Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.716
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(9): 1912-1929.e18, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37044097

RESUMEN

The spectrin-based membrane skeleton is a ubiquitous membrane-associated two-dimensional cytoskeleton underneath the lipid membrane of metazoan cells. Mutations of skeleton proteins impair the mechanical strength and functions of the membrane, leading to several different types of human diseases. Here, we report the cryo-EM structures of the native spectrin-actin junctional complex (from porcine erythrocytes), which is a specialized short F-actin acting as the central organizational unit of the membrane skeleton. While an α-/ß-adducin hetero-tetramer binds to the barbed end of F-actin as a flexible cap, tropomodulin and SH3BGRL2 together create an absolute cap at the pointed end. The junctional complex is strengthened by ring-like structures of dematin in the middle actin layers and by patterned periodic interactions with tropomyosin over its entire length. This work serves as a structural framework for understanding the assembly and dynamics of membrane skeleton and offers insights into mechanisms of various ubiquitous F-actin-binding factors in other F-actin systems.


Asunto(s)
Citoesqueleto , Eritrocitos , Animales , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Espectrina/análisis , Espectrina/metabolismo , Porcinos
2.
EMBO J ; 42(19): e114164, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37554073

RESUMEN

Cellular circadian rhythms confer temporal organisation upon physiology that is fundamental to human health. Rhythms are present in red blood cells (RBCs), the most abundant cell type in the body, but their physiological function is poorly understood. Here, we present a novel biochemical assay for haemoglobin (Hb) oxidation status which relies on a redox-sensitive covalent haem-Hb linkage that forms during SDS-mediated cell lysis. Formation of this linkage is lowest when ferrous Hb is oxidised, in the form of ferric metHb. Daily haemoglobin oxidation rhythms are observed in mouse and human RBCs cultured in vitro, or taken from humans in vivo, and are unaffected by mutations that affect circadian rhythms in nucleated cells. These rhythms correlate with daily rhythms in core body temperature, with temperature lowest when metHb levels are highest. Raising metHb levels with dietary sodium nitrite can further decrease daytime core body temperature in mice via nitric oxide (NO) signalling. These results extend our molecular understanding of RBC circadian rhythms and suggest they contribute to the regulation of body temperature.


Asunto(s)
Eritrocitos , Hemoglobinas , Humanos , Ratones , Animales , Eritrocitos/metabolismo , Hemoglobinas/metabolismo , Oxidación-Reducción , Hemo/metabolismo , Ritmo Circadiano
3.
Proc Natl Acad Sci U S A ; 121(5): e2316304121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38261617

RESUMEN

The discovery that Africans were resistant to infection by Plasmodium vivax (P. vivax) led to the conclusion that P. vivax invasion relied on the P. vivax Duffy Binding Protein (PvDBP) interacting with the Duffy Antigen Receptor for Chemokines (DARC) expressed on erythrocytes. However, the recent reporting of P. vivax infections in DARC-negative Africans suggests that the parasite might use an alternate invasion pathway to infect DARC-negative reticulocytes. To identify the parasite ligands and erythrocyte receptors that enable P. vivax invasion of both DARC-positive and -negative erythrocytes, we expressed region II containing the Duffy Binding-Like (DBL) domain of P. vivax erythrocyte binding protein (PvEBP-RII) and verified that the DBL domain binds to both DARC-positive and -negative erythrocytes. Furthermore, an AVidity-based EXtracelluar Interaction Screening (AVEXIS) was used to identify the receptor for PvEBP among over 750 human cell surface receptor proteins, and this approach identified only Complement Receptor 1 (CR1, CD35, or C3b/C4b receptor) as a PvEBP receptor. CR1 is a well-known receptor for P. falciparum Reticulocyte binding protein Homology 4 (PfRh4) and is present on the surfaces of both reticulocytes and normocytes, but its expression decreases as erythrocytes age. Indeed, PvEBP-RII bound to a subpopulation of both reticulocytes and normocytes, and this binding was blocked by the addition of soluble CR1 recombinant protein, indicating that CR1 is the receptor of PvEBP. In addition, we found that the Long Homology Repeat A (LHR-A) subdomain of CR1 is the only subdomain responsible for mediating the interaction with PvEBP-RII.


Asunto(s)
Malaria Falciparum , Plasmodium vivax , Humanos , Receptores de Superficie Celular , Eritrocitos , Reticulocitos , Antígenos CD2 , Moléculas de Adhesión Celular
4.
Proc Natl Acad Sci U S A ; 121(8): e2303119121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349880

RESUMEN

Coupling red blood cell (RBC) supply to O2 demand is an intricate process requiring O2 sensing, generation of a stimulus, and signal transduction that alters upstream arteriolar tone. Although actively debated, this process has been theorized to be induced by hypoxia and to involve activation of endothelial inwardly rectifying K+ channels (KIR) 2.1 by elevated extracellular K+ to trigger conducted hyperpolarization via connexin40 (Cx40) gap junctions to upstream resistors. This concept was tested in resting healthy skeletal muscle of Cx40-/- and endothelial KIR2.1-/- mice using state-of-the-art live animal imaging where the local tissue O2 environment was manipulated using a custom gas chamber. Second-by-second capillary RBC flow responses were recorded as O2 was altered. A stepwise drop in PO2 at the muscle surface increased RBC supply in capillaries of control animals while elevated O2 elicited the opposite response; capillaries were confirmed to express Cx40. The RBC flow responses were rapid and tightly coupled to O2; computer simulations did not support hypoxia as a driving factor. In contrast, RBC flow responses were significantly diminished in Cx40-/- mice. Endothelial KIR2.1-/- mice, on the other hand, reacted normally to O2 changes, even when the O2 challenge was targeted to a smaller area of tissue with fewer capillaries. Conclusively, microvascular O2 responses depend on coordinated electrical signaling via Cx40 gap junctions, and endothelial KIR2.1 channels do not initiate the event. These findings reconceptualize the paradigm of blood flow regulation in skeletal muscle and how O2 triggers this process in capillaries independent of extracellular K+.


Asunto(s)
Capilares , Oxígeno , Animales , Ratones , Capilares/fisiología , Proteína alfa-5 de Unión Comunicante/metabolismo , Uniones Comunicantes/metabolismo , Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Oxígeno/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(44): e2300095120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37874856

RESUMEN

The splenic interendothelial slits fulfill the essential function of continuously filtering red blood cells (RBCs) from the bloodstream to eliminate abnormal and aged cells. To date, the process by which 8 [Formula: see text]m RBCs pass through 0.3 [Formula: see text]m-wide slits remains enigmatic. Does the slit caliber increase during RBC passage as sometimes suggested? Here, we elucidated the mechanisms that govern the RBC retention or passage dynamics in slits by combining multiscale modeling, live imaging, and microfluidic experiments on an original device with submicron-wide physiologically calibrated slits. We observed that healthy RBCs pass through 0.28 [Formula: see text]m-wide rigid slits at 37 °C. To achieve this feat, they must meet two requirements. Geometrically, their surface area-to-volume ratio must be compatible with a shape in two tether-connected equal spheres. Mechanically, the cells with a low surface area-to-volume ratio (28% of RBCs in a 0.4 [Formula: see text]m-wide slit) must locally unfold their spectrin cytoskeleton inside the slit. In contrast, activation of the mechanosensitive PIEZO1 channel is not required. The RBC transit time through the slits follows a [Formula: see text]1 and [Formula: see text]3 power law with in-slit pressure drop and slip width, respectively. This law is similar to that of a Newtonian fluid in a two-dimensional Poiseuille flow, showing that the dynamics of RBCs is controlled by their cytoplasmic viscosity. Altogether, our results show that filtration through submicron-wide slits is possible without further slit opening. Furthermore, our approach addresses the critical need for in vitro evaluation of splenic clearance of diseased or engineered RBCs for transfusion and drug delivery.


Asunto(s)
Eritrocitos , Bazo , Eritrocitos/metabolismo , Citoesqueleto , Microfluídica , Espectrina/metabolismo
6.
FASEB J ; 38(10): e23666, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38780091

RESUMEN

Genome-wide association studies have identified many single nucleotide polymorphisms (SNPs) associated with erythrocyte traits. However, the functional variants and their working mechanisms remain largely unknown. Here, we reported that the SNP of rs80207740, which was associated with red blood cell (RBC) volume and hemoglobin content across populations, conferred enhancer activity to XPO7 gene via allele-differentially binding to Ikaros family zinc finger 1 (IKZF1). We showed that the region around rs80207740 was an erythroid-specific enhancer using reporter assays, and that the G-allele further enhanced activity. 3D genome evidence showed that the enhancer interacted with the XPO7 promoter, and eQTL analysis suggested that the G-allele upregulated expression of XPO7. We further showed that the rs80207740-G allele facilitated the binding of transcription factor IKZF1 in EMSA and ChIP analyses. Knockdown of IKZF1 and GATA1 resulted in decreased expression of Xpo7 in both human and mouse erythroid cells. Finally, we constructed Xpo7 knockout mouse by CRISPR/Cas9 and observed anemic phenotype with reduced volume and hemoglobin content of RBC, consistent to the effect of rs80207740 on erythrocyte traits. Overall, our study demonstrated that rs80207740 modulated erythroid indices by regulating IKZF1 binding and Xpo7 expression.


Asunto(s)
Alelos , Eritrocitos , Estudio de Asociación del Genoma Completo , Factor de Transcripción Ikaros , Polimorfismo de Nucleótido Simple , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Humanos , Animales , Ratones , Eritrocitos/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Regiones Promotoras Genéticas
7.
J Infect Dis ; 229(1): 161-172, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38169301

RESUMEN

Human babesiosis is a potentially fatal tick-borne disease caused by intraerythrocytic Babesia parasites. The emergence of resistance to recommended therapies highlights the need for new and more effective treatments. Here we demonstrate that the 8-aminoquinoline antimalarial drug tafenoquine inhibits the growth of different Babesia species in vitro, is highly effective against Babesia microti and Babesia duncani in mice and protects animals from lethal infection caused by atovaquone-sensitive and -resistant B. duncani strains. We further show that a combination of tafenoquine and atovaquone achieves cure with no recrudescence in both models of human babesiosis. Interestingly, elimination of B. duncani infection in animals following drug treatment also confers immunity to subsequent challenge. Altogether, the data demonstrate superior efficacy of tafenoquine plus atovaquone combination over current therapies for the treatment of human babesiosis and highlight its potential in providing protective immunity against Babesia following parasite clearance.


Asunto(s)
Aminoquinolinas , Babesia , Babesiosis , Humanos , Animales , Ratones , Atovacuona/farmacología , Atovacuona/uso terapéutico , Modelos Teóricos
8.
J Biol Chem ; 299(2): 102877, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621628

RESUMEN

The red blood cells (RBCs) of vertebrates have evolved into two basic shapes, with nucleated nonmammalian RBCs having a biconvex ellipsoidal shape and anuclear mammalian RBCs having a biconcave disk shape. In contrast, camelid RBCs are flat ellipsoids with reduced membrane deformability, suggesting altered membrane skeletal organization. However, the mechanisms responsible for their elliptocytic shape and reduced deformability have not been determined. We here showed that in alpaca RBCs, protein 4.1R, a major component of the membrane skeleton, contains an alternatively spliced exon 14-derived cassette (e14) not observed in the highly conserved 80 kDa 4.1R of other highly deformable biconcave mammalian RBCs. The inclusion of this exon, along with the preceding unordered proline- and glutamic acid-rich peptide (PE), results in a larger and unique 90 kDa camelid 4.1R. Human 4.1R containing e14 and PE, but not PE alone, showed markedly increased ability to form a spectrin-actin-4.1R ternary complex in viscosity assays. A similar facilitated ternary complex was formed by human 4.1R possessing a duplication of the spectrin-actin-binding domain, one of the mutations known to cause human hereditary elliptocytosis. The e14- and PE-containing mutant also exhibited an increased binding affinity to ß-spectrin compared with WT 4.1R. Taken together, these findings indicate that 4.1R protein with the e14 cassette results in the formation and maintenance of a hyperstable membrane skeleton, resulting in rigid red ellipsoidal cells in camelid species, and suggest that membrane structure is evolutionarily regulated by alternative splicing of exons in the 4.1R gene.


Asunto(s)
Empalme Alternativo , Camélidos del Nuevo Mundo , Forma de la Célula , Proteínas del Citoesqueleto , Eritrocitos , Animales , Humanos , Actinas/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Membranas/metabolismo , Péptidos/metabolismo , Unión Proteica , Espectrina/genética , Espectrina/metabolismo , Forma de la Célula/genética
9.
Cell Physiol Biochem ; 58(3): 226-249, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857359

RESUMEN

BACKGROUND/AIMS: Important benefits of intermittent hypoxic training (IHT) have emerged as an effective tool for enhancing adaptive potential in different pathological states, among which acute hypoxia dominates. Therefore, the aim of our study was to evaluate the mechanisms related to the effects of the nitric oxide system (nitrites, nitrates, carbamide, and total polyamine content) on ADP-stimulated oxygen consumption and oxidative phosphorylation in heart and liver mitochondria and biomarkers of oxidative stress in the blood, heart, and liver of rats exposed to the IHT method and acute hypoxia and treated with the amino acid L-arginine (600 mg/kg, 30 min) or the NO synthase inhibitor L-NNA (35 mg/kg, 30 min) prior to each IHT session. METHODS: We analysed the modulation of the system of oxygen-dependent processes (mitochondrial respiration with the oxygraphic method, microsomal oxidation, and lipoperoxidation processes using biochemical methods) in tissues during IHT in the formation of short-term and long-term effects (30, 60, and 180 days after the last IHT session) with simultaneous administration of L-arginine. In particular, we investigated how mitochondrial functions are modulated during intermittent hypoxia with the use of oxidation substrates (succinate or α-ketoglutarate) in bioenergetic mechanisms of cellular stability and adaptation. RESULTS: The IHT method is associated with a significant increase in the production of endogenous nitric oxide measured by the levels of its stable metabolite, nitrite anion, in both plasma (almost 7-fold) and erythrocytes (more than 7-fold) of rats. The intensification of nitric oxide-dependent pathways of metabolic transformations in the energy supply processes in the heart and liver, accompanied by oscillatory mechanisms of adaptation in the interval mode, causes a probable decrease in the production of urea and polyamines in plasma and liver, but not in erythrocytes. The administration of L-arginine prior to the IHT sessions increased the level of the nitrite-reducing component of the nitric oxide cycle, which persisted for up to 180 days of the experiment. CONCLUSION: Thus, the efficacy of IHT and its nitrite-dependent component shown in this study is associated with the formation of long-term adaptive responses by preventing the intensification of lipoperoxidation processes in tissues due to pronounced changes in the main enzymes of antioxidant defence and stabilisation of erythrocyte membranes, which has a pronounced protective effect on the system of regulation of oxygen-dependent processes as a whole.


Asunto(s)
Arginina , Hipoxia , Consumo de Oxígeno , Ratas Wistar , Animales , Masculino , Hipoxia/metabolismo , Ratas , Arginina/farmacología , Arginina/análogos & derivados , Arginina/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Adaptación Fisiológica , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Nitritos/metabolismo
10.
Chembiochem ; 25(3): e202300597, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984465

RESUMEN

Solute translocation by membrane transport proteins is a vital biological process that can be tracked, on the sub-second timescale, using nuclear magnetic resonance (NMR). Fluorinated substrate analogues facilitate such studies because of high sensitivity of 19 F NMR and absence of background signals. Accurate extraction of translocation rate constants requires precise quantification of NMR signal intensities. This becomes complicated in the presence of J-couplings, cross-correlations, and nuclear Overhauser effects (NOE) that alter signal integrals through mechanisms unrelated to translocation. Geminal difluorinated motifs introduce strong and hard-to-quantify contributions from non-exchange effects, the nuanced nature of which makes them hard to integrate into data analysis methodologies. With analytical expressions not being available, numerical least squares fitting of theoretical models to 2D spectra emerges as the preferred quantification approach. For large spin systems with simultaneous coherent evolution, cross-relaxation, cross-correlation, conformational exchange, and membrane translocation between compartments with different viscosities, the only available simulation framework is Spinach. In this study, we demonstrate GLUT-1 dependent membrane transport of two model sugars featuring CF2 and CF2 CF2 fluorination motifs, with precise determination of translocation rate constants enabled by numerical fitting of 2D EXSY spectra. For spin systems and kinetic networks of this complexity, this was not previously tractable.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Conformación Molecular , Simulación por Computador
11.
Blood Cells Mol Dis ; 105: 102821, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38218172

RESUMEN

Dyslipidemia is frequently observed in polycystic ovarian syndrome (PCOS). Changes in plasma lipid levels potentially alter erythrocyte membrane lipid composition due to lack of inbuilt lipid synthesis machinery. Therefore, development of morphologically altered erythrocytes in PCOS patients with dyslipidemia is expected. However, this has not been established so far. So, we took this opportunity to explore the morphological alterations among dyslipidemic PCO women. We recruited thirty-five dyslipidemic PCOS women (satisfying Rotterdam criteria, without medication) and twenty-five age-matched healthy controls. Scanning electron microscopy revealed a significant increase in the number of stomatocytes, acanthocytes, and echinocytes in the PCO group. PCO group showed a considerable decrease in plasma antioxidant levels. Elevated lipid peroxidation, protein carbonylation, and decreased free thiol group in erythrocyte membrane in PCOS suggest oxidative degradation of the erythrocyte membrane. Elevated intracellular ROS levels, increased methemoglobin formation, and a decrease in NADPH methemoglobin reductase in PCOS also indicate altered physicochemical property of hemoglobin due to oxidative overload. Additionally, these patients exhibit a rise in erythrocyte membrane cholesterol and triglyceride, which promotes the membrane to become less fluidic and less fragile. Thus, these results corroborate a potential role in altering erythrocyte morphology among dyslipidemic PCO women.


Asunto(s)
Dislipidemias , Síndrome del Ovario Poliquístico , Humanos , Femenino , Triglicéridos , Antioxidantes , Eritrocitos , Dislipidemias/complicaciones
12.
Annu Rev Nutr ; 43: 101-122, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37603429

RESUMEN

Riboflavin, in its cofactor forms flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), plays fundamental roles in energy metabolism, cellular antioxidant potential, and metabolic interactions with other micronutrients, including iron, vitamin B6, and folate. Severe riboflavin deficiency, largely confined to low-income countries, clinically manifests as cheilosis, angular stomatitis, glossitis, seborrheic dermatitis, and severe anemia with erythroid hypoplasia. Subclinical deficiency may be much more widespread, including in high-income countries, but typically goes undetected because riboflavin biomarkers are rarely measured in human studies. There are adverse health consequences of low and deficient riboflavin status throughout the life cycle, including anemia and hypertension, that could contribute substantially to the global burden of disease. This review considers the available evidence on causes, detection, and consequences of riboflavin deficiency, ranging from clinical deficiency signs to manifestations associated with less severe deficiency, and the related research, public health, and policy priorities.


Asunto(s)
Enfermedades de los Labios , Deficiencia de Riboflavina , Humanos , Deficiencia de Riboflavina/complicaciones , Riboflavina , Causalidad , Antioxidantes , Trastornos de Fallo de la Médula Ósea , Progresión de la Enfermedad
13.
Osteoarthritis Cartilage ; 32(8): 938-949, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782253

RESUMEN

OBJECTIVE: Traumatic meniscal injuries can cause acute pain, hemarthrosis (bleeding into the joint), joint immobility, and post-traumatic osteoarthritis (PTOA). However, the exact mechanism(s) by which PTOA develops following meniscal injuries is unknown. Since meniscus tears commonly coincide with hemarthrosis, investigating the direct effects of blood and its constituents on meniscus tissue is warranted. The goal of this study was to determine the direct effects of blood and blood components on meniscus tissue catabolism. METHODS: Porcine meniscus explants or primary meniscus cells were exposed to whole blood or various fractions of blood for 3 days to simulate blood exposure following injury. Explants were then washed and cultured for an additional 3 days prior to collection for biochemical analyses. RESULTS: Whole blood increased matrix metalloproteinase (MMP) activity. Fractionation experiments revealed blood-derived red blood cells did not affect meniscus catabolism. Conversely, viable mononuclear leukocytes induced MMP activity, nitric oxide (NO) production, and loss of tissue sulfated glycosaminoglycan (sGAG) content, suggesting that these cells are mediating meniscus catabolism. CONCLUSIONS: These findings highlight the potential challenges of meniscus healing in the presence of hemarthrosis and the need for further research to elucidate the in vivo effects of blood and blood-derived mononuclear leukocytes due to both hemarthrosis and blood-derived therapeutics.


Asunto(s)
Leucocitos Mononucleares , Meniscos Tibiales , Animales , Porcinos , Leucocitos Mononucleares/metabolismo , Meniscos Tibiales/metabolismo , Óxido Nítrico/metabolismo , Lesiones de Menisco Tibial/metabolismo , Glicosaminoglicanos/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Células Cultivadas , Menisco/metabolismo , Sangre/metabolismo
14.
Stem Cells ; 41(1): 93-104, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36368017

RESUMEN

While supplemental angiopoietin-1 (Ang1) improves hematopoiesis, excessive Ang1 induces bone marrow (BM) impairment, hematopoietic stem cell (HSC) senescence, and erythropoietic defect. Here, we examined how excessive Ang1 disturbs hematopoiesis and explored whether hematopoietic defects were related to its level using K14-Cre;c-Ang1 and Col2.3-Cre;c-Ang1 transgenic mice that systemically and locally overexpress cartilage oligomeric matrix protein-Ang1, respectively. We also investigated the impacts of Tie2 inhibitor and AMD3100 on hematopoietic development. Transgenic mice exhibited excessive angiogenic phenotypes, but K14-Cre;c-Ang1 mice showed more severe defects in growth and life span with higher presence of Ang1 compared with Col2.3-Cre;c-Ang1 mice. Dissimilar to K14-Cre;c-Ang1 mice, Col2.3-Cre;c-Ang1 mice did not show impaired BM retention or senescence of HSCs, erythropoietic defect, or disruption of the stromal cell-derived factor 1 (SDF-1)/CXCR4 axis. However, these mice exhibited a defect in platelet production depending on the expression of Tie2 and globin transcription factor 1 (GATA-1), but not GATA-2, in megakaryocyte progenitor (MP) cells. Treatment with Tie2 inhibitor recovered GATA-1 expression in MP cells and platelet production without changes in circulating RBC in transgenic mice. Consecutive AMD3100 administration not only induced irrecoverable senescence of HSCs but also suppressed formation of RBC, but not platelets, via correlated decreases in number of erythroblasts and their GATA-1 expression in B6 mice. Our results indicate that genetic overexpression of Ang1 impairs hematopoietic development depending on its level, in which megakaryopoiesis is preferentially impaired via activation of Ang1/Tie2 signaling, whereas erythropoietic defect is orchestrated by HSC senescence, inflammation, and disruption of the SDF-1/CXCR4 axis.


Asunto(s)
Anemia , Trombocitopenia , Ratones , Animales , Proteína de la Matriz Oligomérica del Cartílago/genética , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Ratones Transgénicos , Anemia/genética , Receptor TIE-2/genética , Receptor TIE-2/metabolismo
15.
Cytotherapy ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39001769

RESUMEN

BACKGROUND AIMS: Ex vivo production of red blood cells (RBCs) represents a promising alternative for transfusion medicine. Several strategies have been described to generate erythroid cell lines from different sources, including embryonic, induced pluripotent, and hematopoietic stem cells. All these approaches have in common that they require elaborate differentiation cultures whereas the yield of enucleated RBCs is inefficient. METHODS: We generated a human immortalized adult erythroid progenitor cell line derived from bone marrow CD71-positive erythroid progenitor cells (immortalized bone marrow erythroid progenitor adult, or imBMEP-A) by an inducible expression system, to shorten differentiation culture necessary for terminal erythroid differentiation. It is the first erythroid cell line that is generated from direct reticulocyte progenitors and demonstrates robust hemoglobin production in the immortalized state. RESULTS: Morphologic analysis of the immortalized cells showed that the preferred cell type of the imBMEP-A line corresponds to hemoglobin-producing basophilic erythroblasts. In addition, we were able to generate a stable cell line from a single cell clone with the triple knockout of RhAG, RhDCE and KELL. After removal of doxycycline, part of the cells differentiated into normoblasts and reticulocytes within 5-7 days. CONCLUSIONS: Our results demonstrate that the imBMEP-A cell line can serve as a stable and straightforward modifiable platform for RBC engineering in the future.

16.
FASEB J ; 37(3): e22766, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36734850

RESUMEN

Understanding mitochondrial biology and pathology is key to understanding the evolution of animal form and function. However, mitochondrial measurement often involves invasive, or even terminal, sampling, which can be difficult to reconcile in wild models or longitudinal studies. Non-mammal vertebrates contain mitochondria in their red blood cells, which can be exploited for minimally invasive mitochondrial measurement. Several recent bird studies have measured mitochondrial function using isolated blood cells. Isolation adds time in the laboratory and might be associated with physiological complications. We developed and validated a protocol to measure mitochondrial respiration in bird whole blood. Endogenous respiration was comparable between isolated blood cells and whole blood. However, respiration towards oxidative phosphorylation was higher in whole blood, and whole blood mitochondria were better coupled and had higher maximum working capacity. Whole blood measurement was also more reproducible than measurement on isolated cells for all traits considered. Measurements were feasible over a 10-fold range of sample volumes, although both small and large volumes were associated with changes to respiratory traits. The protocol was compatible with long-term storage: after 24 h at 5°C without agitation, all respiration traits but maximum working capacity remained unchanged, the latter decreasing by 14%. Our study suggests that whole blood measurement provides faster, more reproducible, and more biologically and physiologically relevant (mitochondrial integrity) assessment of mitochondrial respiration. We recommend future studies to take a whole blood approach unless specific circumstances require the use of isolated blood cells.


Asunto(s)
Respiración de la Célula , Mitocondrias , Animales , Mitocondrias/metabolismo , Respiración , Aves , Células Sanguíneas
17.
Transfusion ; 64(2): 301-314, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38149691

RESUMEN

BACKGROUND: Evidence for the management of moderate-to-severe postpartum anemia is limited. A randomized trial is needed; recruitment may be challenging. STUDY DESIGN AND METHODS: Randomized pilot trial with feasibility surveys. INCLUSION: hemoglobin 65-79 g/L, ≤7 days of birth, hemodynamically stable. EXCLUSION: ongoing heavy bleeding; already received, or contraindication to intravenous (IV)-iron or red blood cell transfusion (RBC-T). Intervention/control: IV-iron; RBC-T; or IV-iron and RBC-T. PRIMARY OUTCOME: number of recruits; proportion of those approached; proportion considered potentially eligible. SECONDARY OUTCOMES: fatigue, depression, baby-feeding, and hemoglobin at 1, 6 and 12 weeks; ferritin at 6 and 12 weeks. Surveys explored attitudes to trial participation. RESULTS: Over 16 weeks and three sites, 26/34 (76%) women approached consented to trial participation, including eight (31%) Maori women. Of those potentially eligible, 26/167 (15.6%) consented to participate. Key participation enablers were altruism and study relevance. For clinicians and stakeholders the availability of research assistance was the key barrier/enabler. Between-group rates of fatigue and depression were similar. Although underpowered to address secondary outcomes, IV-iron and RBC-T compared with RBC-T were associated with higher hemoglobin concentrations at 6 (mean difference [MD] 11.7 g/L, 95% confidence interval [CI] 2.7-20.7) and 12 (MD 12.8 g/L, 95% CI 1.5-24.2) weeks, and higher ferritin concentrations at 6 weeks (MD 136.8 mcg/L, 95% CI 76.6-196.9). DISCUSSION: Willingness to participate supports feasibility for a future trial assessing the effectiveness of IV-iron and RBC-T for postpartum anemia. Dedicated research assistance will be critical to the success of an appropriately powered trial including women-centered outcomes.


Asunto(s)
Anemia , Transfusión de Eritrocitos , Hematínicos , Periodo Posparto , Femenino , Humanos , Anemia/terapia , Fatiga/etiología , Estudios de Factibilidad , Compuestos Férricos , Ferritinas , Hematínicos/uso terapéutico , Hemoglobinas , Hierro/uso terapéutico , Proyectos Piloto
18.
Amino Acids ; 56(1): 4, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300362

RESUMEN

This study investigated the effect of high-intensity interval exercise on total and individual amino acid concentrations in red blood cells (RBCs) and plasma. Seven males (31 ± 13 yr) provided venous blood samples at rest, immediately and 15 min and 30 min following an 8-min high-intensity exercise bout. The exercise bout was 16 × 15 s cycle efforts at 0.4N/kg of body mass and 90 rpm, interspersed with 15 s passive recovery. Total and individual amino acid concentrations of RBC and plasma and blood cell parameters were analysed. No significant differences for total amino acid concentrations between RBC and plasma were found. Individual amino acid analyses showed significant interaction effects for alanine and α-aminoadipic acid (P < 0.05), with plasma alanine significantly increased from baseline across the recovery period (P < 0.001). Blood fraction (group) effects showed greater concentrations of glycine, serine, asparagine, aspartic acid, glutamic acid, α-aminoadipic acid and ornithine in RBC, while greater concentrations of alanine, α-aminobutyric acid, valine, leucine, isoleucine, threonine, proline, phenylalanine, glutamine, tryptophan and cystine were found in plasma (P < 0.05). Comparable levels of histidine, lysine and tyrosine were observed between blood fractions. Significant differences in the variation of total amino acids in RBC were reported with higher variance at rest compared to following exercise (P = 0.01). Haemoglobin, pack cell volume and white blood cell count significantly increased immediately following exercise (P < 0.05) but returned to baseline after 15 min recovery. These results support the notion of individualised amino acid transportation roles for RBC and plasma during exercise.


Asunto(s)
Aminoácidos , Eritrocitos , Masculino , Humanos , Plasma , Alanina , Ácido Glutámico
19.
Biotechnol Bioeng ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973124

RESUMEN

Fast diagnostic methods are crucial to reduce the burden on healthcare systems. Currently, detection of diabetes complications such as neuropathy requires time-consuming approaches to observe the correlated red blood cells (RBCs) morphological changes. To tackle this issue, an optical analysis of RBCs in air was conducted in the 250-2500 nm range. The distinct oscillations present in the scattered and direct transmittance spectra have been analyzed with both Mie theory and anomalous diffraction approximation. The results provide information about the swelling at the ends of RBCs and directly relate the optical data to RBCs morphology and deformability. Both models agree on a reduction in the size and deformability of RBCs in diabetic patients, thus opening the way to diabetes diagnosis and disease progression assessment.

20.
Mol Cell Biochem ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427167

RESUMEN

Necroptosis is considered a programmed necrosis that requires receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and pore-forming mixed lineage kinase domain-like protein (MLKL) to trigger a regulated cell membrane lysis. Membrane rupture in necroptosis has been shown to fuel innate immune response due to release of damage-associated molecular patterns (DAMPs). Recently published studies indicate that mature erythrocytes can undergo necroptosis as well. In this review, we provide an outline of multiple cell death modes occurring in erythrocytes, discuss possible immunological aspects of diverse erythrocyte cell deaths, summarize available evidence related to the ability of erythrocytes to undergo necroptosis, outline key involved molecular mechanisms, and discuss the potential implication of erythrocyte necroptosis in the physiology and pathophysiology. Furthermore, we aim to highlight the interplay between necroptosis and eryptosis signaling in erythrocytes, emphasizing specific characteristics of these pathways distinct from their counterparts in nucleated cells. Thus, our review provides a comprehensive summary of the current knowledge of necroptosis in erythrocytes. To reflect critical differences between necroptosis of nucleated cells and necroptosis of erythrocytes, we suggest a term erythronecroptosis for necroptosis of enucleated cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA