Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Pharmacol Res ; 199: 107036, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096958

RESUMEN

Because genetic alterations including mutations, overexpression, translocations, and dysregulation of protein kinases are involved in the pathogenesis of many illnesses, this enzyme family is the target of many drug discovery programs worldwide. The FDA has approved 80 small molecule protein kinase inhibitors with 77 drugs orally bioavailable. The data indicate that 69 of these medicinals are approved for the management of neoplasms including solid tumors such as breast and lung cancer as well as non-solid tumors such as leukemia. Moreover, the remaining 11 drugs target non-neoplastic diseases including psoriasis, rheumatoid arthritis, and ulcerative colitis. The cost of drugs was obtained from www.pharmacychecker.com using the FDA label to determine the dosage and number of tablets required per day. This methodology excludes any private or governmental insurance coverage, which would cover the entire cost or more likely a fraction of the stated price. The average monthly cost for the treatment of neoplastic diseases was $17,900 with a price of $44,000 for futibatinib (used to treat cholangiocarcinomas with FGFR2 fusions) and minimum of $5100 for binimetinib (melanoma). The average monthly cost for the treatment of non-neoplastic diseases was $6800 with a maximum of $17,000 for belumosudil (graft vs. host disease) and a minimum of $200 for netarsudil eye drops (glaucoma). There is a negative correlation of the cost of the drugs and the incidence of the targeted disease. Many of these agents are or were designated as orphan drugs meaning that there are fewer than 200,000 potential patients in the United States.


Asunto(s)
Neoplasias , Inhibidores de Proteínas Quinasas , Humanos , Estados Unidos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
2.
Pharmacol Res ; 189: 106642, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36754102

RESUMEN

Psoriasis is a heterogeneous, inflammatory, autoimmune skin disease that affects up to 2% of the world's population. There are many treatment modalities including topical medicines, ultraviolet light therapy, monoclonal antibodies, and several oral medications. Cytokines play a central role in the pathogenesis of this disorder including TNF-α, (tumor necrosis factor-α) IL-17A (interleukin-17A), IL-17F, IL-22, and IL-23. Cytokine signaling involves transduction mediated by the JAK-STAT pathway. There are four JAKS (JAK1/2/3 and TYK2) and six STATS (signal transducer and activators of transcription). Janus kinases contain an inactive JH2 domain that is aminoterminal to the active JH1 domain. Under basal conditions, the JH2 domain inhibits the activity of the JH1 domain. Deucravacitinib is an orally effective N-trideuteromethyl-pyridazine derivative that targets and stabilizes the TYK2 JH2 domain and thereby blocks TYK2 JH1 activity. Seven other JAK inhibitors, which target the JAK family JH1 domain, are prescribed for the treatment of neoplastic and other inflammatory diseases. The use of deuterium in the trimethylamide decreases the rate of demethylation and slows the production of a metabolite that is active against a variety of targets in addition to TYK2. A second unique aspect in the development of deucravacitinib is the targeting of a pseudokinase domain. Deucravacitinib is rather specific for TYK2 and its toxic effects are much less than those of the other FDA-approved JAK inhibitors. The successful development of deucravacitinib may stimulate the development of additional pseudokinase ligands for the JAK family and for other kinase families as well.


Asunto(s)
Dermatitis , Inhibidores de las Cinasas Janus , Psoriasis , Humanos , Quinasas Janus/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de las Cinasas Janus/uso terapéutico , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Psoriasis/tratamiento farmacológico , TYK2 Quinasa/metabolismo , TYK2 Quinasa/farmacología
3.
Pharmacol Res ; 183: 106362, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35878738

RESUMEN

The Janus kinase (JAK) family of nonreceptor protein-tyrosine kinases consists of JAK1, JAK2, JAK3, and TYK2 (Tyrosine Kinase 2). Each of these proteins contains a JAK homology pseudokinase (JH2) domain that interacts with and regulates the activity of the adjacent protein kinase domain (JH1). The Janus kinase family is regulated by numerous cytokines including interferons, interleukins, and hormones such as erythropoietin and thrombopoietin. Ligand binding to cytokine receptors leads to the activation of associated Janus kinases, which then catalyze the phosphorylation of the receptors. The SH2 domain of signal transducers and activators of transcription (STAT) binds to the cytokine receptor phosphotyrosines thereby promoting STAT phosphorylation and activation by the Janus kinases. STAT dimers are then translocated into the nucleus where they participate in the regulation and expression of dozens of proteins. JAK1/3 signaling participates in the pathogenesis of inflammatory disorders while JAK1/2 signaling contributes to the development of myeloproliferative neoplasms as well as several malignancies including leukemias and lymphomas. An activating JAK2 V617F mutation occurs in 95% of people with polycythemia vera and about 50% of cases of myelofibrosis and essential thrombocythemia. Abrocitinib, ruxolitinib, and upadacitinib are JAK inhibitors that are FDA-approved for the treatment of atopic dermatitis. Baricitinib is used for the treatment of rheumatoid arthritis and covid 19. Tofacitinib and upadacitinib are JAK antagonists that are used for the treatment of rheumatoid arthritis and ulcerative colitis. Additionally, ruxolitinib is approved for the treatment of polycythemia vera while fedratinib, pacritinib, and ruxolitinib are approved for the treatment of myelofibrosis.


Asunto(s)
Artritis Reumatoide , COVID-19 , Inhibidores de las Cinasas Janus , Policitemia Vera , Mielofibrosis Primaria , Artritis Reumatoide/tratamiento farmacológico , Humanos , Janus Quinasa 1 , Janus Quinasa 2/metabolismo , Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , Quinasas Janus/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
4.
Eur J Pharmacol ; 765: 188-97, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26300391

RESUMEN

Janus kinase (JAK) inhibitors are a promising treatment strategy in several hematological malignancies and autoimmune diseases. A number of inhibitors are in clinical development, and two have already reached the market. Unfortunately, all of them are burdened with different toxicity profiles. To check if the JAK inhibitors of different selectivity evoke different responses on JAK2-dependent and independent cells, we have used three acute myeloid leukemia cell lines with confirmed JAK2 mutation status. We have found that JAK inhibitors exert distinct effect on the expression of BCLXL, CCND1 and c-MYC genes, regulated by JAK pathway, in JAK2 wild type cells in comparison to JAK2 V617F-positive cell lines. Moreover, cell cycle analysis showed that inhibitors alter the cycle by arresting cells in different phases. Our results suggest that observed effect of JAK2 inhibitors on transcription and cell cycle level in different cell lines are associated not with activity within JAK family, but presumably with other off-target activities.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Quinasas Janus/antagonistas & inhibidores , Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas/farmacología , Ciclo Celular/genética , Línea Celular Tumoral , Ciclina D1/genética , Regulación hacia Abajo , Humanos , Imidazoles/farmacología , Quinasas Janus/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Nitrilos , Piperidinas/farmacología , Pirazoles/farmacología , Piridazinas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Pirrolidinas/farmacología , Sulfonamidas/farmacología , Proteína bcl-X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA