Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Plant Cell Physiol ; 65(3): 405-419, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38153763

RESUMEN

Phalaenopsis aphrodite can be induced to initiate spike growth and flowering by exposure to low ambient temperatures. However, the factors and mechanisms responsible for spike initiation in P. aphrodite remain largely unknown. In this study, we show that a repressor Flowing Locus T-like (FTL) gene, FTL, can act as a negative regulator of spike initiation in P. aphrodite. The mRNA transcripts of PaFTL are consistently high during high ambient temperature, thereby preventing premature spike initiation. However, during low ambient temperature, PaFTL expression falls while FT expression increases, allowing for spike initiation. Knock-down of PaFTL expression through virus-inducing gene silencing promoted spike initiation at 30/28°C. Moreover, PaFTL interacts with FLOWERING LOCUS D in a similar manner to FT to regulate downstream flowering initiation genes. Transgenic P. aphrodite plants exhibiting high expression of PaFTL do not undergo spike initiation, even when exposed to low ambient temperatures. These findings shed light on the flowering mechanisms in Phalaenopsis and provide new insights into how perennial plants govern spike initiation in response to temperature cues.


Asunto(s)
Orchidaceae , Temperatura , Orchidaceae/metabolismo , Flores/metabolismo , Frío , Regulación de la Expresión Génica de las Plantas
2.
Plant Cell Environ ; 47(2): 442-459, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37969013

RESUMEN

Late flowering is a serious bottleneck in pumpkin (Cucurbita moschata Duch.) agriculture production. Although key genes governing flowering time have been reported in many species, the regulatory network of flowering in pumpkin remains largely obscure, thereby impeding the resolution of industry-wide challenges associated with delayed fruit ripening in pumpkin cultivation. Here, we report an early flowering pumpkin germplasm accession (LXX-4). Using LXX-4 and a late flowering germplasm accession (HYM-9), we constructed an F2 segregation population. A significant difference in FLOWERING LOCUS T-LIKE 2 (FTL2) expression level was identified to be the causal factor of the flowering time trait discrepancy in LXX-4 and HYM-9. Moreover, we have shown that a 21 bp InDel in the FTL2 promoter was the key reason for the waxing and waning of its transcript level. The 21 bp deletion excluded a repressor-AGL19 and recruited activators-BBX7, WRKY40 and SVP to the FTL2 promoter in LXX-4. Together, our data add a useful element to our knowledge which could be used to simplify breeding efforts for early-maturing pumpkin.


Asunto(s)
Cucurbita , Cucurbita/genética , Cucurbita/metabolismo , Fenotipo
3.
Planta ; 250(6): 2111-2125, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31584118

RESUMEN

MAIN CONCLUSION: Chenopodium ficifoliumflowered under long days despite much lower expression ofFLOWERING LOCUS Thomolog than under short days. Frequent duplications of the FLOWERING LOCUS T (FT) gene across various taxonomic lineages resulted in FT paralogs with floral repressor function, whereas others duplicates maintained their floral-promoting role. The FT gene has been confirmed as the inducer of photoperiodic flowering in most angiosperms analyzed to date. We identified all FT homologs in the transcriptome of Chenopodium ficifolium and in the genome of Chenopodium suecicum, which are closely related to diploid progenitors of the tetraploid crop Chenopodium quinoa, and estimated their expression during photoperiodic floral induction. We found that expression of FLOWERING LOCUS T like 1 (FTL1), the ortholog of the sugar beet floral activator BvFT2, correlated with floral induction in C. suecicum and short-day C. ficifolium, but not with floral induction in C. ficifolium with accelerated flowering under long days. This C. ficifolium accession was induced to flowering without the concomitant upregulation of any FT homolog.


Asunto(s)
Chenopodium/crecimiento & desarrollo , Chenopodium/genética , Flores/crecimiento & desarrollo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/genética , Regulación hacia Arriba , Magnoliopsida/crecimiento & desarrollo , Fotoperiodo , Activación Transcripcional
4.
J Exp Bot ; 65(8): 2137-46, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24642846

RESUMEN

The proper timing of flowering is essential for the adaptation of plant species to their ever-changing environments. The central position in a complex regulatory network is occupied by the protein FT, which acts as a florigen. We found that light, following a permissive period of darkness, was essential to induce the floral promoter CrFTL1 and to initiate flowering in seedlings of the short-day plant Chenopodium rubrum L. We also identified two novel CONSTANS-like genes in C. rubrum and observed their rhythmic diurnal and circadian expressions. Strong rhythmicity of expression suggested that the two genes might have been involved in the regulation of photoperiod-dependent processes, despite their inability to complement co mutation in A. thaliana. The CrCOL1 and CrCOL2 genes were downregulated by dark-light transition, regardless of the length of a preceding dark period. The same treatment activated the floral promoter CrFTL1. Light therefore affected CrCOL and CrFTL1 in an opposite manner. Both CrCOL genes and CrFTL1 displayed expression patterns unique among short-day plants. Chenopodium rubrum, the subject of classical physiological studies in the past, is emerging as a useful model for the investigation of flowering at the molecular level.


Asunto(s)
Chenopodium/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis , Chenopodium/genética , Chenopodium/crecimiento & desarrollo , Florigena/metabolismo , Flores/crecimiento & desarrollo , Prueba de Complementación Genética , Fotoperiodo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/crecimiento & desarrollo , Alineación de Secuencia
5.
Plant Signal Behav ; 18(1): 2239420, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37503632

RESUMEN

The FLOWERING LOCUS T (FT) gene is the essential integrator of flowering regulatory pathways in angiosperms. The paralogs of the FT gene may perform antagonistic functions, as exemplified by BvFT1, that suppresses flowering in Beta vulgaris, unlike the paralogous activator BvFT2. The roles of FT genes in other amaranths were less investigated. Here, we transformed Arabidopsis thaliana with the FLOWERING LOCUS T like (FTL) genes of Chenopodium ficifolium and found that both CfFTL1 and CfFTL2-1 accelerated flowering, despite having been the homologs of the Beta vulgaris floral promoter and suppressor, respectively. The floral promotive effect of CfFTL2-1 was so strong that it caused lethality when overexpressed under the 35S promoter. CfFTL2-1 placed in an inducible cassette accelerated flowering after induction with methoxyphenozide. The spontaneous induction of CfFTL2-1 led to precocious flowering in some primary transformants even without chemical induction. The CqFT2-1 homolog from Chenopodium quinoa had the same impact on viability and flowering as CfFTL2-1 when transferred to A. thaliana. After the FTL gene duplication in Amaranthaceae, the FTL1 copy maintained the role of floral activator. The second copy FTL2 underwent subsequent duplication and functional diversification, which enabled it to control the onset of flowering in amaranths to adapt to variable environments.


The FLOWERINGLOCUS T like 2­1 gene of Chenopodium ficifolium andChenopodium quinoa acts as a strong activator of flowering in Arabidopsis, triggering flowering at cotyledon stage and causing lethality when overexpressed.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Chenopodium , Arabidopsis/genética , Arabidopsis/metabolismo , Chenopodium/genética , Chenopodium/metabolismo , Plantones/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
6.
Front Plant Sci ; 11: 570915, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304361

RESUMEN

Asiatic hybrid lily leaves emerge from their bulbs in spring, after cold exposure in winter, and the plant then blooms in early summer. We identified four FLOWERING LOCUS T (FT)-like genes, LhFT1, LhFT4, LhFT6, and LhFT8, from an Asiatic hybrid lily. Floral bud differentiation initiated within bulbs before the emergence of leaves. LhFT genes were mainly expressed in bulb scales, and hardly in leaves, in which the FT-like genes of many plants are expressed in response to environmental signals. LhFT1 was expressed in bulb scales after vernalization and was correlated to flower bud initiation in two cultivars with different flowering behaviors. LhFT8 was upregulated in bulb scales after cold exposure and three alternative splicing variants with a nonsense codon were simultaneously expressed. LhFT6 was upregulated in bulb scales after flower initiation, whereas LhFT4 was expressed constantly in all organs. LhFT1 overexpression complemented the late-flowering phenotype of Arabidopsis ft-10, whereas that of LhFT8 did so partly. LhFT4 and LhFT6 overexpression could not complement. Yeast two-hybrid and in vitro analyses showed that the LhFT1 protein interacted with the LhFD protein. LhFT6 and LhFT8 proteins also interacted with LhFD, as observed in AlphaScreen assay. Based on these results, we revealed that LhFT1 acts as a floral activator during floral bud initiation in Asiatic hybrid lilies. However, the biological functions of LhFT4, LhFT6, and LhFT8 remain unclear.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA