Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Plant Biochem Biotechnol ; : 1-16, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36685987

RESUMEN

Ginger is an important spice crop with medicinal values and gingerols are the most abundant pungent polyphenols present in ginger, responsible for most of its pharmacological properties. The present study focuses on the molecular mechanism of gingerol biosynthesis in ginger using transcriptome analysis. Suppression Subtractive Hybridization (SSH) was done in leaf and rhizome tissues using high gingerol-producing ginger somaclone B3 as the tester and parent cultivar Maran as the driver and generated high-quality leaf and rhizome Expressed Sequence Tags (ESTs). The Blast2GO annotations of the ESTs revealed the involvement of leaf ESTs in secondary metabolite production, identifying the peroxisomal KAT2 gene (Leaf EST 9) for the high gingerol production in ginger. Rhizome ESTs mostly coded for DNA metabolic processes and differential genes for high gingerol production were not observed in rhizomes. In the qRT-PCR analysis, somaclone B3 had shown high chalcone synthase (CHS: rate-limiting gene in gingerol biosynthetic pathway) activity (0.54 fold) in the leaves of rhizome sprouts. The presence of a high gingerol gene in leaf ESTs and high expression of CHS in leaves presumed that the site of synthesis of gingerols in ginger is the leaves. A modified pathway for gingerol/polyketide backbone formation has been constructed explaining the involvement of KAT gene isoforms KAT2 and KAT5 in gingerol/flavonoid biosynthesis, specifically the KAT2 gene which is otherwise thought to be involved mainly in ß-oxidation. The results of the present investigations have the potential of utilizing KAT/thiolase superfamily enzymes for protein/metabolic pathway engineering in ginger for large-scale production of gingerols. Supplementary Information: The online version contains supplementary material available at 10.1007/s13562-022-00825-x.

2.
Planta ; 255(5): 99, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35386021

RESUMEN

MAIN CONCLUSION: Enhanced levels of endogenous melatonin in the root of wheat, mainly through the OMT1 gene, augment the antioxidant system, reestablish redox homeostasis and are associated with combined stress tolerance. A systems biology approach, including a collection of computational analyses and experimental assays, led us to uncover some aspects of a poorly understood phenomenon, namely wheat (Triticum aestivum L.) combined drought and salinity stress tolerance. Accordingly, a cross-study comparison of stress experiments was performed via a meta-analysis of Expressed Sequence Tags (ESTs) data from wheat roots to uncover the overlapping gene network of drought and salinity stresses. Identified differentially expressed genes were functionally annotated by gene ontology enrichment analysis and gene network analysis. Among those genes, O-methyl transferase 1 (OMT1) was highlighted as a more important (hub) gene in the dual-stress response gene network. Afterwards, the potential roles of OMT1 in mediating physiochemical indicators of stress tolerance were investigated in two wheat genotypes differing in abiotic stress tolerance. Regression analysis and correspondence analysis (CA) confirmed that the expression profiles of the OMT1 gene and variations in melatonin content, antioxidant enzyme activities, proline accumulation, H2O2 and malondialdehyde (MDA) contents are significantly associated with combined stress tolerance. These results reveal that the OMT1 gene may contribute to wheat combined drought and salinity stress tolerance through augmenting the antioxidant system and re-establishing redox homeostasis, probably via the regulation of melatonin biosynthesis as a master regulator molecule. Our findings provide new insights into the roles of melatonin in wheat combined drought and salinity stress tolerance and suggest a novel plausible regulatory node through the OMT1 gene to improve multiple-stress tolerant crops.


Asunto(s)
Sequías , Melatonina , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Melatonina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidad , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Biología de Sistemas , Transferasas/genética , Triticum/fisiología
3.
Mol Biol Rep ; 49(12): 11409-11419, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35960411

RESUMEN

BACKGROUND: Considerable production losses are caused by heat and drought stress in okra. Germplasm evaluation at genetic level is essential for the selection of promising genotypes. Lack of genomic information of okra limits the use of genetic markers. However, syntenic markers of some related family could be used for molecular characterization of major economic traits. METHODS AND RESULTS: Herein, 56 okra genotypes were evaluated for drought and heat tolerance. Sixty-one expressed sequence tags (ESTs) identified for heat and drought tolerance in cotton were searched from literature surveys and databases. The identified ESTs were BLAST searched into okra unigene database. Primers of selected okra unigenes were synthesized and amplified in all genotypes using standard polymerase chain reaction (PCR) protocol. Marker trait association (MTA) of the syntenic unigenes were identified between genotypic and phenotypic data on the basis of linkage disequilibrium Functional syntenic analysis revealed that out of these 61 cotton ESTs 55 had functional homology with okra unigenes. These 55 unigenes were used as markers for further analysis (amplification). Okra genotypes showed significance variations for all the physo-morphological parameters under heat and drought stress. Genotypes Perbhani Karanti, IQRA-III, Selection Super Green, Anmol and Line Bourd performed better under drought stress whereas genotypes Perbhani Karanti, IQRA-III, Green Gold, OK-1501 and Selection Super Green showed heat tolerance. Fifty markers showed amplification in okra. Fifty-six okra genotypes were clustered into three distinct populations. LD analysis has shown most significant linkage between markers Unigene43786 and Unigene3662. MTAs using MLM and GLM models revealed that 23 markers have significant associations (p < 0.05) with different traits under control and stressed conditions. Relative water content is associated with four markers (Unigene10673, Unigene99547, Unigene152901, and Unigene129684) under drought conditions. Whereas, Electrolyte leakage was associated with 3 markers (Unigene109922, Unigene28667 and Unigene146907) under heat stress. CONCLUSION: These identified unigenes may be helpful in the development of drought and heat tolerant genotypes in okra.


Asunto(s)
Abelmoschus , Sequías , Abelmoschus/genética , Etiquetas de Secuencia Expresada , Estrés Fisiológico/genética , Marcadores Genéticos/genética
4.
Mol Biol Rep ; 49(12): 11695-11703, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36181582

RESUMEN

BACKGROUND: Saffron (Crocus sativus) is high valued spice crop, but due to its sterile nature, the crop is propagated exclusively through corms. Thus, the genetic base of this crop is very narrow, however, frequency of phenotypic variability is observed; and suggested the potential role of epigenetics in saffron crop growth and development. METHODS AND RESULTS: To facilitate epigenetic studies in saffron, we developed 1525 methylation-specific PCR (MSP) markers using MethPrimer. For this purpose, we used 6767 EST sequences of saffron available on the NCBI database. We also mine CpG islands (2555) and found that 32.7% of EST sequences had CpG islands. Out of 1525 MSP markers developed during the present study, 725 covered the CpG islands and 800 were without CpG islands. PCR amplification was found successful for 82% of MSP markers. A preliminary analysis suggested that 53.7% of genomic sites were methylated and more prominent (60% methylations) in non-CpG island regions, although, more comprehensive studies are required to validate it further. CONCLUSIONS: The epigenetic resource developed during the present study will strengthen the epigenetic studies like epiQTL mapping, epiGWAS to explore the molecular mechanisms and genomic/epigenomic regions associated with phenotype; and further may be utilized for saffron improvement programs through epibreeding.


Asunto(s)
Crocus , Crocus/genética , Metilación , Reacción en Cadena de la Polimerasa/métodos , Epigenómica , Epigénesis Genética/genética , Metilación de ADN/genética , Islas de CpG/genética
5.
Anim Biotechnol ; 32(6): 719-732, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32233965

RESUMEN

Long non-coding RNAs (lncRNAs) is a class of eukaryotic transcripts with length of more than 200 bp. They contribute to the regulation of gene expressions involved in multiple processes including the skin cell proliferation, differentiation, and reconstruction of the secondary hair follicles (SHFs). In this study, firstly, we identified 16 putative lncRNAs from SHFs of cashmere goat based on the EST sequences from NCBI database. Secondly, we investigated their transcriptional pattern in SHFs of cashmere goat, and constructed their ceRNA regulatory networks. The RT-qPCR results showed four lncRNAs (lncRNA-475074, -052149, -052140, and -051789) were significantly up-regulated, and nine lncRNAs (lncRNA-711032, -475083, -475070, -052139, -052127, -052037, -051903, -051847, and -051804) were significantly down-regulatd in anagen SHFs of cashmere goat. CeRNA networks analysis revealed complex interactional relationship among lncRNAs, miRNAs and mRNAs. Further, the KEGG pathway enrichment was performed for the potential target genes of the identified lncRNAs based on bioinformatics technique, and the results indicated that differentially expressed lncRNAs directly or indirectly might regulate potential target genes. Our results from this study will provide a significant information for further exploring the functions and possible mechanisms of the identified lncRNAs in SHFs of cashmere goat.


Asunto(s)
Cabras , Folículo Piloso , ARN Largo no Codificante , Animales , Biología Computacional , Cabras/genética , ARN Largo no Codificante/genética
6.
Genome ; 63(11): 525-534, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32762630

RESUMEN

Sequence-based markers have added a new dimension in the efficiency of identifying alien introgressions in wheat. Expressed sequence tag-sequence tagged sites (EST-STS) markers have proved useful in tracing alien chromatin. In this study, we report the development of Thinopyrum bessarabicum- and Secale anatolicum-specific EST-STS markers and their application in tracing respective alien chromatin introgressions in wheat. The parental lines, Chinese Spring (CS), ISR991.1 (CS/Th. bessarabicum amphidiploid), and ISR1049.2 (CS/Secale anatolicum amphidiploid), were used as core experimental materials. Using comparative analysis of RNA-Seq data, 10 903 and 10 660 candidate sequences specific to Th. bessarabicum and S. anatolicum, respectively, were assembled and identified. To validate the genome specificity of these candidate sequences, 68 and 64 EST-STS markers were developed from randomly selected candidate sequences of Th. bessarabicum and S. anatolicum, respectively, and tested on sets of alien addition lines. Fifty-five and 53 markers for Th. bessarabicum and S. anatolicum chromatin, respectively, were assigned to chromosomal location(s), covering all seven chromosomes. Approximately 83% of S. anatolicum-specific markers were transferable to S. cereale. The genome-specific candidate sequences identified and the EST-STS markers developed will be valuable resources for exploitation of Th. bessarabicum and Secale species diversity in wheat and triticale breeding.


Asunto(s)
RNA-Seq , Secale/genética , Triticum/genética , Cromosomas de las Plantas , Etiquetas de Secuencia Expresada , Hibridación Fluorescente in Situ
7.
Syst Biol ; 66(4): 517-530, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003531

RESUMEN

As the application of genomic data in phylogenetics has become routine, a number of cases have arisen where alternative data sets strongly support conflicting conclusions. This sensitivity to analytical decisions has prevented firm resolution of some of the most recalcitrant nodes in the tree of life. To better understand the causes and nature of this sensitivity, we analyzed several phylogenomic data sets using an alternative measure of topological support (the Bayes factor) that both demonstrates and averts several limitations of more frequently employed support measures (such as Markov chain Monte Carlo estimates of posterior probabilities). Bayes factors reveal important, previously hidden, differences across six "phylogenomic" data sets collected to resolve the phylogenetic placement of turtles within Amniota. These data sets vary substantially in their support for well-established amniote relationships, particularly in the proportion of genes that contain extreme amounts of information as well as the proportion that strongly reject these uncontroversial relationships. All six data sets contain little information to resolve the phylogenetic placement of turtles relative to other amniotes. Bayes factors also reveal that a very small number of extremely influential genes (less than 1% of genes in a data set) can fundamentally change significant phylogenetic conclusions. In one example, these genes are shown to contain previously unrecognized paralogs. This study demonstrates both that the resolution of difficult phylogenomic problems remains sensitive to seemingly minor analysis details and that Bayes factors are a valuable tool for identifying and solving these challenges.


Asunto(s)
Clasificación/métodos , Filogenia , Teorema de Bayes , Sesgo , Genoma , Cadenas de Markov , Modelos Estadísticos
8.
BMC Genet ; 19(1): 92, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30309314

RESUMEN

BACKGROUND: Plectranthus edulis (Vatke) Agnew (locally known as Ethiopian dinich or Ethiopian potato) is one of the most economically important edible tuber crops indigenous to Ethiopia. Evaluating the extent of genetic diversity within and among populations is one of the first and most important steps in breeding and conservation measures. Hence, this study was aimed at evaluating the genetic diversity and population structure of this crop using collections from diverse agro-ecologies in Ethiopia. RESULTS: Twenty polymorphic expressed sequence tag based simple sequence repeat (EST-SSRs) markers were developed for P. edulis based on EST sequences of P. barbatus deposited in the GenBank. These markers were used for genetic diversity analyses of 287 individual plants representing 12 populations, and a total of 128 alleles were identified across the entire loci and populations. Different parameters were used to estimate the genetic diversity within populations; and gene diversity index (GD) ranged from 0.31 to 0.39 with overall mean of 0.35. Hierarchical analysis of molecular variance (AMOVA) showed significant but low population differentiation with only 3% of the total variation accounted for variation among populations. Likewise, cluster and STRUCTURE analyses did not group the populations into sharply distinct clusters, which could be attributed to historical and contemporary gene flow and the reproductive biology of the crop. CONCLUSIONS: These newly developed EST-SSR markers are highly polymorphic within P. edulis and hence are valuable genetic tools that can be used to evaluate the extent of genetic diversity and population structure of not only P. edulis but also various other species within the Lamiaceae family. Among the 12 populations studied, populations collected from Wenbera, Awi and Wolaita showed a higher genetic diversity as compared to other populations, and hence these areas can be considered as hot spots for in-situ conservation as well as for identification of genotypes that can be used in breeding programs.


Asunto(s)
Variación Genética , Genética de Población , Plectranthus/genética , Alelos , Análisis por Conglomerados , ADN de Plantas/genética , ADN de Plantas/metabolismo , Etiopía , Etiquetas de Secuencia Expresada , Flujo Génico , Frecuencia de los Genes , Repeticiones de Microsatélite/genética , Hojas de la Planta/genética , Polimorfismo Genético , Análisis de Componente Principal
9.
Anim Genet ; 49(5): 361-370, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30062723

RESUMEN

Wool is composed primarily of proteins belonging to the keratin family. These include the keratins and keratin-associated proteins (KAPs) that are responsible for the structural and mechanical properties of wool fibre. Although all human keratin and KAP genes have been annotated, many of their ovine counterparts remain unknown and even less is known about their genomic organisation. The aim of this study was to use a combinatory approach including comprehensive cDNA and de novo genomic sequencing to identify ovine keratin and KAP genes and their genomic organisation and to validate the keratins and KAPs involved in wool production using ovine expressed sequence tag (EST) libraries and proteomics. The number of genes and their genomic organisation are generally conserved between sheep, cattle and human, despite some unique features in the sheep. Validation by protein mass spectrometry identified multiple keratins (types I and II), epithelial keratins and KAPs. However, 15 EST-derived genes, including one type II keratin and 14 KAPs, were identified in the sheep genome that were not present in the NCBI gene set, providing a significant increase in the number of keratin genes mapped on the sheep genome.


Asunto(s)
Queratinas/genética , Oveja Doméstica/genética , Lana/química , Animales , Bovinos , Cromosomas Artificiales Bacterianos , ADN Complementario/genética , Genoma , Folículo Piloso/química , Folículo Piloso/crecimiento & desarrollo , Humanos , Queratinas/química
10.
Physiol Mol Biol Plants ; 24(4): 665-682, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30042621

RESUMEN

Sugarcane (Saccharum species hybrid) is the major source of sugar (> 80% sugar) in the world and is cultivated in more than 115 countries. It has recently gained attention as a source of biofuel (ethanol). Due to genomic complexity, the development of new genomic resources is imperative in understanding the gene regulation and function, and to fine tune the genetic improvement of sugarcane. In this study, a cDNA library was constructed from mature leaves so as to develop ESTs resources which were further compared with nucleotide and protein databases to explore the functional identity of sugarcane genes. The non-redundant ESTs (unigenes) were categorized into 18 metabolic functions. The major categories were bioenergetics and photosynthesis (4%), cell metabolism (5%), development related protein (3%), membrane-related, mobile genetic elements (5%), signal transduction (2%), DNA (1%), RNA (1%) and protein (2%) metabolism, other metabolic processes (3%), transcription factors (1%), transport (4%) and proteins related to stress/defense (4%). From 540 unique ESTs, 212 simple sequence repeats were identified, of which 206 were from 463 singlets and six were mined from 77 contig sequences. A total of 540 unique EST sequences were used for SSR search of which 97 (17.9%) contained specified SSR motifs, generating 212 unique SSRs. The genes characterized in this study and the EST-derived microsatellite markers identified from the cDNA library will enrich genomic resources for association- and linkage-mapping studies in sugarcane.

11.
Mol Genet Genomics ; 292(5): 955-965, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28492983

RESUMEN

Enabled by the next generation sequencing, target enrichment sequencing (TES) is a powerful method to enrich genomic regions of interest and to identify sequence variations. The objective of this study was to explore the feasibility of probe design from transcript sequences for TES application in calling sequence variants in peanut, an important allotetraploid crop with a large genome size. In this study, we applied an in-solution hybridization method to enrich DNA sequences of seven peanut genotypes. Our results showed that it is feasible to apply TES with probes designed from transcript sequences in polyploid peanut. Using a set of 31,123 probes, a total of 5131 and 7521 genes were targeted in peanut A and B genomes, respectively. For each genotype used in this study, the probe target capture regions were efficiently covered with high depth. The average on-target rate of sequencing reads was 42.47%, with a significant amount of off-target reads coming from genomic regions homologous to target regions. In this study, when given predefined genomic regions of interest and the same amount of sequencing data, TES provided the highest coverage of target regions when compared to whole genome sequencing, RNA sequencing, and genotyping by sequencing. Single nucleotide polymorphism (SNP) calling and subsequent validation revealed a high validation rate (85.71%) of homozygous SNPs, providing valuable markers for peanut genotyping. This study demonstrated the success of applying TES for SNP identification in peanut, which shall provide valuable suggestions for TES application in other non-model species without a genome reference available.


Asunto(s)
Arachis/genética , Mapeo Cromosómico/métodos , Sondas de ADN/genética , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Etiquetas de Secuencia Expresada , Genotipo , Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple/genética
12.
Int J Mol Sci ; 18(2)2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28165358

RESUMEN

This study describes the development and validation of an enriched oligonucleotide-microarray platform for Sparus aurata (SAQ) to provide a platform for transcriptomic studies in this species. A transcriptome database was constructed by assembly of gilthead sea bream sequences derived from public repositories of mRNA together with reads from a large collection of expressed sequence tags (EST) from two extensive targeted cDNA libraries characterizing mRNA transcripts regulated by both bacterial and viral challenge. The developed microarray was further validated by analysing monocyte/macrophage activation profiles after challenge with two Gram-negative bacterial pathogen-associated molecular patterns (PAMPs; lipopolysaccharide (LPS) and peptidoglycan (PGN)). Of the approximately 10,000 EST sequenced, we obtained a total of 6837 EST longer than 100 nt, with 3778 and 3059 EST obtained from the bacterial-primed and from the viral-primed cDNA libraries, respectively. Functional classification of contigs from the bacterial- and viral-primed cDNA libraries by Gene Ontology (GO) showed that the top five represented categories were equally represented in the two libraries: metabolism (approximately 24% of the total number of contigs), carrier proteins/membrane transport (approximately 15%), effectors/modulators and cell communication (approximately 11%), nucleoside, nucleotide and nucleic acid metabolism (approximately 7.5%) and intracellular transducers/signal transduction (approximately 5%). Transcriptome analyses using this enriched oligonucleotide platform identified differential shifts in the response to PGN and LPS in macrophage-like cells, highlighting responsive gene-cassettes tightly related to PAMP host recognition. As observed in other fish species, PGN is a powerful activator of the inflammatory response in S. aurata macrophage-like cells. We have developed and validated an oligonucleotide microarray (SAQ) that provides a platform enriched for the study of gene expression in S. aurata with an emphasis upon immunity and the immune response.


Asunto(s)
Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Inflamación/veterinaria , Moléculas de Patrón Molecular Asociado a Patógenos , Dorada/genética , Dorada/inmunología , Animales , Análisis por Conglomerados , Biología Computacional/métodos , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Biblioteca de Genes , Lipopolisacáridos/efectos adversos , Transcriptoma
13.
BMC Genomics ; 17(Suppl 13): 1035, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28155670

RESUMEN

BACKGROUND: Simple sequence repeats (SSRs) have become widely used as molecular markers in plant genetic studies due to their abundance, high allelic variation at each locus and simplicity to analyze using conventional PCR amplification. To study plants with unknown genome sequence, SSR markers from Expressed Sequence Tags (ESTs), which can be obtained from the plant mRNA (converted to cDNA), must be utilized. With the advent of high-throughput sequencing technology, huge EST sequence data have been generated and are now accessible from many public databases. However, SSR marker identification from a large in-house or public EST collection requires a computational pipeline that makes use of several standard bioinformatic tools to design high quality EST-SSR primers. Some of these computational tools are not users friendly and must be tightly integrated with reference genomic databases. RESULTS: A web-based bioinformatic pipeline, called EST Analysis Pipeline Plus (ESAP Plus), was constructed for assisting researchers to develop SSR markers from a large EST collection. ESAP Plus incorporates several bioinformatic scripts and some useful standard software tools necessary for the four main procedures of EST-SSR marker development, namely 1) pre-processing, 2) clustering and assembly, 3) SSR mining and 4) SSR primer design. The proposed pipeline also provides two alternative steps for reducing EST redundancy and identifying SSR loci. Using public sugarcane ESTs, ESAP Plus automatically executed the aforementioned computational pipeline via a simple web user interface, which was implemented using standard PHP, HTML, CSS and Java scripts. With ESAP Plus, users can upload raw EST data and choose various filtering options and parameters to analyze each of the four main procedures through this web interface. All input EST data and their predicted SSR results will be stored in the ESAP Plus MySQL database. Users will be notified via e-mail when the automatic process is completed and they can download all the results through the web interface. CONCLUSIONS: ESAP Plus is a comprehensive and convenient web-based bioinformatic tool for SSR marker development. ESAP Plus offers all necessary EST-SSR development processes with various adjustable options that users can easily use to identify SSR markers from a large EST collection. With familiar web interface, users can upload the raw EST using the data submission page and visualize/download the corresponding EST-SSR information from within ESAP Plus. ESAP Plus can handle considerably large EST datasets. This EST-SSR discovery tool can be accessed directly from: http://gbp.kku.ac.th/esap_plus/ .


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Marcadores Genéticos , Repeticiones de Microsatélite , Programas Informáticos , Navegador Web , Análisis por Conglomerados , Genómica/métodos , Reproducibilidad de los Resultados , Flujo de Trabajo
14.
BMC Genomics ; 17: 256, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27004551

RESUMEN

BACKGROUND: Barley leaf stripe disease, caused by the fungus Pyrenophora graminea (Pg), is a worldwide crop disease that results in significant loss of barley yield. The purpose of the present work was to use transcriptomic profiling to highlight barley genes and metabolic pathways affected or altered in response to Pg infection and consequently elucidate their involvement and contribution in resistance to leaf stripe. RESULTS: Our study examined and compared the transcriptomes of two barley genotypes using an established differential display reverse-transcription polymerase chain reaction (DDRT-PCR) strategy at 14 and 20 days post-inoculation (dpi). A total of 54 significantly modulated expressed sequence tags (ESTs) were identified. The analysis of gene expression changes during the course of infection with Pg suggested the involvement of 15 upregulated genes during the immunity response. By using network-based analyses, we could establish a significant correlation between genes expressed in response to Pg invasion. Microscopic analysis and quantitative PCR (qPCR) profiling of callose synthase and cellulose synthases revealed a direct involvement of cell wall reinforcement and callose deposition in the Pg-resistant phenotype. CONCLUSIONS: We have identified a number of candidate genes possibly involved in the host-pathogen interactions between barley and Pg fungus, 15 of which are specifically expressed in Pg-resistant plants. Collectively, our results suggest that the resistance to leaf stripe in barley proceeds through callose deposition and different oxidation processes.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad/genética , Hordeum/genética , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética , Etiquetas de Secuencia Expresada , Ontología de Genes , Genes de Plantas , Genotipo , Hordeum/microbiología , Enfermedades de las Plantas/microbiología
15.
Funct Integr Genomics ; 16(6): 619-639, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27586658

RESUMEN

In the present study, suppression subtractive hybridization (SSH) strategy was used to identify rare and differentially expressed transcripts in leaf and rhizome tissues of Panax sokpayensis. Out of 1102 randomly picked clones, 513 and 374 high quality expressed sequenced tags (ESTs) were generated from leaf and rhizome subtractive libraries, respectively. Out of them, 64.92 % ESTs from leaf and 69.26 % ESTs from rhizome SSH libraries were assembled into different functional categories, while others were of unknown function. In particular, ESTs encoding galactinol synthase 2, ribosomal RNA processing Brix domain protein, and cell division cycle protein 20.1, which are involved in plant growth and development, were most abundant in the leaf SSH library. Other ESTs encoding protein KIAA0664 homologue, ubiquitin-activating enzyme e11, and major latex protein, which are involved in plant immunity and defense response, were most abundant in the rhizome SSH library. Subtractive ESTs also showed similarity with genes involved in ginsenoside biosynthetic pathway, namely farnesyl pyrophosphate synthase, squalene synthase, and dammarenediol synthase. Expression profiles of selected ESTs validated the quality of libraries and confirmed their differential expression in the leaf, stem, and rhizome tissues. In silico comparative analyses revealed that around 13.75 % of unigenes from the leaf SSH library were not represented in the available leaf transcriptome of Panax ginseng. Similarly, around 18.12, 23.75, 25, and 6.25 % of unigenes from the rhizome SSH library were not represented in available root/rhizome transcriptomes of P. ginseng, Panax notoginseng, Panax quinquefolius, and Panax vietnamensis, respectively, indicating a major fraction of novel ESTs. Therefore, these subtractive transcriptomes provide valuable resources for gene discovery in P. sokpayensis and would complement the available transcriptomes from other Panax species.


Asunto(s)
Etiquetas de Secuencia Expresada , Panax/genética , Hojas de la Planta/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/biosíntesis , Raíces de Plantas/genética , Rizoma/genética , Técnicas de Hibridación Sustractiva
16.
Biometrics ; 72(1): 136-45, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26224325

RESUMEN

The problem of estimating discovery probabilities originated in the context of statistical ecology, and in recent years it has become popular due to its frequent appearance in challenging applications arising in genetics, bioinformatics, linguistics, designs of experiments, machine learning, etc. A full range of statistical approaches, parametric and nonparametric as well as frequentist and Bayesian, has been proposed for estimating discovery probabilities. In this article, we investigate the relationships between the celebrated Good-Turing approach, which is a frequentist nonparametric approach developed in the 1940s, and a Bayesian nonparametric approach recently introduced in the literature. Specifically, under the assumption of a two parameter Poisson-Dirichlet prior, we show that Bayesian nonparametric estimators of discovery probabilities are asymptotically equivalent, for a large sample size, to suitably smoothed Good-Turing estimators. As a by-product of this result, we introduce and investigate a methodology for deriving exact and asymptotic credible intervals to be associated with the Bayesian nonparametric estimators of discovery probabilities. The proposed methodology is illustrated through a comprehensive simulation study and the analysis of Expressed Sequence Tags data generated by sequencing a benchmark complementary DNA library.


Asunto(s)
Teorema de Bayes , Etiquetas de Secuencia Expresada , Aprendizaje Automático , Modelos Estadísticos , Reconocimiento de Normas Patrones Automatizadas/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Simulación por Computador , Interpretación Estadística de Datos
17.
Zhongguo Zhong Yao Za Zhi ; 41(22): 4158-4164, 2016 Nov.
Artículo en Zh | MEDLINE | ID: mdl-28933082

RESUMEN

Using the latest 454 GS FLX platform and Titanium regent, a substantial expressed sequence tag (ESTs) dataset of Ephedra sinica was produced, and the profile of gene expression and function gene of which were investigated. A total of 48 389 reads with an average length of 373 bp were generated. These 454 reads were assembled into 18 801 unigenes, which were all 454 sequencing identified. A total number of 10 531 unigenes(56.0%) were annotated using BLAST searches (E-value≤1×10⁻5) against the Nr, Nt, TAIR, SwissProt and KEGG databases. With respect to genes related to ephedrine biosynthesis, 19 unigenes(encoding 9 enzymes) were found. A total of 97 putative genes encoding cytochrome P450s were also discovered. Data presented in this study will provide an important resource for the scientific community that is interested in the functional genomics and secondary metabolism of E. sinica.


Asunto(s)
Ephedra sinica/genética , Etiquetas de Secuencia Expresada , Transcriptoma , Perfilación de la Expresión Génica , Genes de Plantas , Metabolismo Secundario , Análisis de Secuencia de ADN
18.
Mol Biol Evol ; 31(6): 1402-13, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24682283

RESUMEN

What at the genomic level underlies organism complexity? Although several genomic features have been associated with organism complexity, in the case of alternative splicing, which has long been proposed to explain the variation in complexity, no such link has been established. Here, we analyzed over 39 million expressed sequence tags available for 47 eukaryotic species with fully sequenced genomes to obtain a comparable index of alternative splicing estimates, which corrects for the distorting effect of a variable number of transcripts per species--an important obstacle for comparative studies of alternative splicing. We find that alternative splicing has steadily increased over the last 1,400 My of eukaryotic evolution and is strongly associated with organism complexity, assayed as the number of cell types. Importantly, this association is not explained as a by-product of covariance between alternative splicing with other variables previously linked to complexity including gene content, protein length, proteome disorder, and protein interactivity. In addition, we found no evidence to suggest that the relationship of alternative splicing to cell type number is explained by drift due to reduced N(e) in more complex species. Taken together, our results firmly establish alternative splicing as a significant predictor of organism complexity and are, in principle, consistent with an important role of transcript diversification through alternative splicing as a means of determining a genome's functional information capacity.


Asunto(s)
Empalme Alternativo , Evolución Biológica , Eucariontes/clasificación , Eucariontes/genética , Animales , Evolución Molecular , Etiquetas de Secuencia Expresada , Humanos , Filogenia , Especificidad de la Especie , Transcriptoma
19.
Biosci Biotechnol Biochem ; 79(3): 367-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25496401

RESUMEN

The coelomic cells of the earthworm consist of leukocytes, chlorogocytes, and coelomocytes, which play an important role in innate immunity reactions. To gain insight into the expression profiles of coelomic cells of the earthworm, Eisenia andrei, we analyzed 1151 expressed sequence tags (ESTs) derived from the cDNA library of the coelomic cells. Among the 1151 ESTs analyzed, 493 ESTs (42.8%) showed a significant similarity to known genes and represented 164 unique genes, of which 93 ESTs were singletons and 71 ESTs manifested as two or more ESTs. From the 164 unique genes sequenced, we found 24 immune-related and cell defense genes. Furthermore, real-time PCR analysis showed that levels of lysenin-related proteins mRNA in coelomic cells of E. andrei were upregulated after the injection of Bacillus subtilis bacteria. This EST data-set would provide a valuable resource for future researches of earthworm immune system.


Asunto(s)
Etiquetas de Secuencia Expresada/metabolismo , Perfilación de la Expresión Génica , Oligoquetos/genética , Oligoquetos/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Escherichia coli/fisiología , Regulación de la Expresión Génica , Análisis por Micromatrices , Datos de Secuencia Molecular , Oligoquetos/citología , Oligoquetos/microbiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo
20.
Genomics ; 102(4): 345-54, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23792713

RESUMEN

GPCRs play crucial roles in the growth, development and reproduction of organisms. In insects, a large number of GPCRs have been reported for Holometabola but not Hemimetabola. The recently sequenced pea aphid genome provides us with the opportunity to analyze the evolution and potential functions of GPCRs in Hemimetabola. 82 GPCRs were identified from the representative model hemimetabolous insect Acyrthosiphon pisum, 37 of which have ESTs evidence, and 73 are annotated for the first time. A striking difference between A. pisum, Drosophila melanogaster and Tribolium castaneum is the duplication of the kinin and SIFamide receptors in A. pisum. Another divergence is the loss of the sulfakinin receptor in A. pisum. These duplications/losses are likely involved in the osmoregulation, reproduction and energy metabolism of A. pisum. Moreover, this work will promote functional analyses of GPCRs in A. pisum and may advance new drug target discovery for biological control of the aphid.


Asunto(s)
Áfidos/genética , Proteínas de Insectos/genética , Pisum sativum/parasitología , Receptores Acoplados a Proteínas G/genética , Secuencia de Aminoácidos , Animales , Áfidos/metabolismo , Secuencia de Bases , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolución Molecular , Etiquetas de Secuencia Expresada , Duplicación de Gen , Regulación Bacteriana de la Expresión Génica , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Filogenia , Receptores Acoplados a Proteínas G/metabolismo , Tribolium/genética , Tribolium/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA