Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 33(17): e17482, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39082382

RESUMEN

The spread and adaptation of fungal plant pathogens in agroecosystems are facilitated by environmental homogeneity. Metagenomic sequencing of infected tissues allowed us to monitor eco-evolutionary dynamics and interactions between host, pathogen and plant microbiome. Exserohilum turcicum, the causal agent of northern corn leaf blight (NCLB) in maize, is distributed in multiple clonal lineages throughout Europe. To characterize regional pathogen diversity, we conducted metagenomic DNA sequencing on 241 infected leaf samples from the highly susceptible Swiss maize landrace Rheintaler Ribelmais, collected over 3 years (2016-2018) from an average of 14 agricultural farms within the Swiss Rhine Valley. All major European clonal lineages of E. turcicum were identified. Lineages differ by their mating types which indicates potential for sexual recombination and rapid evolution of new pathogen strains, although we found no evidence of recent recombination. The associated eukaryotic and prokaryotic leaf microbiome exhibited variation in taxonomic diversity between years and locations and is likely influenced by local weather conditions. A network analysis revealed distinct clusters of eukaryotic and prokaryotic taxa that correlates with the frequency of E. turcicum sequencing reads, suggesting causal interactions. Notably, the yeast genus Metschnikowia exhibited a strongly negative association with E. turcicum, supporting its known potential as biological control agent against fungal pathogens. Our findings show that metagenomic sequencing is a useful tool for analysing the role of environmental factors and potential pathogen-microbiome interactions in shaping pathogen dynamics and evolution, suggesting their potential for effective pathogen management strategies.


Asunto(s)
Ascomicetos , Metagenómica , Microbiota , Enfermedades de las Plantas , Hojas de la Planta , Zea mays , Zea mays/microbiología , Suiza , Ascomicetos/genética , Hojas de la Planta/microbiología , Enfermedades de las Plantas/microbiología , Microbiota/genética
2.
Phytopathology ; : PHYTO05240172R, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39052468

RESUMEN

Exserohilum turcicum is a devastating fungal pathogen that infects both maize and sorghum, leading to severe leaf diseases of the two crops. According to host specificity, pathogenic isolates of E. turcicum are divided into two formae speciales, namely E. turcicum f. sp. zeae and E. turcicum f. sp. sorghi. To date, the molecular mechanism underlying the host specificity of E. turcicum is marginally known. In this study, the whole genomes of 60 E. turcicum isolates collected from both maize and sorghum were resequenced, which enabled identification of 233,022 single-nucleotide polymorphisms (SNPs) in total. Phylogenetic analysis indicated that all isolates are clustered into four genetic groups that have a close relationship with host source. This observation is validated by the result of principal component analysis. Analysis of population structure revealed that there is obvious genetic differentiation between two populations from maize and sorghum. Further analysis showed that 5,431 SNPs, including 612 nonsynonymous SNPs, are completely co-segregated with the host source. These nonsynonymous SNPs are located in 539 genes, among which 18 genes are predicted to encode secretory proteins, including six putative effector genes named SIX13-like, Ecp6, GH12, GH28-1, GH28-2, and CHP1. Sequence polymorphism analysis revealed various numbers of SNPs in the coding regions of these genes. These findings provide new insights into the molecular basis of host specificity in E. turcicum.

3.
Plant Dis ; 107(4): 1054-1059, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36089680

RESUMEN

Turcicum leaf blight (TLB) is a common foliar disease of maize in Mexico that is caused by the fungal pathogen Exserohilum turcicum. The most effective management strategy against TLB is monogenic race-specific resistance. Among the 140 E. turcicum isolates from symptomatic leaves collected from maize fields in Mexico, 100 were obtained from tropical (Veracruz) and temperate areas (Estado de México) between 2010 and 2019, and 40 isolates were obtained from tropical (Sinaloa, Tamaulipas, Veracruz, and Chiapas), subtropical (Nayarit, Jalisco, and Guanajuato), and temperate areas (Estado de Mexico, Hidalgo, and Puebla) collected in 2019. All the isolates caused TLB symptoms on the positive control (ht4), showing that they were all pathogenic. Six physiological races of E. turcicum (2, 3, 23, 3N, 23N, and 123N) were identified based on resistant or susceptible responses displayed by five maize differential genotypes (A619Ht1, A619Ht2, A619Ht3, B68HtN, and A619ht4). The most common was race 23, accounting for 68% of the isolates, followed by races 23N, 123N, 3, 2, and 3N at 15, 8, 6, 2, and 1%, respectively. Race 123N was able to infect the greatest number of maize differential genotypes used in the study. Race 123N was detected in Sinaloa and Estado de México. Race 3 was detected in Nayarit and Jalisco. Race 2 was detected in Jalisco, Estado de México, and Veracruz, and race 3N was detected in Tamaulipas. Race 23 was equally dominant in the tropical, subtropical, and temperate regions, while race 123N was more common in the tropical environment, and race 23N was more common in the tropical and temperate environments. There was no evidence for shifts in the races between 2010 and 2019.


Asunto(s)
Enfermedades de las Plantas , Zea mays , Zea mays/microbiología , México , Enfermedades de las Plantas/microbiología , Ambiente
4.
Fungal Genet Biol ; 159: 103655, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954385

RESUMEN

Northern corn leaf blight (NCLB) and sorghum leaf blight (SLB) are significant diseases of maize and sorghum, respectively, caused by the filamentous fungus Setosphaeria turcica. Strains of S. turcica are typically host-specific and infect either maize or sorghum. Host specificity in this pathogen is attributed to a single locus for maize and a second distinct locus for sorghum. To identify the genetic basis of host specificity in S. turcica, we generated a biparental population of S. turcica by crossing strains specific to maize and sorghum, phenotyped the population for leaf blight on sorghum and maize, genotyped the population to create a linkage map of S. turcica, and located candidate virulence regions. A total of 190 ascospores from 35 pseudothecia were isolated from the cross of maize and sorghum-specific strains. Greenhouse phenotyping of the biparental population (n = 144) showed independent inheritance of virulence, as indicated by a 1:1:1:1 segregation for virulence to maize, sorghum, both maize and sorghum, and avirulence to both crops. The population and host-specific parent strains were genotyped using genome skim sequencing on an Illumina NovaSeq 6000 platform resulting in over 780 million reads. A total of 32,635 variants including single nucleotide polymorphisms and indels were scored. There was evidence for a large deletion in the sorghum-specific strain of S. turcica. A genetic map consisting of 17 linkage groups spanning 3,069 centimorgans was constructed. Virulence to sorghum and maize mapped on distinct linkage groups with a significant QTL detected for virulence to maize. Furthermore, a single locus each for the in vitro traits hyphal growth rate and conidiation were identified and mapped onto two other linkage groups. In vitro traits did not correlate with in planta virulence complexity, suggesting that virulence on both hosts does not incur a fitness cost. Hyphal growth rate and conidiation were negatively correlated, indicating differences in hyphal growth versus dispersal ability for this pathogen. Identification of genetic regions underlying virulence specificity and saprotrophic growth traits in S. turcica provides a better understanding of the S. turcica- Andropogoneae pathosystem.


Asunto(s)
Enfermedades de las Plantas , Zea mays , Ascomicetos , Mapeo Cromosómico , Genómica , Enfermedades de las Plantas/microbiología , Virulencia/genética , Zea mays/microbiología
5.
Phytopathology ; 112(9): 1936-1945, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35322714

RESUMEN

Northern corn leaf blight (NCLB), caused by Exserohilum turcicum, is a devastating disease of corn in China. To enhance our understanding of NCLB epidemiology, the temporal progress and spatial patterns of NCLB were investigated. A susceptible corn cultivar, Xianyu 335, was planted in a field in Beijing in 2016 and 2017. Leaf lesions of NCLB on each plant were counted twice a week during the growing seasons. In addition, temporal disease progress was monitored for 8 weeks in three commercial corn fields in each of Yanqing, Miyun, Daxing, and Haidian Districts of Beijing in 2017, and the spatial patterns of diseased plants and NCLB lesion counts per plant were assessed in three commercial corn fields with moderate to high NCLB incidence in Yanqing District. The results demonstrated that a logistic model was the most appropriate to describe the temporal progress of NCLB incidence. The initial disease incidence was the key factor affecting disease epidemics under various conditions in the four districts of Beijing during the study. The higher the initial incidence of NCLB, the higher the final incidence. Thus, the earlier in the season NCLB incidence attained 1%, the higher was the final disease incidence. Greater than 1.0 variance-to-mean ratios suggested that the leaf lesions of NCLB tended to be aggregated on a plant. According to results from join-counts, variance of moving window averages, and semivariogram analysis, diseased corn plants and lesion numbers on each plant were aggregated in the field. The clustered pattern of NCLB lesions and infected plants suggested that conidia produced locally on diseased plants were important for disease spread within the field. The aggregated pattern of diseased plants suggested that plants should be sampled from more sites in a field to accurately estimate incidence of NCLB.


Asunto(s)
Ascomicetos , Zea mays , China , Enfermedades de las Plantas
6.
J Basic Microbiol ; 61(12): 1098-1112, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34738230

RESUMEN

Various mechanisms are involved in plant disease resistance mediated by entomopathogenic fungi; however, the role of plant endophytic microbes in disease resistance is unknown. In the present study, we showed that the disease incidence of northern corn leaf blight caused by Exserohilum turcicum (Et) on maize was reduced significantly by soil inoculation with Beauveria bassiana (Bb). Meanwhile, B. bassiana colonization and E. turcicum infection increased the diversity and abundance and diversity of endophytic bacteria and fungi, respectively, while the abundance of endophytic bacterial of the Bb + Et treatment decreased significantly compared with that of Et treatment alone. However, Bb + Et treatment increased the relative abundance of plant beneficial bacteria significantly, for example, Burkholderia and Pseudomonas. Network analyses showed that the microbiome complexity increased after soil inoculation with B. bassiana. Taken together, these results revealed the potential mechanism by which entomopathogenic fungi exert biological control of maize leaf spot disease.


Asunto(s)
Beauveria , Resistencia a la Enfermedad , Bacterias , Enfermedades de las Plantas , Plantas
7.
BMC Plant Biol ; 20(1): 67, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041528

RESUMEN

BACKGROUND: Exserohilum turcicum is an important pathogen of both sorghum and maize, causing sorghum leaf blight and northern corn leaf blight. Because the same pathogen can infect and cause major losses for two of the most important grain crops, it is an ideal pathosystem to study plant-pathogen evolution and investigate shared resistance mechanisms between the two plant species. To identify sorghum genes involved in the E. turcicum response, we conducted a genome-wide association study (GWAS). RESULTS: Using the sorghum conversion panel evaluated across three environments, we identified a total of 216 significant markers. Based on physical linkage with the significant markers, we detected a total of 113 unique candidate genes, some with known roles in plant defense. Also, we compared maize genes known to play a role in resistance to E. turcicum with the association mapping results and found evidence of genes conferring resistance in both crops, providing evidence of shared resistance between maize and sorghum. CONCLUSIONS: Using a genetics approach, we identified shared genetic regions conferring resistance to E. turcicum in both maize and sorghum. We identified several promising candidate genes for resistance to leaf blight in sorghum, including genes related to R-gene mediated resistance. We present significant advancements in the understanding of host resistance to E. turcicum, which is crucial to reduce losses due to this important pathogen.


Asunto(s)
Ascomicetos/fisiología , Genes de Plantas , Ligamiento Genético , Enfermedades de las Plantas/genética , Sorghum/genética , Zea mays/genética , Ambiente , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/microbiología
8.
Lett Appl Microbiol ; 67(6): 614-619, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30229965

RESUMEN

Northern corn leaf blight (NCLB) caused by Exserohilum turcicum is an endemic foliar disease in the Argentinean maize production area. Before applying a control method, it is essential to focus on factors that lead to the survival and conservation of E. turcicum inoculum. However, there is little information about the life cycle of this emerging pathogen in our country. The objective of the present work was to analyse the growth ability of three E. turcicum isolates under different type and conditions of maize, wheat and soybean residues, matric potential, temperature and their interactions. Statistical analysis demonstrated a significant effect of three factors on growth rate: residues-based media, matric potential and temperature. Among them the major effect was produced by matric potential followed by temperature. Although there were no significant differences in the growth rate among different residues types, the range of conditions in which growth occurred was different. According to these results, soybean residues would allow a better survival of E. turcicum inoculum under no-tillage system and providing an inoculum source for maize infections in subsequent year. SIGNIFICANCE AND IMPACT OF THE STUDY: Exserohilum turcicum is an emerging pathogen in Argentina that has caused significant economic losses in different maize growing areas. However, at present there is a lack of information about the life cycle of this fungal pathogen. The present study shows the influence of abiotic factors such as temperature and water potential on the growth of E. turcicum on different crop residues used in rotations with maize under no-till system cultivation. According to our results, soybean residues allowed the pathogen growth in a wider range of conditions compared to wheat and maize residue, providing an inoculum source for maize infections in subsequent season.


Asunto(s)
Ascomicetos/crecimiento & desarrollo , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Zea mays/microbiología , Argentina , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Microbiología del Suelo , Temperatura
9.
Proc Natl Acad Sci U S A ; 112(28): 8780-5, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124097

RESUMEN

Northern corn leaf blight (NCLB) caused by the hemibiotrophic fungus Exserohilum turcicum is an important foliar disease of maize that is mainly controlled by growing resistant maize cultivars. The Htn1 locus confers quantitative and partial NCLB resistance by delaying the onset of lesion formation. Htn1 represents an important source of genetic resistance that was originally introduced from a Mexican landrace into modern maize breeding lines in the 1970s. Using a high-resolution map-based cloning approach, we delimited Htn1 to a 131.7-kb physical interval on chromosome 8 that contained three candidate genes encoding two wall-associated receptor-like kinases (ZmWAK-RLK1 and ZmWAK-RLK2) and one wall-associated receptor-like protein (ZmWAK-RLP1). TILLING (targeting induced local lesions in genomes) mutants in ZmWAK-RLK1 were more susceptible to NCLB than wild-type plants, both in greenhouse experiments and in the field. ZmWAK-RLK1 contains a nonarginine-aspartate (non-RD) kinase domain, typically found in plant innate immune receptors. Sequence comparison showed that the extracellular domain of ZmWAK-RLK1 is highly diverse between different maize genotypes. Furthermore, an alternative splice variant resulting in a truncated protein was present at higher frequency in the susceptible parents of the mapping populations compared with in the resistant parents. Hence, the quantitative Htn1 disease resistance in maize is encoded by an unusual innate immune receptor with an extracellular wall-associated kinase domain. These results further highlight the importance of this protein family in resistance to adapted pathogens.


Asunto(s)
Ascomicetos/patogenicidad , Genes de Plantas , Proteínas Quinasas/genética , Zea mays/microbiología , Datos de Secuencia Molecular , Mutación , Zea mays/enzimología
10.
Rev Argent Microbiol ; 49(1): 75-82, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28188093

RESUMEN

Eight potential biological control agents (BCAs) were evaluated in planta in order to assess their effectiveness in reducing disease severity of northern leaf blight caused by Exserohilum turcicum. The assay was carried out in greenhouse. Twenty-six-day-old plants, V4 phenological stage, were inoculated with antagonists by foliar spray. Only one biocontrol agent was used per treatment. Ten days after this procedure, all treatments were inoculated with E. turcicum by foliar application. Treatments performed were: C-Et: control of E. turcicum; T1: isolate 1 (Enterococcus genus)+E. turcicum; T2: isolate 2 (Corynebacterium genus)+E. turcicum; T3: isolate 3 (Pantoea genus)+E. turcicum; T4: isolate 4 (Corynebacterium genus)+E. turcicum; T5: isolate 5 (Pantoea genus)+E. turcicum; T6: isolate 6 (Bacillus genus)+E. turcicum; T7: isolate 7 (Bacillus genus)+E. turcicum; T8: isolate 8 (Bacillus genus)+E. turcicum. Monitoring of antagonists on the phyllosphere was performed at different times. Furthermore, the percentage of infected leaves and, plant and leaf incidence were determined. Foliar application of different bacteria significantly reduced the leaf blight between 30-78% and 39-56% at 20 and 39 days respectively. It was observed that in the V10 stage of maize plants, isolate 8 (Bacillus spp.) caused the greatest effect on reducing the severity of northern leaf blight. Moreover, isolate 8 was the potential BCA that showed more stability in the phyllosphere. At 39 days, all potential biocontrol agents had a significant effect on controlling the disease caused by E. turcicum.


Asunto(s)
Agentes de Control Biológico , Enfermedades de las Plantas , Zea mays , Ascomicetos , Bacterias
11.
Rev Argent Microbiol ; 47(1): 62-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25771226

RESUMEN

The aims of this study were to select microbial isolates from phyllosphere of maize and to examine their antagonistic activity against Exserohilum turcicum. Selection was performed through the ability of isolates to compete with the pathogen using an index of dominance and to affect growth parameters of E. turcicum. Most of the epiphytic populations obtained for the screening were bacteria. These isolates were found in the order of 6 log CFU/g of leaf fresh weight. According to similar morphological characteristics and staining, 44 out of 111 isolates obtained were selected for testing antagonistic effects. At water potential, ψ, -1.38MPa and -4.19MPa, three Bacillus isolates showed dominance at a distance (5/0) and a significant reduction of growth rate of the pathogen. Three Bacillus isolates only decreased the growth rate of E. turcicum at -1.38MPa. At -4.19MPa the growth rate decreased with three isolates of Pantoea and three Bacillus. In this study a negative and significant correlation was observed between the growth rate of E. turcicum and the dominance index in the interaction of the pathogen with some bacteria. These results show that with decreasing growth rate of the pathogen the dominance index of the interaction increases. Eleven potential biocontrol agents against E. turcicum were selected.


Asunto(s)
Ascomicetos , Bacterias , Agentes de Control Biológico , Enfermedades de las Plantas/prevención & control , Zea mays/microbiología
12.
Virus Res ; 339: 199256, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37898320

RESUMEN

Endornaviruses are known to occur widely in plants, fungi, and oomycetes, but our understanding of their diversity and distribution is limited. In this study, we report the discovery of four endornaviruses tentatively named Setosphaeria turcica endornavirus 1 (StEV1), Setosphaeria turcica endornavirus 2 (StEV2), Bipolaris maydis endornavirus 1 (BmEV1), and Bipolaris maydis endornavirus 2 (BmEV2). StEV1 and StEV2 infect Exserohilum turcicum, while BmEV1 and BmEV2 infect Bipolaris maydis. The four viruses encode a polyprotein with less than 40 % amino acid sequence identity to other known endornaviruses, indicating that they are novel, previously undescribed endornaviruses. However, StEV1 and BmEV1 share a sequence identity of 78 % at the full-genome level and 87 % at the polyprotein level, suggesting that they may belong to the same species. Our study also found that each of the four endornaviruses has an incidence of approximately 3.5 % to 5.5 % in E. turcicum or B. maydis. Interestingly, BmEV1 and BmEV2 were found to be unable to transmit between hosts of different vegetative incompatibility groups, which may explain their low incidence.


Asunto(s)
Ascomicetos , Virus ARN , Incidencia , Filogenia , Ascomicetos/genética , Virus ARN/genética , Poliproteínas/genética
13.
Microbiol Res ; 288: 127841, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39153465

RESUMEN

In the prospect of novel potential biocontrol agents, a new strain BDI-IS1 belonging to the recently described Bacillus nakamurai was selected for its strong in vitro antimicrobial activities against a range of bacterial and fungal phytopathogens. Genome mining coupled with metabolomics revealed that BDI-IS1 produces multiple non-ribosomal secondary metabolites including surfactin, iturin A, bacillaene, bacillibactin and bacilysin, together with some some ribosomally-synthesized and post-translationally modified peptides (RiPPs) such as plantazolicin, and potentially amylocyclicin, bacinapeptin and LCI. Reverse genetics further showed the specific involvement of some of these compounds in the antagonistic activity of the strain. Comparative genomics between the five already sequenced B. nakamurai strains showed that non-ribosomal products constitute the core metabolome of the species while RiPPs are more strain-specific. Although the secondary metabolome lacks some key bioactive metabolites found in B. velezensis, greenhouse experiments show that B. nakamurai BDI-IS1 is able to protect tomato and maize plants against early blight and northern leaf blight caused by Alternaria solani and Exserohilum turcicum, respectively, at levels similar to or better than B. velezensis QST713. The reduction of these foliar diseases, following root or leaf application of the bacterial suspension demonstrates that BDI-IS1 can act by direct antibiosis and by inducing plant defence mechanisms. These findings indicate that B. nakamurai BDI-IS1 can be considered as a good candidate for biocontrol of plant diseases prevailing in tropical regions, and encourage further research into its spectrum of activity, its requirements and the conditions needed to ensure its efficacy.


Asunto(s)
Alternaria , Bacillus , Metaboloma , Enfermedades de las Plantas , Metabolismo Secundario , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Bacillus/metabolismo , Bacillus/genética , Bacillus/clasificación , Bacillus/fisiología , Alternaria/metabolismo , Alternaria/fisiología , Agentes de Control Biológico/metabolismo , Zea mays/microbiología , Solanum lycopersicum/microbiología , Metabolómica , Ascomicetos/metabolismo , Ascomicetos/fisiología , Genoma Bacteriano
14.
Plants (Basel) ; 12(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38068647

RESUMEN

In Senegal, sorghum ranks third after millet and maize among dryland cereal production and plays a critical role in the daily lives of millions of inhabitants. Yet, the crop's productivity and profitability are hampered by biotic stresses, including Exserohilum turcicum, causing leaf blight. A total of 101 sorghum accessions collected from Niger and Senegal, SC748-5 and BTx623, were evaluated in three different environments (Kaymor, Kolda, and Ndiaganiao) in Senegal for their reactions against the leaf blight pathogen. The results showed that 11 out of the 101 accessions evaluated exhibited 100% incidence, and the overall mean incidence was 88.4%. Accession N15 had the lowest incidence of 50%. The overall mean severity was 31.6%, while accessions N15, N43, N38, N46, N30, N28, and N23 from Niger recorded the lowest severity levels, ranging from 15.5% to 25.5%. Accession N15 exhibited both low leaf blight incidence and severity, indicating that it may possess genes for resistance to E. turcicum. Also, the accessions evaluated in this study were sequenced. A GWAS identified six novel single-nucleotide polymorphisms (SNPs) associated with an average leaf blight incidence rate. The candidate genes were found in chromosomes 2, 3, 5, 8, and 9. Except for SNP locus S05_48064154, all five SNPs associated with the leaf blight incidence rate were associated with the plant defense and stress responses. In conclusion, the candidate genes identified could offer additional options for enhancing plant resistance against E. turcicum through plant breeding or gene editing.

15.
Front Plant Sci ; 14: 1272951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868313

RESUMEN

Northern corn leaf blight (NCLB) is an economically important disease of maize. While the genetic architecture of NCLB has been well characterized, the pathogen is known to overcome currently deployed resistance genes, and the role of hormones in resistance to NCLB is an area of active research. The objectives of the study were (i) to identify significant markers associated with resistance to NCLB, (ii) to identify metabolic pathways associated with NCLB resistance, and (iii) to examine role of ethylene in resistance to NCLB. We screened 252 lines from the exotic-derived double haploid BGEM maize population for resistance to NCLB in both field and greenhouse environments. We used a genome wide association study (GWAS) and stepwise regression to identify four markers associated with resistance, followed by a pathway association study tool (PAST) to identify important metabolic pathways associated with disease severity and incubation period. The ethylene synthesis pathway was significant for disease severity and incubation period. We conducted a greenhouse assay in which we inhibited ethylene to examine the role of ethylene in resistance to NCLB. We observed a significant increase in incubation period and a significant decrease in disease severity between plants treated with the ethylene inhibitor and mock-treated plants. Our study confirms the potential of the BGEM population as a source of novel alleles for resistance. We also confirm the role of ethylene in resistance to NCLB and contribute to the growing body of literature on ethylene and disease resistance in monocots.

16.
Front Plant Sci ; 14: 1241055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645458

RESUMEN

It is well known that plant genotype can regulate phyllosphere fungi at the species level. However, little is known about how plant varieties shape the fungal communities in the phyllosphere. In this study, four types of maize varieties with various levels of resistances to Exserohilum turcicum were subjected to high-throughput sequencing to reveal the properties that influences the composition of phyllosphere fungal communities. The dominant fungi genera for all four maize varieties were Alternaria at different relative abundances, followed by Nigrospora. Hierarchical clustering analysis, non-metric multidimensional scaling and similarity analysis confirmed that the fungal communities in the phyllosphere of the four varieties were significantly different and clustered into the respective maize variety they inhabited. The findings from Redundancy Analysis (RDA) indicated that both maize resistance and leaf chemical constituents, including nitrogen, phosphorus, tannins, and flavonoids, were the major drivers in determining the composition of phyllosphere fungal communities. Among these factors, maize resistance was found to be the most influential, followed by phosphorus. The co-occurrence network of the fungal communities in the phyllosphere of highly resistant variety had higher complexity, integrity and stability compared to others maize varieties. In a conclusion, maize variety resistance and leaf chemical constituents play a major role in shaping the phyllosphere fungal community. The work proposes a link between the assembled fungal communities within the phyllosphere with maize variety that is resistant to pathogenic fungi infection.

17.
Bioengineering (Basel) ; 10(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36671579

RESUMEN

Northern corn leaf blight (NCLB) of maize, caused by Exserohilum turcicum (Pass.) Leonard and Suggs., is an important foliar disease common across maize-producing areas of the world, including Bihar, India. In this study, virulence and distribution of races were observed against Ht-resistant genes and also identified the E. turcicum race population distribution in Bihar. For that, 45 E. turcicum isolates were collected from maize fields in Bhagalpur, Begusarai, Khagaria, Katihar and Samastipur districts between 2020 and 2022. These isolates were screened on maize differential lines containing Ht1, Ht2, Ht3 and HtN1 resistance genes. Five different physiological races were observed based on the symptoms response of the differential maize lines. These races are race 0, race 1, race 3, race 23N and race 123N. E. turcicum race 3 was the most prevalent race having 26.6% frequency followed by race 0 (24.4%) and race 1 (22.2%) and the least prevalent races were race 23N and 123N having 13.3% each. Varied resistance response of different isolates was observed on differential lines having different resistant genes. Despite the fact that virulence was seen against all Ht resistance genes, NCLB control might be increased by combining qualitative Ht resistance genes with quantitative resistance.

18.
Front Plant Sci ; 12: 630413, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33767717

RESUMEN

Plants have evolved a series of sophisticated defense mechanisms to help them from harm. Ethylene Response Factor (ERF) plays pivotal roles in plant immune reactions, however, its underlying mechanism in maize with a defensive function to Exserohilum turcicum (E. turcicum) remains poorly understood. Here, we isolated and characterized a novel ERF transcription factor, designated ZmERF061, from maize. Phylogenetic analysis revealed that ZmERF061 is a member of B3 group in the ERF family. qRT-PCR assays showed that the expression of ZmERF061 is significantly induced by E. turcicum inoculation and hormone treatments with salicylic acid (SA) and methyl jasmonate (MeJA). ZmERF061 was proved to function as a nucleus-localized transcription activator and specifically bind to the GCC-box element. zmerf061 mutant lines resulted in enhanced susceptibility to E. turcicum via decreasing the expression of ZmPR10.1 and ZmPR10.2 and the activity of antioxidant defense system. zmerf061 mutant lines increased the expression of the SA signaling-related gene ZmPR1a and decreased the expression of the jasmonic acid (JA) signaling-related gene ZmLox1 after infection with E. turcicum. In addition, ZmERF061 could interact with ZmMPK6-1. These results suggested that ZmERF061 plays an important role in response to E. turcicum and may be useful in genetic engineering breeding.

19.
Front Plant Sci ; 12: 675208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113371

RESUMEN

Pathogens that infect more than one host offer an opportunity to study how resistance mechanisms have evolved across different species. Exserohilum turcicum infects both maize and sorghum and the isolates are host-specific, offering a unique system to examine both compatible and incompatible interactions. We conducted transcriptional analysis of maize and sorghum in response to maize-specific and sorghum-specific E. turcicum isolates and identified functionally related co-expressed modules. Maize had a more robust transcriptional response than sorghum. E. turcicum responsive genes were enriched in core orthologs in both crops, but only up to 16% of core orthologs showed conserved expression patterns. Most changes in gene expression for the core orthologs, including hub genes, were lineage specific, suggesting a role for regulatory divergent evolution. We identified several defense-related shared differentially expressed (DE) orthologs with conserved expression patterns between the two crops, suggesting a role for parallel evolution of those genes in both crops. Many of the differentially expressed genes (DEGs) during the incompatible interaction were related to quantitative disease resistance (QDR). This work offers insights into how different hosts with relatively recent divergence interact with a common pathogen. Our results are important for developing resistance to this critical pathogen and understanding the evolution of host-pathogen interactions.

20.
Microorganisms ; 7(6)2019 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-31181735

RESUMEN

A novel Gram staining positive, aerobic bacterium NEAU-HV1T that exhibits antifungal activity against Exserohilum turcicum was isolated from a soil collected from Gama, Hadjer lamis, Chad. It was grown at 10-45 °C (optimum 30 °C), pH 5-10 (optimum pH 8), and 0-4% (w/v) NaCl (optimum 1%). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain NEAU-HV1T was closely related to Sinomonas susongensis A31T (99.24% sequence similarity), Sinomonas humi MUSC 117T (98.76%), and Sinomonas albida LC13T (98.68%). The average nucleotide identity values between NEAU-HV1T and its most closely related species were 79.34-85.49%. The digital DNA-DNA hybridization values between NEAU-HV1T and S. susongensis A31T, S. albida LC13T, and S. humi MUSC 117T were 23.20, 23.50, and 22.80%, respectively, again indicating that they belonged to different taxa. The genomic DNA G+C content was 67.64 mol%. The whole cell sugars contained galactose, mannose, and rhamnose. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, and four glycolipids. The respiratory quinone system comprised MK-9(H2), MK-10(H2), and MK-8(H2). The major cellular fatty acids (>5%) were anteiso-C15:0, anteiso-C17:0, C16:0, and iso-C15:0. Based on the polyphasic analysis, it is suggested that the strain NEAU-HV1T represents a novel species of the genus Sinomonas, for which the name Sinomonas gamaensis sp. nov. is proposed. The type strain is NEAU-HV1T (= DSM 104514T = CCTCC M 2017246T).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA