Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Immunity ; 52(4): 700-715.e6, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294409

RESUMEN

The omentum is a visceral adipose tissue rich in fat-associated lymphoid clusters (FALCs) that collects peritoneal contaminants and provides a first layer of immunological defense within the abdomen. Here, we investigated the mechanisms that mediate the capture of peritoneal contaminants during peritonitis. Single-cell RNA sequencing and spatial analysis of omental stromal cells revealed that the surface of FALCs were covered by CXCL1+ mesothelial cells, which we termed FALC cover cells. Blockade of CXCL1 inhibited the recruitment and aggregation of neutrophils at FALCs during zymosan-induced peritonitis. Inhibition of protein arginine deiminase 4, an enzyme important for the release of neutrophil extracellular traps, abolished neutrophil aggregation and the capture of peritoneal contaminants by omental FALCs. Analysis of omental samples from patients with acute appendicitis confirmed neutrophil recruitment and bacterial capture at FALCs. Thus, specialized omental mesothelial cells coordinate the recruitment and aggregation of neutrophils to capture peritoneal contaminants.


Asunto(s)
Apendicitis/inmunología , Linfocitos/inmunología , Neutrófilos/inmunología , Epiplón/inmunología , Peritonitis/inmunología , Células del Estroma/inmunología , Enfermedad Aguda , Animales , Apendicitis/genética , Apendicitis/microbiología , Comunicación Celular/inmunología , Quimiocina CXCL1/genética , Quimiocina CXCL1/inmunología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Epitelio/inmunología , Epitelio/microbiología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/patogenicidad , Trampas Extracelulares/inmunología , Femenino , Expresión Génica , Humanos , Linfocitos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Neutrófilos/microbiología , Epiplón/microbiología , Peritonitis/inducido químicamente , Peritonitis/genética , Peritonitis/microbiología , Arginina Deiminasa Proteína-Tipo 4/genética , Arginina Deiminasa Proteína-Tipo 4/inmunología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células del Estroma/microbiología , Técnicas de Cultivo de Tejidos , Zimosan/administración & dosificación
2.
Saudi Pharm J ; 32(3): 101967, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38362039

RESUMEN

Phytotherapy, which involves the use of plant extracts and natural compounds for medicinal purposes, is indeed a promising alternative for managing urinary lithiasis. Many plants have been studied for their potential to prevent and treat kidney stones, and they may offer a more natural and potentially less harmful approach compared to conventional treatments. Additionally, phytotherapy may be more cost-effective. The aim of the present study was to investigate the antilithic potential of extracts and essential oils of Saussurea costus (Falc) Lipsch in two in vivo models, one on ethylene glycol-induced calcium oxalate crystal formation and the other to assess the effects of these extracts on magnesium oxide-induced struvite crystal formation. The experiment involved the administration of different doses of aqueous and ethanolic extracts of S. costus (200 and 400 mg/kg) and essential oils (25 and 50 mg/kg) to male Wistar rats, followed by the evaluation of various physiological, biochemical and histopathological parameters. The results demonstrated that the administration of S. costus essential oils and extracts had significant effects on the rats, influencing body weight, urine volume, crystal deposition, cytobacteriological examination of urine, and serum biochemical parameters. Histopathological examinations revealed varying impacts on the kidneys and livers of the treated rats. The findings suggest that S. costus extracts and essential oils may hold promise in inhibiting calcium oxalate crystal formation in vivo and influencing various physiological and biochemical parameters in rats. Overall, the 200 mg/kg ethanolic extract of S. costus demonstrated antilithiatic efficacy, did not exhibit signs of toxicity and reduced the number of crystals in the kidneys. Furthermore, the study did not find a significant effect on reducing struvite crystals.

3.
Molecules ; 28(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36677724

RESUMEN

Saussurea costus (Falc) Lipsch is a traditional herb used to treat kidney stone problems because it contains several molecules used to treat this health problem, such as quercitrin. Infectious stones are the most painful of all urinary tract disorders, with ammonium phosphate (struvite) and carbapatite stones being the most common, caused by a bacterial infection with urease activity. These stones are treated with antibiotics, but antibiotic resistance is on the rise. The current study investigated the anti-urolithic activities of S. costus aqueous and ethanolic extracts of against struvite crystals synthesized using microscopic crystallization and turbidimetric methods, respectively. The utilized methods indicated that the ethanolic extract of this plant has a significant inhibitory effect on struvite crystallization, with a percentage inhibition of (87.45 ± 1.107) (p < 0.001) for a concentration of 1 mg mL−1 and a decrease in the number of struvite crystals, reaching values less than 100/mm3. For the number of struvite crystals inhibited by cystone, we found a value of 400/mm3 and with the aqueous extract we found 700/mm3. The antibacterial activity of the plant extracts studied was examined against several urease-producing bacteria, and this activity was evaluated by qualitative and quantitative evaluation methods; the highest minimum inhibitory concentration was seen in the ethanolic extract, with an MIC of 50 mg mL−1 for Staphylococcus aureus followed by an MIC of 200 mg mL−1 for Klebsiella pneumoniae. It showed a minimal bactericidal concentration (MBC) against S. aureus and K. pneumoniae (>50 mg mL−1 and >200 mg mL−1, respectively). Furthermore, to determine the extract's anti-inflammatory activity, in vivo anti-inflammatory activity was investigated in rats. The results show that at a dose of 400 mg kg−1, the ethanolic extract has a maximum edema inhibition of 66%.


Asunto(s)
Antiinfecciosos , Asteraceae , Saussurea , Ratas , Animales , Saussurea/química , Staphylococcus aureus , Estruvita , Ureasa , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinfecciosos/farmacología , Etanol/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Agua/farmacología , Antiinflamatorios/farmacología , Pruebas de Sensibilidad Microbiana
4.
Curr Top Microbiol Immunol ; 434: 123-134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34850285

RESUMEN

There are numbers of leukocytes present in peritoneal cavity, not only protecting body cavity from infection but also contributing to peripheral immunity including natural antibody production in circulation. The peritoneal leukocytes compose unique immune compartment, the functions of which cannot be replaced by other lymphoid organs. Atypical lymphoid clusters, called "milky spots", that are located in visceral adipose tissue omentum have the privilege of immune niche in terms of differentiation, recruitment, and activation of peritoneal immunity, yet mechanisms underlying the regulation are underexplored. In this review, I discuss the emerging views of peritoneal immune system in the contexts of its development, organization, and functions.


Asunto(s)
Tejido Linfoide , Cavidad Peritoneal , Epiplón
5.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807632

RESUMEN

The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NM on ILCs and other components of the serosal immune system are scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NM may lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NM on the serosal immune system.


Asunto(s)
Sistema Inmunológico/inmunología , Nanoestructuras/química , Cavidad Peritoneal/fisiología , Membrana Serosa/inmunología , Cavidad Torácica/inmunología , Animales , Homeostasis/inmunología , Humanos , Inflamación/inmunología , Linfocitos/inmunología
6.
Biochem Biophys Res Commun ; 526(4): 1164-1169, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32327258

RESUMEN

The functional analysis of linker-mediated complex (FALC) strategy that facilitates functional analysis of a common subunit of multi-subunit protein complexes in cells constitutes three steps; (1) a common subunit is fused to a specific subunit via recombinant DNA, (2) mutation is introduced into a portion of the common subunit of the fused protein, and (3) the mutational effect on the fused protein is evaluated by transformation and analysis of multiple appropriate gene knockout yeast strains. Conceptually, the FALC strategy is applicable to any common subunit of multi-subunit protein complexes in any cell type. However, the proximity of two subunits to fuse, preparation of multiple gene knockout cells, and utilization of yeast cells can together prevent the practical and broad usage of the FALC strategy for analyzing all multi-subunit complexes in all cell types. In this study, we analyzed histone H2B as a common subunit of histone H2A/H2B and histone variant H2A.Z/H2B dimers. The FALC strategy was improved in three ways; (i) a long linker (up to 300 amino acids) was used to fuse H2B with H2A.Z in yeast cells, (ii) the effects of the fused H2B-H2A.Z harboring mutation in the H2B portion was evaluated in H2A.Z knockout yeast strains and it was not essential to knockout two copies of H2B genes, and (iii) this occurred even in vertebrate cells possessing a dozen H2B genes. This improved FALC (iFALC) strategy reveals that vertebrate H2B-D68, corresponding to yeast H2B-D71, is critical for chromatin binding of the H2A.Z/H2B dimer, and this is evolutionarily conserved.


Asunto(s)
Complejos Multiproteicos/metabolismo , Mapeo de Interacción de Proteínas/métodos , Animales , Línea Celular , Pollos , Cromatina/metabolismo , Técnicas de Inactivación de Genes , Histonas/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(2): 699-704, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24374623

RESUMEN

Currently, there is no method to distinguish between the roles of a subunit in one multisubunit protein complex from its roles in other complexes in vivo. This is because a mutation in a common subunit will affect all complexes containing that subunit. Here, we describe a unique method to discriminate between the functions of a common subunit in different multisubunit protein complexes. In this method, a common subunit in a multisubunit protein complex is genetically fused to a subunit that is specific to that complex and point mutated. The resulting phenotype(s) identify the specific function(s) of the subunit in that complex only. Histone H2B is a common subunit in nucleosomes containing H2A/H2B or Htz1/H2B dimers. The H2B was fused to H2A or Htz1 and point mutated. This strategy revealed that H2B has common and distinct functions in different nucleosomes. This method could be used to study common subunits in other multisubunit protein complexes.


Asunto(s)
Complejos Multiproteicos/genética , Proteínas/genética , Saccharomycetales/genética , Northern Blotting , Inmunoprecipitación de Cromatina , Histonas/genética , Histonas/metabolismo , Immunoblotting , Nucleosomas/genética , Nucleosomas/metabolismo , Plásmidos/genética , Mutación Puntual/genética , Análisis de Supervivencia
8.
Fish Shellfish Immunol ; 44(2): 633-41, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25804491

RESUMEN

FALC cells are natural helper cells producing Th2-type cytokines, which express c-kit, Sca-1, IL7R and CD45 in mouse and human. These cells are involved in allergic responses and contribute to the inflammatory reactions of adipose tissue; however, a lack of information prevails about the presence of these cells in other species. The aim of the study was to identify and characterise FALC cells in the common carp (Cyprinus carpio) using immunohistochemistry and molecular biology techniques as well as to explore their relationships with their microenvironment. Histological description of the FALC was performed using H&E and polyclonal antibodies were used against cell-surface markers such as c-kit, Sca-1 and CD45. Furthermore, gene expression of c-kit, Sca-1 and IL7R was assessed. C. carpio FALC cells express the same surface markers reported in FALC of the mouse at both the pre- and post-transcriptional level. By exposure to the soluble fraction of helminths, FALC cells produce abundant Th2 cytokines (IL-5, IL-6 and IL-13) but do not synthesise IL-1α. Additionally, FALC cells probably participate in vascular remodelling of the intestine vessels, inducing tumours because a malignant haemangiosarcoma in the peritoneal cavity was found. In this tumour, abundant FALC with their characteristic cell-surface markers were detected. The findings of this study suggest the involvement of some proto-oncogenes such as c-kit and Sca-1, and the deregulation of Src kinases modulated by CD45 present in C. carpio FALC with the ontogeny of peritoneal haemangiosarcoma in this fish species.


Asunto(s)
Carpas/inmunología , Enfermedades de los Peces/inmunología , Hemangiosarcoma/veterinaria , Grasa Intraabdominal/inmunología , Tejido Linfoide/inmunología , Neoplasias Peritoneales/veterinaria , Análisis de Varianza , Animales , Secuencia de Bases , Análisis por Conglomerados , Citocinas/biosíntesis , Cartilla de ADN/genética , ADN Complementario/genética , Ensayo de Inmunoadsorción Enzimática , Hemangiosarcoma/inmunología , Inmunohistoquímica/veterinaria , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Funciones de Verosimilitud , Tejido Linfoide/citología , Tejido Linfoide/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Neoplasias Peritoneales/inmunología , Filogenia , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
9.
J Ethnopharmacol ; 326: 117911, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38355028

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dolomiaea costus (Falc.), formerly Saussurea costus (Falc.) Lipsch., an ayurvedic medicinal plant, has long been recognized and utilized in diverse indigenous systems of medicine for its multifaceted therapeutic properties, including anti-inflammatory, carminative, expectorant, antiarthritic, antiseptic, aphrodisiac, anodyne, and antidiabetic effects. AIM OF THE STUDY: The potential and underlying mechanisms of D. costus root as an antidiabetic agent were investigated in this study. Additionally, the quantification of phenolic and flavonoid compounds, which dominate the extracts, was of particular interest in order to elucidate their contribution to the observed effects. MATERIALS AND METHODS: High-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was employed to analyze the chemical constituents in D. costus root aqueous extract (DCA) and D. costus root ethanolic extract (DCE). Furthermore, the inhibitory potentials of DCE and its respective fractions as well as DCA against α-amylase, α-glucosidase, and lipase enzymes were assessed. Subsequently, the efficacy of DCA and DCE extracts was evaluated using an established streptozotocin (STZ)-induced diabetic animal model; this involved administering the extracts at doses of 200 and 400 mg/kg bwt. and comparing them with a positive control (glibenclamide (Glib.) at 0.6 mg/kg bwt.). After induction of diabetes (except for negative control), all animals received the treatments orally for 21 days consecutively, followed by the collection of rat serum to assess various parameters including, glycemic and lipid profiles, liver and kidney functions, antioxidant activity, glycolysis, and gluconeogenesis pathways. RESULTS: The results of HPLC-ESI-MS/MS revealed that isochlorogenic acid A (8393.64 µg/g) and chlorogenic acid (6532.65 µg/g) were the predominant compounds in DCE and DCA, respectively. Both extracts exhibited notable antidiabetic properties, as evidenced by their ability to regulate blood glycemic and lipid profiles (glucose, insulin, HBA1C; HDL, TC, TGs), liver enzymes (ALT, ALP, AST), kidney function (urea, creatinine, uric acid), oxidative stress biomarkers (MDA), antioxidant enzymes (CAT, GSH, SOD), as well as glycolysis (glucokinase) and gluconeogenesis (G-6-P, FBP1) pathways. CONCLUSIONS: Furthermore, the administration of D. costus extracts significantly mitigated STZ-induced diabetic hyperglycemia. These results can be attributed, at least partially, to the presence of several polyphenolic compounds with potent antioxidant and anti-inflammatory activities.


Asunto(s)
Costus , Diabetes Mellitus Experimental , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Estreptozocina , Costus/química , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Espectrometría de Masas en Tándem , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/química , Metabolismo de los Hidratos de Carbono , Antiinflamatorios/farmacología , Lípidos/uso terapéutico , Glucemia
10.
Am J Chin Med ; 50(1): 295-311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34931585

RESUMEN

Human oral squamous cell carcinomas (OSCCs) have high cancer mortality and a 5-year survival rate lower than that of most other carcinomas. New therapeutic strategies are required for the treatment and prevention against OSCCs. An approach to cancer therapy using plant-derived natural compounds has been actively in progress as a trend. Falcarindiol (FALC), or its isolated form Ostericum koreanum Kitagawa (O. koreanum), is present in many food and dietary plants, especially in carrots, and this compound has a variety of beneficial effects. However, biological activity of FALC has not been reported in OSCCs yet. This study aimed to demonstrate the antitumor effects of FALC against OSCCs, YD-10B cells. In this study, FALC was selected as a result of screening for compounds isolated from various natural products in YD-10B cells. FALC suppressed cell growth, and FALC-induced apoptotic cell death was mainly accompanied by the dephosphorylation of PI3K, AKT, mTOR, and p70S6K. The apoptotic cell death was also associated with autophagy as evidenced by the expression of Beclin-1, the conversion of LC3-II, and the formation of autophagosome. FALC-induced autophagy was accompanied by MAPKs including ERK1/2 and p38. Furthermore, FALC caused the antimetastatic effects by inhibiting the migration and invasion of YD-10B cells. Taken together, the findings suggest the potential value of FALC as a novel candidate for therapeutic strategy against OSCCs.


Asunto(s)
Muerte Celular Autofágica , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Apoptosis , Autofagia , Línea Celular Tumoral , Proliferación Celular , Diinos , Alcoholes Grasos , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa , Serina-Treonina Quinasas TOR/metabolismo
11.
Life (Basel) ; 12(7)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35888114

RESUMEN

The plant Saussurea costus (Falc) Lipsch has many biological activities and a strong curative and preventive power against a variety of diseases including cancer, diabetes, and hemorrhoids. In the current study, phytochemical screening was carried out as well as an investigation of the antilithiatic and antioxidant activities of aqueous and ethanolic extracts of this plant. The results showed that aqueous and ethanolic extracts were effective in reducing cystine stone mass and that the aqueous extract of Saussurea costus (Falc) Lipsch had the highest percentage of dissolution (6.756 ± 1.024) (p < 0.05). A turbidimetric method and a crystallization test were used to evaluate the antilithiatic activity of an aqueous and ethanolic extract of this plant on calcium oxalate crystallization. The results of these methods revealed that the ethanolic extract of this plant has a significant inhibitory effect on calcium oxalate crystallization, with a percentage inhibition of (91.017 ± 0.299) (p < 0.05) for a concentration of 2 mg mL−1. The DPPH method revealed that the ethanolic extract of Saussurea costus (Falc) Lipsch with a concentration of (IC50 = 0.12325 mg mL−1) had the highest IC50, whereas the FRAP method revealed that the aqueous extract of Saussurea costus (Falc) Lipsch with a concentration of 300 µg mL−1 has the most significant reducing power with (OD = 0.56 ± 0.05). These findings indicate that aqueous and ethanolic extracts of Saussurea costus (Falc) Lipsch had a significant effect on whewellite and weddellite and a greater free radical scavenging effect but had no effect on cystine dissolution.

12.
J Leukoc Biol ; 109(4): 717-729, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32881077

RESUMEN

The peritoneal cavity is a fluid filled space that holds most of the abdominal organs, including the omentum, a visceral adipose tissue that contains milky spots or clusters of leukocytes that are organized similar to those in conventional lymphoid tissues. A unique assortment of leukocytes patrol the peritoneal cavity and migrate in and out of the milky spots, where they encounter Ags or pathogens from the peritoneal fluid and respond accordingly. The principal role of leukocytes in the peritoneal cavity is to preserve tissue homeostasis and secure tissue repair. However, when peritoneal homeostasis is disturbed by inflammation, infection, obesity, or tumor metastasis, specialized fibroblastic stromal cells and mesothelial cells in the omentum regulate the recruitment of peritoneal leukocytes and steer their activation in unique ways. In this review, the types of cells that reside in the peritoneal cavity, the role of the omentum in their maintenance and activation, and how these processes function in response to pathogens and malignancy will be discussed.


Asunto(s)
Inmunidad , Epiplón/inmunología , Cavidad Peritoneal/fisiología , Inmunidad Adaptativa , Animales , Humanos , Inmunidad Innata
13.
Immunometabolism ; 2(2)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292596

RESUMEN

The burden of aging and obesity is urging extended investigation into the molecular mechanisms that underlie chronic adipose tissue inflammation. B cell-targeted therapies are emerging as novel tools to modulate the immune system and thereby mitigate aging and obesity-related metabolic complications.

14.
Front Pharmacol ; 11: 614413, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33716727

RESUMEN

The Aquilaria sinensis (Lour.) Gilg (CX)-Aucklandia costus Falc. (MX) herbal pair is frequently used in traditional Chinese medicine prescriptions for treating depression. The volatile oil from CX and MX has been shown to have good pharmacological activities on the central nervous system, but its curative effect and mechanism in the treatment of depression are unclear. Therefore, the antidepressant effect of the volatile oil from CX-MX (CMVO) was studied in chronic unpredictable mild stress (CUMS) rats. The suppressive effects of CMVO (25, 50, 100 µL/kg) against CUMS-induced depression-like behavior were evaluated using the forced swimming test (FST), open field test (OFT) and sucrose preference test (SPT). The results showed that CMVO exhibited an antidepressant effect, reversed the decreased sugar preference in the SPT and prolongation of immobility time in the FST induced by CUMS, increased the average speed, time to enter the central area, total moving distance, and enhanced the willingness of rats to explore the environment in the OFT. Inhalational administration of CMVO decreased levels of adrenocorticotropic hormone and corticosterone in serum and the expression of corticotropin-releasing hormone mRNA in the hypothalamus, which indicated regulation of over-activation of the hypothalamic-pituitary-adrenal (HPA) axis. In addition, CMVO restored levels of 5-hydroxytryptamine (5-HT), dopamine, norepinephrine and acetylcholine in the hippocampus. The RT-PCR and immunohistochemistry results showed that CMVO up-regulated the expression of 5-HT1A mRNA. This study demonstrated the antidepressant effect of CMVO in CUMS rats, which was possibly mediated via modulation of monoamine and cholinergic neurotransmitters and regulation of the HPA axis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA