Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Immunol ; 15: 1355315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558807

RESUMEN

Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.


Asunto(s)
Síndrome de Activación Macrofágica , MicroARNs , Humanos , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Receptores de IgG/genética , Síndrome de Activación Macrofágica/genética , Fagocitosis/genética , Interleucina-12
2.
Mol Immunol ; 172: 1-8, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850776

RESUMEN

Serum amyloid P component (SAP) is a member the innate immune humoral arm and participated in various processes, including the innate immune responses, tissue remodeling, and the pathogenesis of inflammatory diseases. Remarkably, SAP is a highly versatile immunomodulatory factor that can serve as a drug target for treating amyloid diseases and reduce inflammation, fibrosis degree, and respiratory disease. In this review, we focus on the biological activities of SAP and its application in different systemic immune-associated diseases. First, we reviewed the regulatory effects of SAP on innate immune cells and possible mechanisms. Second, we emphasized SAP as a diagnostic marker and therapeutic target for immune-associated diseases, including the neuropsychiatric disorders. Third, we presented several recommendations for regulating SAP in immune cell function and potential areas for future research. Some authorities consider SAP to be a pattern recognition molecule that plays multiple roles in the innate immune system and inflammation. Developing therapeutics that target SAP or its associated signaling pathways may be a promising strategy for treating immune-associated diseases.


Asunto(s)
Inmunidad Innata , Componente Amiloide P Sérico , Humanos , Componente Amiloide P Sérico/inmunología , Componente Amiloide P Sérico/metabolismo , Inmunidad Innata/inmunología , Inmunidad Innata/efectos de los fármacos , Animales , Inflamación/inmunología , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/tratamiento farmacológico , Enfermedades del Sistema Inmune/diagnóstico , Biomarcadores
3.
Cell Rep ; 43(2): 113757, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38354088

RESUMEN

Understanding the mechanisms underlying cytotoxic immunoglobulin G (IgG) activity is critical for improving therapeutic antibody activity and inhibiting autoantibody-mediated tissue pathology. While prior research highlights the important role of the mononuclear phagocytic system for removing opsonized target cells, it remains unclear which monocyte or macrophage subsets stemming from fetal or post-natal bone-marrow (BM)-associated definitive hematopoiesis are involved in target cell depletion. By using a titrated irradiation approach as well as Kupffer-cell-specific deletion of activated Fcγ receptor signaling, we establish conditions under which the contribution of BM-derived monocytes versus yolk-sac-derived liver-resident macrophages to cytotoxic IgG activity can be studied. Our results demonstrate that liver-resident macrophages originating from either fetal or adult hematopoiesis play a central role in IgG-mediated depletion of opsonized target cells from the peripheral blood under steady-state conditions, highlighting the impact of the tissue niche and not macrophage origin for cytotoxic antibody activity.


Asunto(s)
Médula Ósea , Inmunoglobulina G , Adulto , Humanos , Feto , Macrófagos , Monocitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA