Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proteins ; 90(1): 270-281, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34405904

RESUMEN

This study uses differential scanning calorimetry, X-ray crystallography, and molecular dynamics simulations to investigate the structural basis for the high thermal stability (melting temperature 97.5°C) of a FN3-like protein domain from thermophilic bacteria Thermoanaerobacter tengcongensis (FN3tt). FN3tt adopts a typical FN3 fold with a three-stranded beta sheet packing against a four-stranded beta sheet. We identified three solvent exposed arginine residues (R23, R25, and R72), which stabilize the protein through salt bridge interactions with glutamic acid residues on adjacent strands. Alanine mutation of the three arginine residues reduced melting temperature by up to 22°C. Crystal structures of the wild type (WT) and a thermally destabilized (∆Tm -19.7°C) triple mutant (R23L/R25T/R72I) were found to be nearly identical, suggesting that the destabilization is due to interactions of the arginine residues. Molecular dynamics simulations showed that the salt bridge interactions in the WT were stable and provided a dynamical explanation for the cooperativity observed between R23 and R25 based on calorimetry measurements. In addition, folding free energy changes computed using free energy perturbation molecular dynamics simulations showed high correlation with melting temperature changes. This work is another example of surface salt bridges contributing to the enhanced thermal stability of thermophilic proteins. The molecular dynamics simulation methods employed in this study may be broadly useful for in silico surface charge engineering of proteins.


Asunto(s)
Proteínas Bacterianas/química , Dominio de Fibronectina del Tipo III , Cloruro de Sodio/química , Thermoanaerobacter/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calor , Simulación de Dinámica Molecular , Dominios Proteicos , Estabilidad Proteica , Thermoanaerobacter/genética
2.
Nano Lett ; 19(9): 6124-6132, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31389705

RESUMEN

We describe a genetically encoded micelle for targeted delivery consisting of a diblock polypeptide with segments derived from repetitive protein motifs inspired by Drosophila melanogaster Rec-1 resilin and human tropoelastin with a C-terminal fusion of an integrin-targeting fibronectin type III domain. By systematically varying the weight fraction of the hydrophilic elastin-like polypeptide (ELP) block and molecular weight of the diblock polypeptide, we designed micelles of different morphologies that modulate the binding avidity of the human wild-type 10th fibronectin domain (Fn3) as a function of shape. We show that wormlike micelles that present the Fn3 domain have a 1000-fold greater avidity for the αvß3 receptor compared to the monomer ligand and an avidity that is greater than a clinically relevant antibody that is driven by their multivalency. The amplified avidity of these micelles leads to significantly increased cellular internalization, a feature that may have utility for the intracellular delivery of drugs that are loaded into the core of these micelles.


Asunto(s)
Proteínas de Drosophila/química , Sistemas de Liberación de Medicamentos , Fibronectinas/química , Nanopartículas/química , Tropoelastina/química , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Elastina/química , Elastina/genética , Dominio de Fibronectina del Tipo III/genética , Fibronectinas/genética , Humanos , Ligandos , Micelas , Péptidos/química , Péptidos/farmacología , Temperatura , Tropoelastina/genética
3.
Cytokine ; 99: 50-58, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28697396

RESUMEN

Interleukin-12 (IL-12) is formed by the interaction of IL-12p35 and IL-12p40 expressed independently from IL-12A and IL-12B genes. This interleukin plays prominent role in the T-helper type-1 (Th1) response against intracellular pathogens. Variations in IL-12B gene causes disruption of various activities one of them is suppression of Th1 response and is one of the characteristic features observed in patients with active tuberculosis. Hence, in the present study IL-12B gene status was evaluated in 50 new sputum smear-positive pulmonary tuberculosis patients (NSP-PTB) as identified by Ziehl-Nielsen (ZN) staining and 50 apparently healthy control subjects (HCS) who were sputum smear-negative. The sequence analysis showed novel missense mutations p.Ser205Ile, p.Leu206Glu, p.Pro207Ser, p.Glu209Lys, p.Val210Ser, p.(Ser205_Cys327delinsIleGlu) and p.(Lys217_Leu218delinsIle) were found in exon 5 of the IL-12B gene in nine patients resulting formation of inactive IL-12 and three patients showed novel frame shift mutations p.(Asn222Leufs∗23) in exon 5 of causing the formation of truncated protein. Several mutations were noted in intron 2 of the IL-12B gene in 5 patients and in 13 patients mutations were observed in 3' UTR region. All together 30/50 patients (60%) showed mutations in IL-12B gene. Decreased levels of interferon-gamma (IFN-γ) and IL-12 as determined by ELISA and flow cytometry were observed in the peripheral blood mononuclear cell culture supernatants in TB patients having mutations compared with control subjects. Further, in silico analysis revealed due to frame shift mutations in exon 5 at Asn222 resulted in deletion of functional fibronectin type-III (FN3) domain which leads to formation of inactive IL-12 in these patients.


Asunto(s)
Regiones no Traducidas 3'/genética , Exones/genética , Subunidad p40 de la Interleucina-12/genética , Intrones/genética , Mutación/genética , Tuberculosis Pulmonar/genética , Adulto , Secuencia de Aminoácidos , ADN/genética , ADN/aislamiento & purificación , Citometría de Flujo , Humanos , India , Interferón gamma/genética , Interferón gamma/metabolismo , Subunidad p40 de la Interleucina-12/química , Subunidad p40 de la Interleucina-12/metabolismo , Simulación de Dinámica Molecular , Monocitos/metabolismo , Reacción en Cadena de la Polimerasa , Estructura Secundaria de Proteína , Análisis de Secuencia de ADN
4.
Cells ; 10(6)2021 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067457

RESUMEN

Tim-4 promotes the engulfment of apoptotic cells or exogenous particles by securing them on phagocytes. It is unable to transduce signals by itself but helps other engulfment receptors sense and internalize them. However, the identity of the engulfment receptors collaborating with Tim-4 is still incompletely understood. In this study, we searched for a candidate transmembrane protein with a FN3 domain, important for interaction with Tim-4, in silico and investigated whether it indeed interacts with Tim-4 and is involved in Tim-4-mediated phagocytosis. We found that EphA2 containing a FN3 domain in the extracellular region interacted with Tim-4, which was mediated by the IgV domain of Tim-4 and the FN3 domain of EphA2. Nevertheless, we found that EphA2 expression failed to alter Tim-4-mediated phagocytosis of apoptotic cells or polystyrene beads. Taken together, our findings suggest that EphA2, a new Tim-4 interacting protein, may intervene in a Tim-4-mediated cellular event even if it is not phagocytosis of endogenous or exogenous particles and vice versa.


Asunto(s)
Proteínas de la Membrana/metabolismo , Fagocitosis/fisiología , Fosfatidilserinas/metabolismo , Receptor EphA2/metabolismo , Apoptosis/fisiología , Línea Celular , Humanos
5.
Front Microbiol ; 10: 1507, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312196

RESUMEN

In this study, the first xylantic enzyme from the family Marinifilaceae, XynSPP2, was identified from Marinifilaceae bacterium strain SPP2. Amino acid sequence analysis revealed that XynSPP2 is a rare Fn3-fused xylanase, consisting of a signal peptide, a fibronectin type-III domain (Fn3), and a C-terminal catalytic domain belonging to glycoside hydrolase family 10 (GH10). The catalytic domain shared 17-46% identities to those of biochemically characterized GH10 xylanases. Structural analysis revealed that the conserved asparagine and glutamine at the glycone -2/-3 subsite of GH10 xylanases are substituted by a tryptophan and a serine, respectively, in XynSPP2. Full-length XynSPP2 and its Fn3-deleted variant (XynSPP2ΔFn3) were overexpressed in Escherichia coli and purified by Ni-affinity chromatography. The optimum temperature and pH for both recombinant enzymes were 50°C and 6, respectively. The enzymes were stable under alkaline condition and at temperature lower than 50°C. With beechwood xylan as the substrate, XynSPP2 showed 2.8 times the catalytic efficiency of XynSPP2ΔFn3, indicating that the Fn3 module promotes xylanase activity. XynSPP2 was active toward xylooligosaccharides (XOSs) longer than xylotriose. Such a substrate preference can be explained by the unique -2/-3 subsite composition in the enzyme which provides new insight into subsite interaction within the GH10 family. XynSPP2 hydrolyzed beechwood xylan into small XOSs (xylotriose and xylotetraose as major products). No monosaccharide was detected by thin-layer chromatography which may be ascribed to putative transxylosylation activity of XynSPP2. Preferring long XOS substrate and lack of monosaccharide production suggest its potential in probiotic XOS manufacture.

6.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 12): 695-700, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29199991

RESUMEN

Collagen α1 type XX, which contains fibronectin type III (FN3) repeats involving six FN3 domains (referred to as the FN#1-FN#6 domains), is an unusual member of the fibril-associated collagens with interrupted triple helices (FACIT) subfamily of collagens. The results of standard protein BLAST suggest that the FN3 repeats might contribute to collagen α1 type XX acting as a cytokine receptor. To date, solution NMR structures of the FN#3, FN#4 and FN#6 domains have been determined. To obtain further structural evidence to understand the relationship between the structure and function of the FN3 repeats from collagen α1 type XX, the crystal structure of the FN#2 domain from human collagen α1 type XX (residues Pro386-Pro466; referred to as FN2-HCXX) was solved at 2.5 Šresolution. The crystal structure of FN2-HCXX shows an immunoglobulin-like fold containing a ß-sandwich structure, which is formed by a three-stranded ß-sheet (ß1, ß2 and ß5) packed onto a four-stranded ß-sheet (ß3, ß4, ß6 and ß7). Two consensus domains, tencon and fibcon, are structural analogues of FN2-HCXX. Fn8, an FN3 domain from human oncofoetal fibronectin, is the closest structural analogue of FN2-HCXX derived from a naturally occurring sequence. Based solely on the structural similarity of FN2-HCXX to other FN3 domains, the detailed functions of FN2-HCXX and the FN3 repeats in collagen α1 type XX cannot be identified.


Asunto(s)
Colágeno Tipo I/química , Dominio de Fibronectina del Tipo III , Colágeno Tipo I/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica
7.
Protein Eng Des Sel ; 29(12): 563-572, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27737926

RESUMEN

Targeted delivery of therapeutic payloads to specific tissues and cell types is an important component of modern pharmaceutical development. Antibodies or other scaffold proteins can provide the cellular address for delivering a covalently linked therapeutic via specific binding to cell-surface receptors. Optimization of the conjugation site on the targeting protein, linker chemistry and intracellular trafficking pathways can all influence the efficiency of delivery and potency of the drug candidate. In this study, we describe a comprehensive engineering experiment for an EGFR binding Centyrin, a highly stable fibronectin type III (FN3) domain, wherein all possible single-cysteine replacements were evaluated for expression, purification, conjugation efficiency, retention of target binding, biophysical properties and delivery of a cytotoxic small molecule payload. Overall, 26 of the 94 positions were identified as ideal for cysteine modification, conjugation and drug delivery. Conjugation-tolerant positions were mapped onto a crystal structure of the Centyrin, providing a structural context for interpretation of the mutagenesis experiment and providing a foundation for a Centyrin-targeted delivery platform.


Asunto(s)
Portadores de Fármacos/química , Fibronectinas/química , Ingeniería de Proteínas , Secuencia de Aminoácidos , Línea Celular Tumoral , Cristalografía por Rayos X , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacología , Receptores ErbB/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacología , Humanos , Maleimidas/química , Modelos Moleculares , Conformación Proteica en Lámina beta , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA