Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 69(3): 480-492.e7, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395065

RESUMEN

Fatty acid oxidation (FAO) is crucial for cells to overcome metabolic stress by providing ATP and NADPH. However, the mechanism by which FAO is regulated in tumors remains elusive. Here we show that Nur77 is required for the metabolic adaptation of melanoma cells by protecting FAO. Glucose deprivation activates ERK2 to phosphorylate and induce Nur77 translocation to the mitochondria, where Nur77 binds to TPß, a rate-limiting enzyme in FAO. Although TPß activity is normally inhibited by oxidation under glucose deprivation, the Nur77-TPß association results in Nur77 self-sacrifice to protect TPß from oxidation. FAO is therefore able to maintain NADPH and ATP levels and prevent ROS increase and cell death. The Nur77-TPß interaction further promotes melanoma metastasis by facilitating circulating melanoma cell survival. This study demonstrates a novel regulatory function of Nur77 with linkage of the FAO-NADPH-ROS pathway during metabolic stress, suggesting Nur77 as a potential therapeutic target in melanoma.


Asunto(s)
Melanoma/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Supervivencia Celular/fisiología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Células HEK293 , Humanos , Metabolismo de los Lípidos , Melanoma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/metabolismo , Subunidad beta de la Proteína Trifuncional Mitocondrial/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
2.
EMBO Rep ; 24(4): e56932, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36862324

RESUMEN

Obesity is associated with metabolic disorders and chronic inflammation. However, the obesity-associated metabolic contribution to inflammatory induction remains elusive. Here, we show that, compared with lean mice, CD4+ T cells from obese mice exhibit elevated basal levels of fatty acid ß-oxidation (FAO), which promote T cell glycolysis and thus hyperactivation, leading to enhanced induction of inflammation. Mechanistically, the FAO rate-limiting enzyme carnitine palmitoyltransferase 1a (Cpt1a) stabilizes the mitochondrial E3 ubiquitin ligase Goliath, which mediates deubiquitination of calcineurin and thus enhances activation of NF-AT signaling, thereby promoting glycolysis and hyperactivation of CD4+ T cells in obesity. We also report the specific GOLIATH inhibitor DC-Gonib32, which blocks this FAO-glycolysis metabolic axis in CD4+ T cells of obese mice and reduces the induction of inflammation. Overall, these findings establish a role of a Goliath-bridged FAO-glycolysis axis in mediating CD4+ T cell hyperactivation and thus inflammation in obese mice.


Asunto(s)
Ácidos Grasos , Inflamación , Animales , Ratones , Ratones Obesos , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo , Glucólisis , Ubiquitina-Proteína Ligasas/metabolismo , Oxidación-Reducción
3.
Mol Cell ; 68(2): 336-349.e6, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053957

RESUMEN

The roles of CDK4 in the cell cycle have been extensively studied, but less is known about the mechanisms underlying the metabolic regulation by CDK4. Here, we report that CDK4 promotes anaerobic glycolysis and represses fatty acid oxidation in mouse embryonic fibroblasts (MEFs) by targeting the AMP-activated protein kinase (AMPK). We also show that fatty acid oxidation (FAO) is specifically induced by AMPK complexes containing the α2 subunit. Moreover, we report that CDK4 represses FAO through direct phosphorylation and inhibition of AMPKα2. The expression of non-phosphorylatable AMPKα2 mutants, or the use of a CDK4 inhibitor, increased FAO rates in MEFs and myotubes. In addition, Cdk4-/- mice have increased oxidative metabolism and exercise capacity. Inhibition of CDK4 mimicked these alterations in normal mice, but not when skeletal muscle was AMPK deficient. This novel mechanism explains how CDK4 promotes anabolism by blocking catabolic processes (FAO) that are activated by AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Ácidos Grasos/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Proteínas Quinasas Activadas por AMP/genética , Animales , Quinasa 4 Dependiente de la Ciclina/genética , Embrión de Mamíferos/metabolismo , Ácidos Grasos/genética , Fibroblastos/metabolismo , Ratones , Ratones Noqueados , Mutación , Oxidación-Reducción
4.
J Biol Chem ; 299(10): 105220, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660921

RESUMEN

Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.

5.
Cell Biol Int ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922770

RESUMEN

Oxidative stress plays a pivotal role in the development of diabetic cardiomyopathy (DCM). Previous studies have revealed that inhibition of mitochondrial fission suppressed oxidative stress and alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. However, no research has confirmed whether mitochondria fission accentuates hyperglycemia-induced cardiomyoblast oxidative stress through regulating fatty acid oxidation (FAO). We used H9c2 cardiomyoblasts exposed to high glucose (HG) 33 mM to simulate DCM in vitro. Excessive mitochondrial fission, poor cell viability, and lipid accumulation were observed in hyperglycemia-induced H9c2 cardiomyoblasts. Also, the cells were led to oxidative stress injury, lower adenosine triphosphate (ATP) levels, and apoptosis. Dynamin-related protein 1 (Drp1) short interfering RNA (siRNA) decreased targeted marker expression, inhibited mitochondrial fragmentation and lipid accumulation, suppressed oxidative stress, reduced cardiomyoblast apoptosis, and improved cell viability and ATP levels in HG-exposed H9c2 cardiomyoblasts, but not in carnitine palmitoyltransferase 1 (CPT1) inhibitor etomoxir treatment cells. We also found subcellular localization of CPT1 on the mitochondrial membrane, FAO, and levels of nicotinamide adenine dinucleotide phosphate (NADPH) were suppressed after exposure to HG treatment, whereas Drp1 siRNA normalized mitochondrial CPT1, FAO, and NADPH. However, the blockade of FAO with etomoxir abolished the above effects of Drp1 siRNA in hyperglycemia-induced H9c2 cardiomyoblasts. The preservation of mitochondrial function through the Drp1/CPT1/FAO pathway is the potential mechanism of inhibited mitochondria fission in attenuating oxidative stress injury of hyperglycemia-induced H9c2 cardiomyoblasts.

6.
BMC Public Health ; 24(1): 1317, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750483

RESUMEN

BACKGROUND: Despite the positive impact of trade liberalization on food availability in India, severe inequality in nutrition consumption at the district level persists. Empirical evidence on the relationship between trade liberalization and nutrition consumption inequality often offers a country-level perspective and generates disputed outcomes. The study aimed to explore the effects of trade liberalization on inequality in nutrition consumption at the district level in India and to examine the heterogeneity of the impact on different nutrition consumption. METHODS: Our study employed the Gini Index to measure nutrition consumption inequality of 2 macronutrients and 5 micronutrients at the district level in India during 2009-2011, utilizing the comprehensive FAO/WHO individual food consumption data. The import tariff was adopted as a proxy for trade liberalization, as its externally imposed nature facilitates a causal interpretation. We further identified the direct causal relationship between food trade liberalization and inequality in nutrition consumption using a fixed effects model. RESULTS: The results show that more than 50% of the individuals in the survey districts did not meet the dietary standards for both macronutrients and micronutrients. Food trade liberalization hindered the improvement of inequality in nutrition consumption. As import tariffs were reduced by 1%, the inequality in intake of calories, zinc, vitamin B1, and vitamin B2 increased significantly by 0.45, 0.56, 0.48, and 0.66, respectively, which might be related to food market performance. The results also highlight the positive role of the gender gap, female-headed households, and caste culture on inequality in nutrition consumption in India. CONCLUSIONS: To ease the shock of liberalization and minimize its inequality effects, complementary measures should be adopted, such as improving food logistic conditions in poor areas, and nutrition relief schemes.


Asunto(s)
Comercio , Humanos , India , Femenino , Masculino , Adulto , Comercio/estadística & datos numéricos , Micronutrientes , Adolescente , Abastecimiento de Alimentos/estadística & datos numéricos , Adulto Joven , Dieta/estadística & datos numéricos , Política , Factores Socioeconómicos , Persona de Mediana Edad , Niño , Estado Nutricional
7.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542220

RESUMEN

The accumulation of lipid droplets (LDs) and ceramides (Cer) is linked to non-alcoholic fatty liver disease (NAFLD), regularly co-existing with type 2 diabetes and decreased immune function. Chronic inflammation and increased disease severity in viral infections are the hallmarks of the obesity-related immunopathology. The upregulation of neutral sphingomyelinase-2 (NSM2) has shown to be associated with the pathology of obesity in tissues. Nevertheless, the role of sphingolipids and specifically of NSM2 in the regulation of immune cell response to a fatty acid (FA) rich environment is poorly studied. Here, we identified the presence of the LD marker protein perilipin 3 (PLIN3) in the intracellular nano-environment of NSM2 using the ascorbate peroxidase APEX2-catalyzed proximity-dependent biotin labeling method. In line with this, super-resolution structured illumination microscopy (SIM) shows NSM2 and PLIN3 co-localization in LD organelles in the presence of increased extracellular concentrations of oleic acid (OA). Furthermore, the association of enzymatically active NSM2 with isolated LDs correlates with increased Cer levels in these lipid storage organelles. NSM2 enzymatic activity is not required for NSM2 association with LDs, but negatively affects the LD numbers and cellular accumulation of long-chain unsaturated triacylglycerol (TAG) species. Concurrently, NSM2 expression promotes mitochondrial respiration and fatty acid oxidation (FAO) in response to increased OA levels, thereby shifting cells to a high energetic state. Importantly, endogenous NSM2 activity is crucial for primary human CD4+ T cell survival and proliferation in a FA rich environment. To conclude, our study shows a novel NSM2 intracellular localization to LDs and the role of enzymatically active NSM2 in metabolic response to enhanced FA concentrations in T cells.


Asunto(s)
Diabetes Mellitus Tipo 2 , Esfingomielina Fosfodiesterasa , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Obesidad/metabolismo , Ácido Oléico/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Linfocitos T/metabolismo , Triglicéridos/metabolismo
8.
J Environ Manage ; 354: 120246, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359624

RESUMEN

Accurate and reliable estimation of Reference Evapotranspiration (ETo) is crucial for water resources management, hydrological processes, and agricultural production. The FAO-56 Penman-Monteith (FAO-56PM) approach is recommended as the standard model for ETo estimation; nevertheless, the absence of comprehensive meteorological variables at many global locations frequently restricts its implementation. This study compares shallow learning (SL) and deep learning (DL) models for estimating daily ETo against the FAO-56PM approach based on various statistic metrics and graphic tool over a coastal Red Sea region, Sudan. A novel approach of the SL model, the Catboost Regressor (CBR) and three DL models: 1D-Convolutional Neural Networks (1D-CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) were adopted and coupled with a semi-supervised pseudo-labeling (PL) technique. Six scenarios were developed regarding different input combinations of meteorological variables such as air temperature (Tmin, Tmax, and Tmean), wind speed (U2), relative humidity (RH), sunshine hours duration (SSH), net radiation (Rn), and saturation vapor pressure deficit (es-ea). The results showed that the PL technique reduced the systematic error of SL and DL models during training for all the scenarios. The input combination of Tmin, Tmax, Tmean, and RH reflected higher performance than other combinations for all employed models. The CBR-PL model demonstrated good generalization abilities to predict daily ETo and was the overall superior model in the testing phase according to prediction accuracy, stability analysis, and less computation cost compared to DL models. Thus, the relatively simple CBR-PL model is highly recommended as a promising tool for predicting daily ETo in coastal regions worldwide which have limited climate data.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Clima , Viento , Temperatura
9.
Environ Monit Assess ; 196(8): 684, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954087

RESUMEN

Heavy metal contamination in leafy vegetables poses significant health risks, highlighting the urgent need for stringent monitoring and intervention measures to ensure food safety and mitigate potential adverse effects on public health. This study investigates the levels of heavy metals, including cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), zinc (Zn), and copper (Cu), in locally grown and commercially available leafy vegetables, comparing them to the safety limits established by WHO/FAO. The results revealed that levels of Cd, Cr, Ni, and Pb in the vegetables exceeded WHO/FAO limits, while Zn and Cu remained within permissible bounds. Marketed vegetables exhibited higher metal concentrations than those from nearby farms. For Cu (0.114-0.289 mg/kg) and Zn (0.005-0.574 mg/kg), the daily intake of metals (DIM) was below the dietary intake (DI) and upper limit (UL). Cd's DIM (0.031-0.062 mg/kg) remained below the UL but exceeded the DI. Marketed kale and mint surpassed both DI and UL limits for Ni, while local produce only exceeded the DI. All vegetables had DIM below the DI, except for mint and kale. For Pb, every vegetable exceeded DI limits, with market samples contributing significantly. Cr's DIM ranged from 0.028 to 1.335 mg/kg, for which no set maximum daily intake exists. The health risk index (HRI) values for Zn, Cd, Cu, Ni, and Pb suggested potential health risks associated with leafy greens, while Cr's HRI was below 1. The study underscores the need for stringent monitoring and intervention measures to mitigate the health risks posed by heavy metal contamination in leafy vegetables. These findings suggest that consuming these leafy greens may put consumers at considerable risk for health problems related to Cd, Cu, Ni, Pb, and Zn exposure.


Asunto(s)
Monitoreo del Ambiente , Contaminación de Alimentos , Metales Pesados , Salud Pública , Contaminantes del Suelo , Verduras , Metales Pesados/análisis , Verduras/química , Contaminación de Alimentos/análisis , Contaminantes del Suelo/análisis , Humanos , Medición de Riesgo
10.
Mol Med ; 29(1): 158, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996809

RESUMEN

BACKGROUND: Maresin1 (MaR1) is a potent lipid mediator that exhibits significant anti-inflammatory activity in the context of several inflammatory diseases. A previous study reported that MaR1 could suppress MSU crystal-induced peritonitis in mice. To date, the molecular mechanism by which MaR1 inhibits MSU crystal-induced inflammation remains poorly understood. METHODS: Mousebone marrow-derived macrophages (BMDMs) were pretreated with MaR1 and then stimulated with FAs (palmitic, C16:0 and stearic, C18:0) plus MSU crystals (FAs + MSUc). In vivo, the effects of MaR1 treatment or Prdx5 deficiency on MSUc induced peritonitis and arthritis mouse models were evaluated. RESULTS: The current study indicated that MaR1 effectively suppressed MSUc induced inflammation in vitro and in vivo. MaR1 reversed the decrease in Prdx5 mRNA and protein levels induced by FAs + MSUc. Further assays demonstrated that MaR1 acceleratedPrdx5 expression by regulating the Keap1-Nrf2 signaling axis. Activation of AMPK by Prdx5 improved homeostasis of the TXNIP and TRX proteins and alleviated mitochondrial fragmentation. In addition, Prdx5 overexpression inhibited the expression of CPT1A, a key enzyme for fatty acid oxidation (FAO). Prdx5 protected against defects in FA + MSUc induced FAO and the urea cycle. CONCLUSION: MaR1 treatment effectively attenuated MSUc induced inflammation by upregulating Prdx5 expression. Our study provides a new strategy by which Prdx5 may help prevent acute gout attacks.


Asunto(s)
Peritonitis , Ácido Úrico , Ratones , Animales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Inflamación/metabolismo
11.
BMC Cancer ; 23(1): 335, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041476

RESUMEN

BACKGROUND: Peroxisome proliferator activated receptors (PPARs) are a nuclear hormone receptors superfamily that is closely related to fatty acid (FA) metabolism and tumor progression. Solute carrier family 27 member 2 (SLC27A2) is important for FA transportation and metabolism and is related to cancer progression. This study aims to explore the mechanisms of how PPARs and SLC27A2 regulate FA metabolism in colorectal cancer (CRC) and find new strategies for CRC treatment. METHODS: Biological information analysis was applied to detect the expression and the correlation of PPARs and SLC27A2 in CRC. The protein-protein interaction (PPI) interaction networks were explored by using the STRING database. Uptake experiments and immunofluorescence staining were used to analyse the function and number of peroxisomes and colocalization of FA with peroxisomes, respectively. Western blotting and qRT‒PCR were performed to explore the mechanisms. RESULTS: SLC27A2 was overexpressed in CRC. PPARs had different expression levels, and PPARG was significantly highly expressed in CRC. SLC27A2 was correlated with PPARs in CRC. Both SLC27A2 and PPARs were closely related to fatty acid oxidation (FAO)‒related genes. SLC27A2 affected the activity of ATP Binding Cassette Subfamily D Member 3 (ABCD3), also named PMP70, the most abundant peroxisomal membrane protein. We found that the ratios of p-Erk/Erk and p-GSK3ß/GSK3ß were elevated through nongenic crosstalk regulation of the PPARs pathway. CONCLUSIONS: SLC27A2 mediates FA uptake and beta-oxidation through nongenic crosstalk regulation of the PPARs pathway in CRC. Targeting SLC27A2/FATP2 or PPARs may provide new insights for antitumour strategies.


Asunto(s)
Neoplasias Colorrectales , Receptores Activados del Proliferador del Peroxisoma , Humanos , Ácidos Grasos/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Receptores Citoplasmáticos y Nucleares , Coenzima A Ligasas/metabolismo
12.
J Fish Dis ; 46(12): 1391-1401, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37723600

RESUMEN

Streptococcus iniae is a bacterial pathogen that causes streptococcosis, leading to significant losses in fish aquaculture globally. This study reported a newly developed probe-based quantitative polymerase chain reaction (qPCR) method for the detection of S. iniae. The primers and probes were designed to target the lactate oxidase gene. The optimized method demonstrated a detection limit of 20 copies per reaction and was specific to S. iniae, as evidenced by no cross-reactivity when assayed against genetic materials extracted from 23 known aquatic animal pathogens, and fish samples infected with Streptococcus agalactiae or Streptococcus dysgalactiae. To validate the newly developed qPCR protocol with field samples, fish specimens were systematically investigated following the Food and Agriculture Organization of the United Nations & Network of Aquaculture Centres in Asia-Pacific three diagnostic levels approach, which integrated basic and advanced techniques for disease diagnosis, including observation of gross signs (level I), bacterial isolation (level II), qPCR and 16S rDNA sequencing (level III). The result showed that 7/7 affected farms (three Asian seabass farms and four tilapia farms) experiencing clinical signs of streptococcosis were diagnosed positive for S. iniae. qPCR assays using DNA extracted directly from fish tissue detected S. iniae in 11 out of 36 fish samples (30.6%), while 24 out of 36 samples (66.7%) tested positive after an enrichment step, including apparently healthy fish from affected farms. Bacterial isolation of S. iniae was only successful in a proportion of clinically diseased fish but not in healthy-looking fish from the same farm. Overall, the newly developed qPCR protocol combined with enrichment would be a useful tool for the diagnosis and surveillance of S. iniae infections in fish populations, thereby aiding in the disease control and prevention.


Asunto(s)
Enfermedades de los Peces , Infecciones Estreptocócicas , Tilapia , Animales , Streptococcus iniae , Enfermedades de los Peces/microbiología , Streptococcus agalactiae/genética , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/microbiología , Tilapia/microbiología
13.
Alzheimers Dement ; 19(4): 1466-1478, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35870133

RESUMEN

INTRODUCTION: Despite evidence for systemic mitochondrial dysfunction early in Alzheimer's disease (AD) pathogenesis, reliable approaches monitoring these key bioenergetic alterations are lacking. We used peripheral blood mononuclear cells (PBMCs) and platelets as reporters of mitochondrial function in the context of cognitive impairment and AD. METHODS: Mitochondrial function was analyzed using complementary respirometric approaches in intact and permeabilized cells from older adults with normal cognition, mild cognitive impairment (MCI), and dementia due to probable AD. Clinical outcomes included measures of cognitive function and brain morphology. RESULTS: PBMC and platelet bioenergetic parameters were lowest in dementia participants. MCI platelets exhibited higher maximal respiration than normocognitives. PBMC and platelet respiration positively associated with cognitive ability and hippocampal volume, and negatively associated with white matter hyperintensities. DISCUSSION: Our findings indicate blood-based bioenergetic profiling can be used as a minimally invasive approach for measuring systemic bioenergetic differences associated with dementia, and may be used to monitor bioenergetic changes associated with AD risk and progression. HIGHLIGHTS: Peripheral cell bioenergetic alterations accompanied cognitive decline in older adults with mild cognitive impairment (MCI) and Alzheimer's disease (AD) and related dementia (DEM). Peripheral blood mononuclear cells (PBMC) and platelet glucose-mediated respiration decreased in participants with dementia compared to normocognitive controls (NC). PBMC fatty-acid oxidation (FAO)-mediated respiration progressively declined in MCI and AD compared to NC participants, while platelet FAO-mediated respiration exhibited an inverse-Warburg effect in MCI compared to NC participants. Positive associations were observed between bioenergetics and Modified Preclinical Alzheimer's Cognitive Composite, and bioenergetics and hippocampal volume %, while a negative association was observed between bioenergetics and white matter hyperintensities. Systemic mitochondrial dysfunction is associated with cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/patología , Leucocitos Mononucleares/patología , Mitocondrias , Metabolismo Energético , Cognición , Disfunción Cognitiva/patología
14.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628819

RESUMEN

Most ovarian cancer patients develop recurrent cancers which are often resistant to commonly employed chemotherapy agents, such as cisplatin. We have previously shown that the inhibition of heat shock protein 27 (HSP27) or fatty acid oxidation (FAO) sensitizes cisplatin-resistant ovarian cancer cell lines to cisplatin and dual inhibition of both HSP27 and FAO induces substantial cell death in vitro. However, it is unclear how HSP27 and FAO promote cisplatin resistance, and if dual inhibition of both HSP27 and FAO would augment cisplatin treatment in vivo. Here we showed that HSP27 knockdown in two cisplatin-resistant ovarian cancer cell lines (A2780CIS and PEO4) resulted in more ROS production upon cisplatin treatment. HSP27-knockdown cancer cells exhibited decreased levels of reduced glutathione (GSH) and glucose6phosphate dehydrogenase (G6PD), a crucial pentose phosphate pathway enzyme. ROS depletion with the compound N-acetyl cysteine (NAC) attenuated cisplatin-induced upregulation of HSP27, FAO, and markers of apoptosis and ferroptosis in cisplatin-resistant ovarian cancer cell lines. Finally, inhibition of HSP27 and FAO with ivermectin and perhexiline enhanced the cytotoxic effect of cisplatin in A2780CIS xenograft tumors in vivo. Our results suggest that two different cisplatin-resistant ovarian cancer cell lines upregulate HSP27 and FAO to deplete cisplatin-induced ROS to attenuate cisplatin's cytotoxic effect.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Humanos , Femenino , Cisplatino/farmacología , Proteínas de Choque Térmico HSP27/genética , Especies Reactivas de Oxígeno , Recurrencia Local de Neoplasia , Neoplasias Ováricas/tratamiento farmacológico , Línea Celular , Ácidos Grasos
15.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983080

RESUMEN

Several studies have linked bad prognoses of acute myeloid leukemia (AML) to the ability of leukemic cells to reprogram their metabolism and, in particular, their lipid metabolism. In this context, we performed "in-depth" characterization of fatty acids (FAs) and lipid species in leukemic cell lines and in plasma from AML patients. We firstly showed that leukemic cell lines harbored significant differences in their lipid profiles at steady state, and that under nutrient stress, they developed common mechanisms of protection that led to variation in the same lipid species; this highlights that the remodeling of lipid species is a major and shared mechanism of adaptation to stress in leukemic cells. We also showed that sensitivity to etomoxir, which blocks fatty acid oxidation (FAO), was dependent on the initial lipid profile of cell lines, suggesting that only a particular "lipidic phenotype" is sensitive to the drug targeting of FAO. We then showed that the lipid profiles of plasma samples from AML patients were significantly correlated with the prognosis of patients. In particular, we highlighted the impact of phosphocholine and phosphatidyl-choline metabolism on patients' survival. In conclusion, our data show that balance between lipid species is a phenotypic marker of the diversity of leukemic cells that significantly influences their proliferation and resistance to stress, and thereby, the prognosis of AML patients.


Asunto(s)
Leucemia Mieloide Aguda , Metabolismo de los Lípidos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Ácidos Grasos/metabolismo , Sistemas de Liberación de Medicamentos
16.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902316

RESUMEN

The liver is a metabolic hub characterized by high levels of protein synthesis. Eukaryotic initiation factors, eIFs, control the first phase of translation, initiation. Initiation factors are essential for tumor progression and, since they regulate the translation of specific mRNAs downstream of oncogenic signaling cascades, may be druggable. In this review, we address the issue of whether the massive translational machinery of liver cells contributes to liver pathology and to the progression of hepatocellular carcinoma (HCC); it represents a valuable biomarker and druggable target. First, we observe that the common markers of HCC cells, such as phosphorylated ribosomal protein S6, belong to the ribosomal and translational apparatus. This fact is in agreement with observations that demonstrate a huge amplification of the ribosomal machinery during the progression to HCC. Some translation factors, such as eIF4E and eIF6, are then harnessed by oncogenic signaling. In particular, the action of eIF4E and eIF6 is particularly important in HCC when driven by fatty liver pathologies. Indeed, both eIF4E and eIF6 amplify at the translational level the production and accumulation of fatty acids. As it is evident that abnormal levels of these factors drive cancer, we discuss their therapeutic value.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Neoplasias Hepáticas/metabolismo , División Celular , Ribosomas/metabolismo
17.
Kidney Int ; 101(5): 987-1002, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35227690

RESUMEN

Acute kidney injury (AKI) is a life-threatening condition that is one of most common side effects of cisplatin therapy. Fatty acid oxidation (FAO) is the main source of energy production in kidney proximal tubular epithelial cells (PTECs) but it is inhibited in AKI. Recent work demonstrated that activation of the farnesoid X receptor (FXR) protects against AKI, but the underlying mechanism remains elusive. Using a model of cisplatin-induced AKI, we found that FXR and FAO-related genes were remarkably downregulated while kidney lipid accumulated. Proximal tubule-specific or whole body FXR knockout worsened, while pharmacological activation attenuated these effects. Conversely, FXR knockout in non-proximal tubules did not. RNA-sequencing of PTECs demonstrated increased transcripts involved in metabolic pathways in cells overexpressing FXR versus control after cisplatin treatment, specifically transcripts associated with FAO and peroxisome proliferator-activated receptor-γ (PPARγ) signaling. Furthermore, FXR overexpression or activation improved FAO and inhibited intracellular lipid accumulation in cisplatin-treated cells. In vivo studies have shown that pharmacological activation of PPARγ can prevent cisplatin-induced lipid accumulation, kidney tubule injury and kidney function decline. However, inhibition of PPARγ eliminated the protective effects of FXR compared to control mice during the cisplatin treatment phase and after ischemia-reperfusion injury. Consistent with findings in vivo, FXR/PPARγ reduced lipid accumulation by improving FAO in cisplatin-treated cells. Furthermore, the inhibition of carnitine palmitoyltransferase 1α abolished the protective effect of FXR in cisplatin-treated mice. Thus, FXR improves FAO and reduced lipid accumulation via PPARγ in PTECs of the kidney. Hence, reconstruction of the FXR/PPARγ/FAO axis may be a novel therapeutic strategy for preventing or treating AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Animales , Cisplatino/efectos adversos , Ácidos Grasos/metabolismo , Femenino , Humanos , Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR gamma/genética
18.
Ecol Appl ; 32(3): e2564, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35138690

RESUMEN

While the Convention on Biological Diversity employs a habitat-oriented definition of soil biodiversity including all kinds of species living in soil, the Food and Agriculture Organization, since 2002 assigned to safeguard soil biodiversity, excludes them by focusing on species directly providing four ecosystem services contributing to soil quality and functions: nutrient cycling, regulation of water flow and storage, soil structure maintenance and erosion control, and carbon storage and regulation of atmospheric composition. Many solitary wasps and 70% of wild bees nest below ground and require protection during this long and crucial period of their lifecycle. Recent research has demonstrated the extent of threats to which ground-nesting pollinators are exposed, for example, chemicals and deep tillage. Ground-nesting pollinators change soil texture directly by digging cavities, but more importantly by their indirect contribution to soil quality and functions: 87% of all flowering plants require pollinators. Without pollinators, soil would lose all ecosystem services provided by these flowering plants, for example, litter, shade, roots for habitats, and erosion control. Above- and belowground biota are in constant interaction. Therefore, and in line with the Convention's definition, the key stakeholder, the Food and Agriculture Organization should protect ground-nesting pollinators explicitly within soil biodiversity conservation.


Asunto(s)
Ecosistema , Suelo , Agricultura , Animales , Abejas , Biodiversidad
19.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806332

RESUMEN

Mutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy. Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase (VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible consequences of VARS2 depletion in zebrafish and cultured HEK293A cells. Transient VARS2 loss-of-function was induced in zebrafish embryos using Morpholinos. The enzymatic activity of VARS2 was measured in VARS2-depleted cells via northern blot. Heterozygous VARS2 knockout was established in HEK293A cells using CRISPR/Cas9 technology. BN-PAGE and SDS-PAGE were used to investigate electron transport chain (ETC) complexes, and the oxygen consumption rate and extracellular acidification rate were measured using a Seahorse XFe96 Analyzer. The activation of the integrated stress response (ISR) and possible disruptions in mitochondrial fatty acid oxidation (FAO) were explored using RT-qPCR and western blot. Zebrafish embryos with transient VARS2 loss-of-function showed features of heart failure as well as indications of CNS and skeletal muscle involvements. The enzymatic activity of VARS2 was significantly reduced in VARS2-depleted cells. Heterozygous VARS2-knockout cells showed a rearrangement of ETC complexes in favor of complexes III2, III2 + IV, and supercomplexes without significant respiratory chain deficiencies. These cells also showed the enhanced activation of the ISR, as indicated by increased eIF-2α phosphorylation and a significant increase in the transcript levels of ATF4, ATF5, and DDIT3 (CHOP), as well as disruptions in FAO. The activation of the ISR and disruptions in mitochondrial FAO may underlie the adaptive changes in VARS2-depleted cells.


Asunto(s)
Valina-ARNt Ligasa , Pez Cebra , Animales , Ácidos Grasos , Antígenos HLA/genética , Mitocondrias/genética , Valina-ARNt Ligasa/genética , Pez Cebra/genética
20.
Environ Monit Assess ; 194(8): 580, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35819501

RESUMEN

In this study, to increase the accuracy of determining the parameters of groundwater balance and finally the aquifer reservoir deficit, WA + as a new water accounting system has been applied by calculating six sheets in the Plasjan basin, central Iran. According to the results, the volume of rainfall and transfer flow to the basin was 548.8 MCM in the water year 2016-2017, which entered the hydrological cycle as input. Moreover, the results of FAO's Water Productivity Open-Access Portal (WaPOR) product showed that evapotranspiration was equal to 465 MCM, of which 345 and 120 MCM belonged to green water and blue water, respectively, at the basin level. The results of the WaPOR product showed that 264 MCM of evapotranspiration was beneficial, while the rest was non-beneficial in the basin. Finally, investigating the runoff and utilization of water resources showed that the return flow to surface water and groundwater resources was 35.5 MCM and 62 MCM, respectively. Therefore, the aquifer deficit was estimated to be 56.3 MCM based on the results of the WA + system. By calculating the evapotranspiration using remote sensing in WA + , the return water flow was estimated at 28%, being more accurate compared to the classical groundwater balance. Consequently, the amount of aquifer deficit calculated by the WA + method was accurate according to the balance and the aquifer hydrograph. The findings of this study show that as a suitable tool, the water accounting system can reduce the uncertainty of groundwater balance calculations.


Asunto(s)
Agua Subterránea , Agua , Monitoreo del Ambiente/métodos , Recursos Hídricos , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA