Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 182: 106283, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35662629

RESUMEN

In the context of inflammation and immunity, there are fragmented and observational studies relating to the pharmacological activity of Mangifera indica L. and its main active component, mangiferin. Therefore, we aimed to analyze the potential beneficial effects of this plant extract (MIE, 90 % in mangiferin) in a mouse model of gouty arthritis, to allow the evaluation of cellular immune phenotypes and the biochemical mechanism/s beyond MIE activity. Gouty arthritis was induced by the intra-articular administration of MSU crystals (200 µg 20 µl-1), whereas MIE (0.1-10 mg kg-1) or corresponding vehicle (DMSO/saline 1:3) were orally administrated concomitantly with MSU (time 0), 6 and 12 h after the stimulus. Thereafter, knee joint score and oedema were evaluated in addition to western blot analysis for COX-2/mPGES-1 axis. Moreover, the analysis of pro/anti-inflammatory cyto-chemokines coupled with the phenotyping of the cellular infiltrate was performed. Treatment with MIE revealed a dose-dependent reduction in joint inflammatory scores with maximal inhibition observed at 10 mg kg-1. MIE significantly reduced leukocyte infiltration and activation and the expression of different pro-inflammatory cyto-chemokines in inflamed tissues. Furthermore, biochemical analysis revealed that MIE modulated COX-2/mPGES-1 and mPGDS-1/PPARγ pathways. Flow cytometry analysis also highlighted a prominent modulation of inflammatory monocytes (CD11b+/CD115+/LY6Chi), and Treg cells (CD4+/CD25+/FOXP3+) after MIE treatment. Collectively, the results of this study demonstrate a novel function of MIE to positively affect the local and systemic inflammatory/immunological perturbance in the onset and progression of gouty arthritis.


Asunto(s)
Artritis Gotosa , Mangifera , Extractos Vegetales , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Ciclooxigenasa 2/metabolismo , Mangifera/química , Ratones , Extractos Vegetales/farmacología , Linfocitos T Reguladores , Células Th17
2.
Pharmacol Res ; 148: 104400, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31425749

RESUMEN

Validation of a small molecular compound targeting the oncogenic pathways is the primary approach for the development of the anti-cancer drugs. In the present study, we employed the computational mimic drug targets prediction software to foresee the molecular targets of a series of spirooxindole-pyrrolizidine derivatives, which were synthesized by our laboratory viatargeted combinational chemistry. We found that CPHSP, a novel spirooxindole-pyrrolizidine derivative, can target the MDM2/p53 signaling that is essential for the tumorigenesis of hepatocellular carcinoma (HCC). To validate its anti-tumoral function, we firstly established the soluble receipt of CPHSP through 2-hydroxypropyl-ß-cyclodextrin (HBC) loading and showed that oral administration of HBC-loaded CPHSP significantly inhibited the tumor growth and prolonged the survival time of tumor-bearing mice in the subcutaneously human hepatoma cells-xenografted nude mouse model of HCC. Immunohistochemistry staining showed that HBC-loaded CPHSP treatment suppressed the proliferation and induced apoptosis of tumor cells in this model. Our mechanistic studies showed that CPHSP treatment inhibited MDM2 protein expression and up-regulated p53 activity and activated MKK4/MKK7/JNK1/2/C-Jun signaling pathway, which resulted in cell cycle arrest and apoptosis of HepG2 cells in vitro. Moreover, we showed that JNK1/2 activation could also up-regulate p53 expression in CPHSP-treated HepG2 cells. Finally, we documented the antitumor activities of oral administration of the HBC-loaded CPHSP in the ML-1 bearing orthotopic mouse model. In summary, this study suggests that oral administration of HBC-loaded CPHSP is a safe and effective treatment for HCC, of which the clinical potency for patients with HCC warrants further studies.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antineoplásicos , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Células HCT116 , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Food Microbiol ; 70: 76-84, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29173643

RESUMEN

In the beverage fermentation industry, especially at the craft or micro level, there is a movement to incorporate as many local ingredients as possible to both capture terroir and stimulate local economies. In the case of craft beer, this has traditionally only encompassed locally sourced barley, hops, and other agricultural adjuncts. The identification and use of novel yeasts in brewing lags behind. We sought to bridge this gap by bio-prospecting for wild yeasts, with a focus on the American Midwest. We isolated 284 different strains from 54 species of yeast and have begun to determine their fermentation characteristics. During this work, we found several isolates of five species that produce lactic acid and ethanol during wort fermentation: Hanseniaspora vineae, Lachancea fermentati, Lachancea thermotolerans, Schizosaccharomyces japonicus, and Wickerhamomyces anomalus. Tested representatives of these species yielded excellent attenuation, lactic acid production, and sensory characteristics, positioning them as viable alternatives to lactic acid bacteria (LAB) for the production of sour beers. Indeed, we suggest a new LAB-free paradigm for sour beer production that we term "primary souring" because the lactic acid production and resultant pH decrease occurs during primary fermentation, as opposed to kettle souring or souring via mixed culture fermentation.


Asunto(s)
Cerveza/análisis , Microbiología de Alimentos/métodos , Ácido Láctico/metabolismo , Levaduras/metabolismo , Cerveza/microbiología , Etanol/análisis , Etanol/metabolismo , Fermentación , Humanos , Ácido Láctico/análisis , Gusto , Levaduras/clasificación , Levaduras/genética
4.
Microb Pathog ; 111: 156-162, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28867627

RESUMEN

Organic acids are known to be used as food preservatives due to their antimicrobial potential. This study evaluated the ability of three organic acids, namely, acetic acid, citric acid and lactic acid to manage E. coli and Salmonella sp. from fresh fruits and vegetables. Effect of these organic acids on biofilm forming ability and anti-quorum potential was also investigated. The effect of organic acids on inactivation of E. coli and Salmonella sp. on the surface of a selected vegetable (cucumber) was determined. The minimum inhibitory concentration of the organic acids were found to be 1.5, 2 and 0.2% in E. coli while it was observed to be 1, 1.5 and 1% in Salmonella sp. for acetic, citric and lactic acids respectively. Maximum inhibition of biofilm formation was recorded at 39.13% with lactic acid in E. coli and a minimum of 22.53% with citric acid in Salmonella sp. EPS production was affected in E. coli with lactic acid showing reduction by 13.42% while citric acid and acetic acid exhibited only 6.25% and 10.89% respectively. Swimming and swarming patterns in E. coli was notably affected by both acetic and lactic acids. Lactic and acetic acids showed higher anti-quorum sensing (QS) potential when compared to citric acid. 2% lactic acid showed a maximum inhibition of violacein production by 37.7%. Organic acids can therefore be used as potential quorum quenching agents in food industry. 2% lactic acid treatment on cucumber demonstrated that it was effective in inactivating E. coli and Salmonella sp. There was 1 log reduction in microbial count over a period of 6 days after the lactic acid treatment. Thus, organic acids can act as effective potential sanitizers in reducing the microbial load associated with fresh fruits and vegetables.


Asunto(s)
Ácidos/farmacología , Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Microbiología de Alimentos , Conservación de Alimentos/métodos , Frutas/microbiología , Verduras/microbiología , Ácido Acético/farmacología , Ácido Cítrico/farmacología , Escherichia coli/efectos de los fármacos , Conservantes de Alimentos , Ácido Láctico/farmacología , Pruebas de Sensibilidad Microbiana , Salmonella/efectos de los fármacos
5.
Regul Toxicol Pharmacol ; 86: 128-136, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28257851

RESUMEN

Humans are cumulatively exposed to acetaldehyde from various sources including alcoholic beverages, tobacco smoke, foods and beverages. The genetic-epidemiologic and biochemical evidence in ALDH2-deficient humans provides strong evidence for the causal relationship between acetaldehyde-exposure due to alcohol consumption and cancer of the upper digestive tract. The risk assessment has so far relied on thresholds based on animal toxicology with lower one-sided confidence limit of the benchmark dose values (BMDL) typically ranging between 11 and 63 mg/kg bodyweight (bw)/day dependent on species and endpoint. The animal data is problematic for regulatory toxicology for various reasons (lack in study quality, problems in animal models and appropriateness of endpoints - especially cancer - for transfer to humans). In this study, data from genetic epidemiologic and biochemical studies are reviewed. The increase in the daily exposure dose to acetaldehyde in alcohol-consuming ALDH2-deficients vs. ALDH2-actives was about twofold. The acetaldehyde increase due to ALDH2 inactivity was calculated to be 6.7 µg/kg bw/day for heavy drinkers, which is associated with odds ratios of up to 7 for head and neck as well as oesophageal cancer. Previous animal toxicology based risk assessments may have underestimated the risk of acetaldehyde. Risk assessments of acetaldehyde need to be revised using this updated evidence.


Asunto(s)
Acetaldehído/toxicidad , Consumo de Bebidas Alcohólicas , Aldehído Deshidrogenasa Mitocondrial/deficiencia , Carcinógenos/toxicidad , Animales , Etanol , Humanos , Saliva
6.
Ecotoxicol Environ Saf ; 144: 115-122, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28605645

RESUMEN

Rotifers have been used in biological research as well-characterized models of aging. Their multi-organ characters and their sensitivity for chemicals and environmental changes make them useful as in vivo toxicological and lifespan models. Our aim was to create a bdelloid rotifer model to use in high-throughput viability and non-invasive assays. In order to identify our species Philodina acuticornis odiosa (PA), 18S rDNA-based phylogenetic analysis was carried out and their species-specific morphological markers identified. To execute the rotifer-based experiments, we developed an oil-covered water-drop methodology adapted from human in vitro fertilization techniques. This enables toxicological observations of individual one-housed rotifers in a closed and controllable micro-environment for up to several weeks. Hydrogen peroxide (H2O2) and sodium azide (NaN3) exposures were used as well-understood toxins. The toxicity and survival lifespan (TSL), the bright light disturbance (BLD) the mastax contraction frequency (MCF) and the cellular reduction capacity (CRC), indices were recorded. These newly developed assays were used to test the effects of lethal and sublethal doses of the toxins. The results showed the expected dose-dependent decrease in indices. These four different assays can either be used independently or as an integrated system for studying rotifers. These new indices render the PA invertebrate rotifer model a quantitative system for measuring viability, toxicity and lifespan (with TSL), systemic reaction capacity (with BLD), organic functionality (with MCF) and reductive capability of rotifers (with CRC), in vivo. This novel multi-level system is a reliable, sensitive and replicable screening tool with potential application in pharmaceutical science.


Asunto(s)
Monitoreo del Ambiente/métodos , Peróxido de Hidrógeno/toxicidad , Rotíferos/efectos de los fármacos , Azida Sódica/toxicidad , Animales , Bioensayo , Ensayos Analíticos de Alto Rendimiento , Humanos , Filogenia , ARN Ribosómico 18S/genética , Rotíferos/genética , Sensibilidad y Especificidad , Especificidad de la Especie , Análisis de Supervivencia
7.
Pharmacol Res ; 105: 1-12, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26776965

RESUMEN

The present study was conducted to investigate the protective effect of betulin, a triterpene from the bark of Betula platyphylla Suk, against ethanol-induced alcoholic liver injury and its possible underlying mechanisms. In vitro, human hepatic stellate cell line, LX-2 cells were treated with betulin (6.25, 12.5 and 25 µM) prior to ethanol (50mM) for 24h. Cell viability was analyzed by methyl thiazolyl tetrazolium assay, protein expressions were assessed by Western blot. In vivo, we induced alcoholic liver injury in male C57BL/6 mice, placing them on Lieber-DeCarli ethanol-containing diets for 10 days and then administering a single dose of ethanol (5 g/kg body weight) via gavage. Betulin (20 and 50mg/kg) were given by gavage every day. In vitro results showed that betulin effectively decreased LX-2 cell viability, attenuated collagen-I, α-smooth muscle actin (α-SMA) levels, activated liver kinase B-1 (LKB1) and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. Betulin suppressed the expression of sterol regulatory element-binding protein-1 (SREBP-1), and genetic deletion of AMPK blocked the effect of betulin on SREBP-1 in ethanol treated LX-2 cells. In vivo, betulin attenuated the increases in serum aminotransferase and triglyceride levels in the mice fed with chronic-binge ethanol, while significantly inhibited SREBP-1 expression and activated LKB1-AMPK phosphorylation. Additionally, betulin enhanced the sirtuin 1 (SIRT1) expression mediated by ethanol. Taken together, betulin alleviates alcoholic liver injury possibly through blocking the regulation of SREBP-1 on fatty acid synthesis and activating SIRT1-LKB1-AMPK signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Hígado/efectos de los fármacos , Sirtuina 1/metabolismo , Triterpenos/uso terapéutico , Animales , Betula/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Etanol/efectos adversos , Humanos , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
8.
Food Microbiol ; 57: 151-8, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27052714

RESUMEN

During beer fermentation, the brewer's yeast Saccharomyces cerevisiae experiences a variety of shifting growth conditions, culminating in a low-oxygen, low-nutrient, high-ethanol, acidic environment. In beers that are bottle conditioned (i.e., carbonated in the bottle by supplying yeast with a small amount of sugar to metabolize into CO2), the S. cerevisiae cells must overcome these stressors to perform the ultimate act in beer production. However, medium shock caused by any of these variables can slow, stall, or even kill the yeast, resulting in production delays and economic losses. Here, we describe a medium shock caused by high lactic acid levels in an American sour beer, which we refer to as "terminal acidic shock". Yeast exposed to this shock failed to bottle condition the beer, though they remained viable. The effects of low pH/high [lactic acid] conditions on the growth of six different brewing strains of S. cerevisiae were characterized, and we developed a method to adapt the yeast to growth in acidic beer, enabling proper bottle conditioning. Our findings will aid in the production of sour-style beers, a trending category in the American craft beer scene.


Asunto(s)
Cerveza/microbiología , Ácido Láctico/metabolismo , Saccharomyces cerevisiae/metabolismo , Cerveza/análisis , Etanol/análisis , Etanol/metabolismo , Fermentación , Humanos , Ácido Láctico/análisis , Saccharomyces cerevisiae/crecimiento & desarrollo , Gusto
9.
Food Microbiol ; 57: 1-7, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27052695

RESUMEN

Penicillium camemberti is a technologically relevant fungus used to manufacture mold-ripened cheeses. This fungal species produces many volatile organic compounds (VOCs) including ammonia, methyl-ketones, alcohols and esters. Although it is now well known that VOCs can act as signaling molecules, nothing is known about their involvement in P. camemberti lifecycle. In this study, spore germination was shown to be self-regulated by quorum sensing in P. camemberti. This phenomenon, also called "crowding effect", is population-dependent (i.e. observed at high population densities). After determining the volatile nature of the compounds involved in this process, 1-octanol was identified as the main compound produced at high-spore density using GC-MS. Its inhibitory effect was confirmed in vitro and 3 mM 1-octanol totally inhibited spore germination while 100 µM only transiently inhibited spore germination. This is the first time that self-inhibition of spore germination is demonstrated in P. camemberti. The obtained results provide interesting perspectives for better control of mold-ripened cheese processes.


Asunto(s)
1-Octanol/metabolismo , Antifúngicos/metabolismo , Penicillium/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , 1-Octanol/análisis , Antifúngicos/análisis , Queso/microbiología , Cromatografía de Gases y Espectrometría de Masas , Penicillium/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo
10.
Food Chem X ; 24: 101842, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-39377084

RESUMEN

In this study, zein-pectin nanoparticles loaded with Wampee [Clausena lansium (Lour.) Skeels] (WEO) were developed. The particle size of the nanoparticles is 515.9 nm, polydispersity index is 0.4 and zeta potential is -39.3 mV. Subsequently, the ZWP was incorporated into sodium alginate (SA)-based film (ZWP-S). The films were then analyzed to determine their physical properties and thermal stability, and also to examine their microstructure and intermolecular forces using SEM, FTIR, and XRD techniques. Additionally, the films were evaluated for their antimicrobial and antioxidant activity, as well as their ability to sustain the release of WEO. Overall, the ZWP-S film conferred excellent functional properties, including UV barrier performance, mechanical properties (21 % increase in tensile strength), water sensitivity, stability, more compact structure, high antioxidant activity and long-lasting antimicrobial activity, surpassing those of the control film. Consequently, it was applied as a novel coating for preserving strawberries, rotting rate of strawberries was reduced by 43 % at 6d, yielding promising results in prolonging the freshness of the fruit.

11.
Biomed Pharmacother ; 178: 117120, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39024836

RESUMEN

Linalool-rich Rosewood oil (Aniba rosaeodora Ducke) is a natural compound widely used in perfumery industry. Evidence suggests that linalool exerts antidepressant and anxiolytic effects. Conversely, ethanol binge drinking (i.e., intermittent and episodic consumption) during adolescence elicits neurobehavioral alterations associated with brain damage. Here, we investigated whether linalool-rich Rosewood oil administration can improve the emotional and molecular impairments associated with ethanol binge-like exposure during adolescence in female rats. Rosewood oil was obtained by hydrodistillation and posteriorly analyzed. Adolescent female Wistar rats received four-cycles of ethanol binge-like pattern (3 g/kg/day, 3 days on/4 days off) and daily Rosewood oil (35 mg/kg, intranasally) for 28 days. Twenty-four hours after treatments, it was evaluated the impact of ethanol exposure and Rosewood oil treatment on the putative emotional impairments assessed on the splash and forced swimming tests, as well as the levels of brain-derived neurotrophic factor (BDNF), S100B, oxidative parameters, and inflammatory cytokines in prefrontal cortex and hippocampus. Results indicated that Rosewood oil intranasal administration mitigated emotional impairments induced by ethanol exposure accompanied by a marked increase in BDNF, S100B, glutathione (GSH), and antioxidant activity equivalent to Trolox (TEAC) levels in brain areas. Rosewood oil treatment also prevented the ethanol-induced increase of interleukin-1ß, interleukin-6, tumor necrosis factor α (TNF-α), and neurofilament light chain (NFL) levels. These findings provide the first evidence that Rosewood oil intranasal administration exerts protective effects against emotional and molecular impairments associated with adolescent ethanol binge-like exposure, possibly due to linalool actions triggering neurotrophic factors, rebalancing antioxidant status, and attenuating proinflammatory process.


Asunto(s)
Monoterpenos Acíclicos , Etanol , Aceites Volátiles , Ratas Wistar , Animales , Femenino , Aceites Volátiles/farmacología , Aceites Volátiles/aislamiento & purificación , Monoterpenos Acíclicos/farmacología , Ratas , Consumo Excesivo de Bebidas Alcohólicas/tratamiento farmacológico , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Emociones/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Citocinas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo
12.
Int J Pharm ; 649: 123634, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38000651

RESUMEN

Supercritical fluid technology (SFT) is an insufficiently investigated approach for the production of solid dispersions, it is environmentally acceptable and has a high potential for application in the pharmaceutical industry. The aim of this work was to formulate and characterize nifedipine solid dispersions (SDs) produced by the SFT and compare the results with ones obtained by the classical solvent based kneading method. The following in vitro tests were conducted: assay and yield, solvent residues, solid state characterization (FTIR, DSC, XRD), flowability, hygroscopicity, solubility, dissolution and stability. Additionally, bioavailability was examined on an animal model (Wistar rats). The formulation selection for in vivo study was performed using the multilevel categoric experimental design and the health risk assessment. Solid state characterization revealed that formulation obtained by the SFT method and higher ratio of polymer (1:5) have had nifedipine in completely amorphous form. Polymer ratio and method of SDs preparation do influence the investigation characteristics. Dissolution rate was fastest in SDs prepared by the SFT and higher polymer ration (1:5). In vivo data of selected SDs prepared by the kneading (ratio 1:1) and the SFT (ratio 1:5) showed alteration in pharmacokinetic profile after i.v. and p.o. application.


Asunto(s)
Nifedipino , Polímeros , Ratas , Animales , Ratas Wistar , Polímeros/química , Solubilidad , Solventes/química , Disponibilidad Biológica , Tecnología , Rastreo Diferencial de Calorimetría
13.
Food Chem X ; 22: 101406, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38707782

RESUMEN

We aimed to explore the effect of salidroside (SAL) on meat quality, antioxidant capacity, and lipid metabolism in broilers. The results demonstrated that SAL significantly reduced the yellowness (b*), shear force, cooking loss, drip loss, MDA, TBARS, and carbonyl content in breast (P < 0.05), while increasing the pH value (P < 0.05), suggesting an improvement in meat quality. SAL lowered the lipid contents in liver and serum (P < 0.05), while increasing the proportion of unsaturated fatty acids in breast (P < 0.05), indicating effective regulation of lipid metabolism by SAL. SAL increased the activity of antioxidant enzymes and the expression of antioxidant genes in both liver and muscle (P < 0.05). Additionally, SAL improved the meat quality and antioxidant capacity of breast subjected to repeated freeze-thaw treatment. SAL may enhance meat quality by improving antioxidative stability and regulating lipid metabolism, potentially serving as a dietary supplement for broilers.

14.
Food Chem ; 440: 138313, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159317

RESUMEN

The physicochemical and foam properties of non-purified water extracts (WE) and purified tea saponins (TS) from Camellia oleifera cake (byproduct) were compared. WE showed different fluid properties at equal saponin concentrations (1.0 wt%) compared to TS. Particularly, it exhibited limited micelle size (average 434.1 nm), effective viscosity (0.15 Pa·s), and surface tension (43.9 mN/m) independently of pH. Moreover, the foam properties of WE were comparable to TS and better than sodium caseinate, especially foam stability. WE foam was more stable than TS foam under pH (3-7) and heating (40-80 °C). In the presence of NaCl, sucrose, and ethanol (5-20 wt%), WE and TS were effective and had similar foam behavior. Low concentrations of sucrose (<10 wt%)/ethanol (<20 wt%) significantly increased the foam capacity, while ethanol over 30 wt% was unfavorable. WE/TS foam contributes significantly to the desired physicochemical and sensory attributes (taste, texture, and appearance) of foods.


Asunto(s)
Camellia , Saponinas , Camellia/química , Saponinas/química , Agua , Etanol , Sacarosa
15.
Carbohydr Polym ; 342: 122401, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048236

RESUMEN

The regeneration of absorbed alveolar bone and reconstruction of periodontal support tissue are huge challenges in the clinical treatment of periodontitis due to the limited regenerative capacity of alveolar bone. It is essential to regulate inflammatory reaction and periodontal cell differentiation. Based on the anti-inflammatory effect of baker's yeast ß-glucan (BYG) with biosafety by targeting macrophages, the BYG-based nanoparticles loading methotrexate (cBPM) were fabricated from polyethylene glycol-grafted BYG through chemical crosslinking for treatment of periodontitis. In our findings, cBPM promoted osteogenesis of human dental pulp stem cells (hDPSCs) under inflammatory microenvironment, characterized by the enhanced expression of osteogenesis-related Runx2 and activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/Erk) pathway in vitro. Animal experiments further demonstrate that cBPM effectively promoted periodontal bone regeneration and achieved in a better effect of recovery indicated by 19.2 % increase in tissue volume, 7.1 % decrease in trabecular separation, and a significant increase in percent bone volume and trabecular thickness, compared with the model group. Additionally, cBPM inhibited inflammation and repaired alveolar bone by transforming macrophage phenotype from inflammatory M1 to anti-inflammatory M2. This work provides an alternative strategy for the clinical treatment of periodontitis through BYG-based delivery nanoplatform of anti-inflammatory drugs.


Asunto(s)
Regeneración Ósea , Pulpa Dental , Metotrexato , Nanopartículas , Osteogénesis , beta-Glucanos , Humanos , Osteogénesis/efectos de los fármacos , Nanopartículas/química , Regeneración Ósea/efectos de los fármacos , beta-Glucanos/farmacología , beta-Glucanos/química , Pulpa Dental/efectos de los fármacos , Pulpa Dental/citología , Animales , Metotrexato/farmacología , Metotrexato/química , Células Madre/efectos de los fármacos , Periodontitis/tratamiento farmacológico , Periodontitis/patología , Masculino , Ratones , Inflamación/tratamiento farmacológico , Portadores de Fármacos/química , Células Cultivadas , Diferenciación Celular/efectos de los fármacos
16.
Food Chem ; 454: 139749, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797104

RESUMEN

Plastic food packaging, with its harmful migration of microplastics and nanoplastics into food, presents significant ecological imbalance and human health risks. In this regard, using food and agricultural byproducts as packaging materials reduces environmental and economic concerns and supports their sustainable management. Herein, cellulosic residue from corncob was employed as a renewable source for developing biodegradable packaging films. It was solubilized in ZnCl2 solution, crosslinked with Ca2+ ions, and plasticized with sorbitol to form films and used to improve the shelf-life of raspberries. The optimized film possesses water vapor permeability, tensile strength, and elongation at break of 1.8(4) x10-10 g-1 s-1 Pa-1, 4.7(1) MPa, and 15.4(7)%, respectively. It displays UV-blocking and antioxidant properties and biodegrades within 29 days at 24% soil moisture. It preserves raspberries for 7 and 5 more days at room temperature and refrigeration conditions, respectively, compared to polystyrene film. Overall, more value addition could be envisioned from agricultural residues to minimize post-harvest losses and food waste through biodegradable packaging, which also aids in mitigating plastic perils.


Asunto(s)
Embalaje de Alimentos , Conservación de Alimentos , Rubus , Embalaje de Alimentos/instrumentación , Rubus/química , Conservación de Alimentos/métodos , Conservación de Alimentos/instrumentación , Permeabilidad , Resistencia a la Tracción , Plásticos Biodegradables/química , Biodegradación Ambiental , Frutas/química , Celulosa/química
17.
Chem Biol Interact ; 402: 111184, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39103028

RESUMEN

Selenium supplements are beneficial to human health, however, concerns regarding the toxicity of inorganic selenium have stimulated research on safer organic compounds. The main objective of this study was to develop a novel glucosamine-selenium compound (Se-GlcN), clarify its structure, and subsequently investigate its oral toxicity and in vitro anti-hepatitis B virus (HBV) activity. Electron microscopy, infrared, ultraviolet spectroscopy, nuclear magnetic resonance and thermogravimetric analyses revealed a unique binding mode of Se-GlcN, with the introduction of the Se-O bond at the C6 position, resulting in the formation of two carboxyl groups. In acute toxicity studies, the median lethal dose (LD50) of Se-GlcN in ICR mice was 92.31 mg/kg body weight (BW), with a 95 % confidence interval of 81.88-104.07 mg/kg BW. A 30-day subchronic toxicity study showed that 46.16 mg/kg BW Se-GlcN caused livers and kidneys damage in mice, whereas doses of 9.23 mg/kg BW and lower were safe for the livers and kidneys. In vitro studies, Se-GlcN at 1.25 µg/mL exhibited good anti-HBV activity, significantly reducing HBsAg, HBeAg, 3.5 kb HBV RNA and total HBV RNA by 45 %, 54 %, 84 %, 87 %, respectively. In conclusion, the Se-GlcN synthesized in this study provides potential possibilities and theoretical references for its use as an organic selenium supplement.


Asunto(s)
Antivirales , Glucosamina , Virus de la Hepatitis B , Ratones Endogámicos ICR , Animales , Virus de la Hepatitis B/efectos de los fármacos , Glucosamina/química , Glucosamina/farmacología , Ratones , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Antivirales/toxicidad , Administración Oral , Masculino , Selenio/química , Selenio/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Humanos , Femenino , Riñón/efectos de los fármacos , Riñón/patología , Células Hep G2 , Antígenos de Superficie de la Hepatitis B/metabolismo
18.
Food Chem X ; 23: 101621, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39071928

RESUMEN

The value of Baijiu is affected by its flavor, age, and adulteration. Therefore, a simple and rapid identification method is crucial for the market. In this study, we present a rapid, non-intrusive identification technique for Baijiu utilizing the Tyndall effect combined with chemometrics analysis. Our experiment begins illuminating Baijiu with a 405 nm wavelength laser and recording the resulting bright light path due to the Tyndall effect. To further analyze the color and brightness information, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Hierarchical Cluster Analysis (HCA), and Multilayer Perceptron (MLP) were employed. This study establishes correlations between the brightness of the Tyndall light path and seven trace flavor compounds in Baijiu. The findings demonstrate that this method effectively identifies the flavor, age cellar, and adulteration of Baijiu and also quantitatively detects the concentrations of flavor compounds. Additionally, an analysis platform was developed to enable the rapid identification of Baijiu.

19.
Food Chem (Oxf) ; 8: 100201, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38577346

RESUMEN

The objective of this study was to develop a DNA-based method for the identification and tracking of edible oils, which is important for health management. Three different DNA extraction methods (CTAB, MBST kit, and manual hexane-based method) were used to obtain high-purity DNA from crude and refined soybean, maize, and canola oils. PCR was then conducted using specific primers to identify the presence of genes related to each oil type and to assess transgenicity. The results showed that DNA was present in crude and refined oils, but in very low amounts. However, using method 3 for DNA extraction provided sufficient quantity and quality of DNA for successful PCR amplification. The study concluded that the main challenge in DNA extraction from oils is the presence of PCR inhibitors, which can be overcome using the manual hexane-based method. Also, the examination of protein presence in the oils using SDS-PAGE did not indicate any protein bands.

20.
Food Chem ; 441: 138258, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38219359

RESUMEN

The purpose of this study was to compare the influences of gamma-poly glutamic acid (γ-PGA) (1, 2, 3, and 4 %) to see which could outperform conventional cryoprotectant mixture (4 % sorbitol + 4 % sucrose) on cooked crayfish properties, such as physicochemical, textural qualities, oxidation reaction, water distributions, and microstructure integrity, during different freeze-thaw cycles. Crayfish quality characteristics improved significantly as γ-PGA concentration increased compared to control samples.Adding γ-PGA 4 % reduced the carbonyl content from 4.20 to 3.00 nmol/ mg protein during fluctuation-1 (F1), and from 4.15 to 2.80 nmol/ mg protein during fluctuation-2 (F2) compared to control samples. Furthermore, it increased the total sulfhydryl content from 4.15 and 4.76 to 6.19 and 6.47 mol/105 g protein during F1 and F2 and after five freeze-thaw cycles (FTC). This suggests that this concentration was more effective at controlling protein changes than other concentrations. γ-PGA generally enhanced the water-holding capacity by preventing protein denaturation and limiting ice crystal recrystallization. As a result, microstructure stability was evident, texture degradation was avoided, and the crayfish's color was preserved.


Asunto(s)
Astacoidea , Ácido Poliglutámico/análogos & derivados , Agua , Animales , Temperatura , Congelación , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA