment. This wave of epigenetic reprogramming is sensitive to the environment, which could impair the establishment of an optimal state of the gamete epigenome, hence proper embryo development. Yet, we lack a comprehensive understanding of DNAme dynamics during spermatogenesis, especially in rats, the model of choice for toxicological studies. Using a combination of cell sorting and DNA methyl-seq capture, we generated a stage-specific mapping of DNAme in nine populations of differentiating germ cells from perinatal life to spermiogenesis. DNAme was found to reach its lowest level at gestational day 18, the last demethylated coding regions being associated with negative regulation of cell movement. The following de novo DNAme displayed three different kinetics with common and distinct genomic enrichments, suggesting a non-random process. DNAme variations were also detected at key steps of chromatin remodeling during spermiogenesis, revealing potential sensitivity. These methylome datasets for coding sequences during normal spermatogenesis in rat provide an essential reference for studying epigenetic-related effects of disease or environmental factors on the male germline.


Asunto(s)
Metilación de ADN , Células Germinativas , Masculino , Embarazo , Femenino , Ratas , Animales , Metilación de ADN/genética , Espermatogénesis/genética , ADN , Epigenoma , Mamíferos/genética
19.
Mol Cell ; 72(4): 673-686.e6, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30444999

RESUMEN

The epigenome plays critical roles in controlling gene expression and development. However, how the parental epigenomes transit to the zygotic epigenome in early development remains elusive. Here we show that parental-to-zygotic transition in zebrafish involves extensive erasure of parental epigenetic memory, starting with methylating gametic enhancers. Surprisingly, this occurs even prior to fertilization for sperm. Both parental enhancers lose histone marks by the 4-cell stage, and zygotic enhancers are not activated until around zygotic genome activation (ZGA). By contrast, many promoters remain hypomethylated and, unexpectedly, acquire histone acetylation before ZGA at as early as the 4-cell stage. They then resolve into either activated or repressed promoters upon ZGA. Maternal depletion of histone acetyltransferases results in aberrant ZGA and early embryonic lethality. Finally, such reprogramming is largely driven by maternal factors, with zygotic products mainly contributing to embryonic enhancer activation. These data reveal widespread enhancer dememorization and promoter priming during parental-to-zygotic transition.


Asunto(s)
Código de Histonas/genética , Código de Histonas/fisiología , Pez Cebra/embriología , Acetilación , Animales , Metilación de ADN/genética , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Epigenómica , Regulación del Desarrollo de la Expresión Génica/genética , Genoma/genética , Histonas/genética , Masculino , Oocitos , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional , Secuencias Reguladoras de Ácidos Nucleicos/genética , Espermatozoides , Transcripción Genética/genética , Pez Cebra/genética , Proteínas de Pez Cebra , Cigoto/fisiología
20.
Semin Cancer Biol ; 98: 31-50, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123029

RESUMEN

Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.


Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias/genética , Neoplasias/patología , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA