Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
Más filtros

Intervalo de año de publicación
1.
Oecologia ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842685

RESUMEN

We investigated the distance-decay pattern (an increase in dissimilarity with increasing geographic distance) in regional assemblages of fleas and their small mammalian hosts, as well as their interaction networks, in four biogeographic realms. Dissimilarity of assemblages (ßtotal) was partitioned into species richness differences (ßrich) and species replacement (ßrepl) components. Dissimilarity of networks was assessed using two metrics: (a) whole network dissimilarity (ßWN) partitioned into species replacement (ßST) and interaction rewiring (ßOS) components and (b) D statistics, measuring dissimilarity in the pure structure of the networks, without using information on species identities and calculated for hosts-shared-by-fleas networks (Dh) and fleas-shared-by-hosts networks (Df). We asked whether the distance-decay pattern (a) occurs among interactor assemblages or their interaction networks; (b) depends on the network dissimilarity metric used; and (c) differs between realms. The ßtotal and ßrepl of flea and host assemblages increased with distance in all realms except for host assemblages in the Afrotropics. ßrich for flea and host assemblages increased with distance in the Nearctic only. In networks, ßWN and ßST demonstrated a distance-decay pattern, whereas ßOS was mainly spatially invariant except in the Neotropics. Correlations of Dh or Df and geographic distance were mostly non-significant. We conclude that investigations of dissimilarity in interaction networks should include both types of dissimilarity metrics (those that consider partner identities and those that consider the pure structure of networks). This will allow elucidating the predictability of some facets of network dissimilarity and the unpredictability of other facets.

2.
Parasitology ; 151(4): 449-460, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38433581

RESUMEN

We studied the relationships between functional alpha and beta diversities of fleas and their small mammalian hosts in 4 biogeographic realms (the Afrotropics, the Nearctic, the Neotropics and the Palearctic), considering 3 components of alpha diversity (functional richness, divergence and regularity). We asked whether (a) flea alpha and beta diversities are driven by host alpha and beta diversities; (b) the variation in the off-host environment affects variation in flea alpha and beta diversities; and (c) the pattern of the relationship between flea and host alpha or beta diversities differs between geographic realms. We analysed alpha diversity using modified phylogenetic generalized least squares and beta diversity using modified phylogenetic generalized dissimilarity modelling. In all realms, flea functional richness and regularity increased with an increase in host functional richness and regularity, respectively, whereas flea functional divergence correlated positively with host functional divergence in the Nearctic only. Environmental effects on the components of flea alpha diversity were found only in the Holarctic realms. Host functional beta diversity was invariantly the best predictor of flea functional beta diversity in all realms, whereas the effects of environmental variables on flea functional beta diversity were much weaker and differed between realms. We conclude that flea functional diversity is mostly driven by host functional diversity, whereas the environmental effects on flea functional diversity vary (a) geographically and (b) between components of functional alpha diversity.


Asunto(s)
Infestaciones por Pulgas , Interacciones Huésped-Parásitos , Siphonaptera , Animales , Siphonaptera/fisiología , Siphonaptera/clasificación , Infestaciones por Pulgas/parasitología , Infestaciones por Pulgas/veterinaria , Filogenia , Mamíferos/parasitología , Biodiversidad
3.
Med Vet Entomol ; 38(2): 244-251, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38259177

RESUMEN

This epidemiological survey aims to provide an update on the main flea species that parasitize domestic animals in the Western Andalusia assessing several ecological features that could be considered as possible risk factors for flea infestation. Over a 19-month period (June 2021 to January 2023), we obtained a total of 802 flea samples from 182 dogs (Canis lupus familiaris, Carnivora: Canidae, Linnaeus, 1758) and 78 cats (Felis silvestris catus, Carnivora: Felidae, Schreber, 1775). For each parasitized host, an epidemiological survey was completed, including the following information: geographical origin, age, sex, rural or urban habitat, type of animal's lifestyle (domestic or non-domestic), health status, cohabiting or not with other animals and the total number of collected fleas. The most common species was Ctenocephalides felis (Siphonaptera: Pulicidae) (Bouché, 1835) with a total of 713 specimens, which accounted for 89% of the total fleas. The second most abundant species was Pulex irritans (Siphonaptera: Pulicidae) (Linnaeus, 1758) with a total of 46 collected fleas (6% of the total). The remaining species identified were Archaeopsylla erinacei (Siphonaptera: Pulicidae) (Bouché, 1835) (25 specimens), Spilopsyllus cuniculi (Siphonaptera: Pulicidae) (Dale, 1878) (12 specimens) and Ctenocephalides canis (Siphonaptera: Pulicidae) (Curtis, 1826) (6 specimens), which accounted for 3%, 1% and 1%, respectively, of the total fleas collected. The months with the highest number of collected fleas were, in ascending order, May 2022, September 2021 and July 2021. Dogs had a greater diversity of flea species, and flea sex ratios were female biased in all identified species and among all studied hosts. Finally, we identified some potential host risk factors that promoted higher flea intensities, such as living in rural areas, or presenting other pathologies.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Infestaciones por Pulgas , Estaciones del Año , Siphonaptera , Animales , Perros , Infestaciones por Pulgas/veterinaria , Infestaciones por Pulgas/epidemiología , Infestaciones por Pulgas/parasitología , España/epidemiología , Gatos , Factores de Riesgo , Enfermedades de los Gatos/epidemiología , Enfermedades de los Gatos/parasitología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/parasitología , Femenino , Masculino , Siphonaptera/fisiología
4.
Med Vet Entomol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958518

RESUMEN

Co-invasion, characterized by the simultaneous introduction of hosts and parasites with the latter establishing themselves in native hosts, is a phenomenon of ecological concern. Rattus rattus, a notorious invasive species, has driven the extinction and displacement of numerous avian and mammalian species and serves as a key vector for diseases affecting both humans and wildlife. Among the parasites hosted by R. rattus are fleas, which exhibit obligate parasitic behaviour, a generalist nature and high prevalence, increasing the likelihood of flea invasion. Simultaneously, invasive species can serve as hosts for native parasites, leading to potential amplification or dilution of parasite populations in the environment. In Chile, R. rattus has been present since the 17th century because of the arrival of the Spanish colonizers through the ports and has spread throughout urban, rural and wild Chilean territories. This study aims to evaluate whether co-invasion of native fleas of invasive rats occurs on native rodents in Chile and to determine whether black rats have acquired flea native to Chile during their invasion. For this, we captured 1132 rodents from 26 localities (20° S-53° S). Rattus rattus was found coexisting with 11 native rodent species and two species of introduced rodents. Among the native rodents, Abrothrix olivacea and Oligoryzomys longicaudatus exhibited more extensive sympatry with R. rattus. We identified 14 flea species associated with R. rattus, of which only three were native to rats: Xenopsylla cheopis, Leptopsylla segnis and Nosopsyllus fasciatus. These three species presented a higher parasite load in black rats compared to native fleas. Leptopsylla segnis and N. fasciatus were also found associated with native rodent species that cohabit with R. rattus. The remaining species associated with R. rattus were fleas of native rodents, although they were less abundant compared to those associated with native rodents, except for Neotyphloceras pardinasi and Sphinctopsylla ares. Although there has been evidence of flea transmission from rats to native species, the prevalence and abundance were relatively low. Therefore, it cannot be definitively concluded that these fleas have established themselves in native rodent populations, and hence, they cannot be classified as invasive fleas. This study underscores R. rattus' adaptability to diverse environmental and geographical conditions in Chile, including its capacity to acquire fleas from native rodents. This aspect has critical implications for public health, potentially facilitating the spread of pathogens across various habitats where these rats are found.

5.
Med Vet Entomol ; 38(1): 23-37, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37736686

RESUMEN

Outbreaks of acute encephalitis syndrome (AES) with unknown aetiology are reported every year in Gorakhpur district, Uttar Pradesh, India, and Orientia tsutsugamushi, the rickettsial pathogen, responsible for scrub typhus has been attributed as the primary cause of AES problem. However, information on the prevalence of other rickettsial infections is lacking. Hence, this study was carried out to assess any occurrence of tick- and flea-borne rickettsial agents in villages reporting AES cases in this district. In total, 825 peridomestic small mammals were trapped, by setting 9254 Sherman traps in four villages with a trap success rate of 8.9%. The Asian house shrew, Suncus murinus, constituted the predominant animal species (56.2%) and contributed to the maximum number (87.37%) of ectoparasites. In total, 1552 ectoparasites comprising two species of ticks and one species each of flea and louse were retrieved from the trapped rodents/shrews. Rhipicephalus sanguineus, the brown dog tick, was the predominant species retrieved from the trapped rodents/shrews, and the overall infestation rate was 1.75 per animal. In total, 4428 ectoparasites comprising five tick species, three louse species and one flea species were collected from 1798 domestic animals screened. Rhipicephalus microplus was the predominant tick species collected from the domestic animals. The cat flea, Ctenocephalides felis, constituted 1.5% of the total ectoparasites. Of all the ectoparasite samples (5980) from domestic animals and rodents, tested as 1211 pools through real-time PCR assays, 64 pools were positive for 23S rRNA gene of rickettsial agents. The PCR-positive samples were subjected to multi-locus sequence typing (MLST). In BLAST and phylogenetic analysis, the ectoparasites were found to harbour Rickettsia asembonensis (n = 9), Rickettsia conorii (n = 3), Rickettsia massiliae (n = 29) and Candidatus Rickettsia senegalensis (n = 1). A total of 22 pools were detected to have multiple rickettsial agents. The prevalence of fleas and high abundance of tick vectors with natural infections of rickettsial agents indicates the risk of transmission of tick- and flea-borne rickettsial diseases in rural villages of Gorakhpur. Further epidemiological studies are required to confirm the transmission of these agents to humans.


Asunto(s)
Encefalopatía Aguda Febril , Enfermedades de los Gatos , Ctenocephalides , Enfermedades de los Perros , Rhipicephalus sanguineus , Infecciones por Rickettsia , Rickettsia , Siphonaptera , Perros , Gatos , Animales , Humanos , Siphonaptera/microbiología , Tipificación de Secuencias Multilocus/veterinaria , Musarañas/genética , Musarañas/microbiología , Encefalopatía Aguda Febril/veterinaria , Filogenia , Prevalencia , Rhipicephalus sanguineus/genética , Rickettsia/genética , Infecciones por Rickettsia/epidemiología , Infecciones por Rickettsia/veterinaria , Infecciones por Rickettsia/microbiología , Ctenocephalides/microbiología
6.
Parasitol Res ; 123(1): 111, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270673

RESUMEN

We studied compositional, phylogenetic, and functional nestedness in the flea assemblages of 14 host species across regions. Our main questions were (a) are a host's flea assemblages compositionally, phylogenetically, or functionally nested? (b) Do similar processes drive these nestedness facets? (d) Are a host's biological traits associated with nestedness of its flea assemblages? Rows of host matrices were ordered by decreasing species richness/the sum of the branch lengths of a phylogenetic tree/functional dendrogram or by decreasing region area or by increasing distance from the centre of a host's geographic range. None of the matrices sorted by species richness/sum of branch lengths were nested from a compositional perspective, but they were significantly nested from phylogenetic and functional perspectives. Compositional, phylogenetic, and functional nestedness of matrices sorted by region area or by distance from the host's geographic range centre varied between hosts. In some hosts, flea assemblages were nested from all three perspectives independently of how matrix rows were sorted, whereas in other hosts, the occurrence of significant nestedness depended on the order of the matrix rows. The degree of phylogenetic and functional nestedness for matrices sorted by the sum of branch lengths was associated with a host species' morphoecological traits and the latitude of its geographic range. We conclude that consideration of nestedness based solely on species composition does not allow a comprehensive understanding of the patterns of parasite community structure. Nestedness should also be considered from phylogenetic and functional perspectives.


Asunto(s)
Especificidad del Huésped , Siphonaptera , Animales , Filogenia , Movimiento Celular , Mamíferos
7.
Parasitol Res ; 123(5): 203, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705882

RESUMEN

Functional signal in an interaction network is a phenomenon in which species resembling each other in their traits interact with similar partners. We tested the functional signal concept in realm-specific and regional flea-host networks from four biogeographic realms and asked whether the species composition of (a) host spectra and (b) flea assemblages is similar between functionally similar flea and host species, respectively. Analogously to testing for phylogenetic signal, we applied Mantel tests to investigate the correlation between flea or host functional distances calculated from functional dendrograms and dissimilarities in sets of interacting partners. In all realm-specific networks, functionally similar fleas tended to exploit similar hosts often belonging to the same genus, whereas functionally similar hosts tended to harbour similar fleas, again often belonging to the same genus. The strength of realm-specific functional signals and the frequency of detecting a significant functional signal in the regional networks differed between realms. The frequency of detecting a significant functional signal in the regional networks correlated positively with the network size for fleas and with the number of hosts in a network for hosts. A functional signal in the regional networks was more frequently found for hosts than for fleas. We discuss the mechanisms behind the functional signal in both fleas and their hosts, relate geographic functional signal patterns to the historic biogeography of fleas and conclude that functional signals in the species composition of host spectra for fleas and of flea assemblages for hosts result from the interplay of evolutionary and ecological processes.


Asunto(s)
Interacciones Huésped-Parásitos , Mamíferos , Siphonaptera , Animales , Siphonaptera/fisiología , Siphonaptera/clasificación , Mamíferos/parasitología , Infestaciones por Pulgas/parasitología , Infestaciones por Pulgas/veterinaria , Filogenia
8.
Parasitol Res ; 123(6): 250, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910209

RESUMEN

Hepatozoon spp. are tick-borne apicomplexan parasites of terrestrial vertebrates that occur worldwide. Tissue samples from small rodents and their parasitizing fleas were sampled for molecular detection and phylogenetic analysis of Hepatozoon-specific 18S rRNA gene region. After alignment and tree inference the Hepatozoon-sequences retrieved from a yellow-necked mouse (Apodemus flavicollis) placed into a strongly supported single clade demonstrating the presence of a novel species, designated Hepatozoon sp. SK3. The mode of transmission of Hepatozoon sp. SK3 is yet unknown. It is important to note that this isolate may be identical with the previously morphologically described Hepatozoon sylvatici infecting Apodemus spp.; however, no sequences are available for comparison. Furthermore, the previously reported variants Hepatozoon sp. BV1/SK1 and BV2/SK2 were detected in bank voles (Clethrionomys glareolus). It has been suggested that these variants should be identified as Hepatozoon erhardovae leading to the assumption that BV1 and BV2 are paralogous 18S rRNA gene loci of this species. Evidence has also been presented that fleas are vectors of H. erhardovae. In this study, we show with high significance that only the Hepatozoon sp. BV1 variant, but not BV2, infects the studied flea species Ctenophthalmus agyrtes, Ctenophthalmus assimilis, and Megabothris turbidus (p < 0.001). This finding suggests that Hepatozoon sp. BV2 represents an additional species besides H. erhardovae (= Hepatozoon sp. BV1), for which alternative arthropod vectors or non-vectorial modes of transmission remain to be identified. Future studies using alternative molecular markers or genome sequencing are required to demonstrate that BV1/SK1 and BV2/SK2 are different Hepatozoon species.


Asunto(s)
Coccidiosis , Eucoccidiida , Filogenia , ARN Ribosómico 18S , Animales , ARN Ribosómico 18S/genética , Coccidiosis/parasitología , Coccidiosis/veterinaria , Coccidiosis/epidemiología , Eucoccidiida/genética , Eucoccidiida/clasificación , Eucoccidiida/aislamiento & purificación , Europa (Continente) , ADN Protozoario/genética , Roedores/parasitología , Siphonaptera/clasificación , Análisis de Secuencia de ADN , ADN Ribosómico/genética , Enfermedades de los Roedores/parasitología , Enfermedades de los Roedores/epidemiología , Murinae/parasitología
9.
Immunogenetics ; 75(6): 517-530, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37853246

RESUMEN

Yersinia pestis is a historically important vector-borne pathogen causing plague in humans and other mammals. Contemporary zoonotic infections with Y. pestis still occur in sub-Saharan Africa, including Tanzania and Madagascar, but receive relatively little attention. Thus, the role of wildlife reservoirs in maintaining sylvatic plague and spillover risks to humans is largely unknown. The multimammate rodent Mastomys natalensis is the most abundant and widespread rodent in peri-domestic areas in Tanzania, where it plays a major role as a Y. pestis reservoir in endemic foci. Yet, how M. natalensis' immunogenetics contributes to the maintenance of plague has not been investigated to date. Here, we surveyed wild M. natalensis for Y. pestis vectors, i.e., fleas, and tested for the presence of antibodies against Y. pestis using enzyme-linked immunosorbent assays (ELISA) in areas known to be endemic or without previous records of Y. pestis in Tanzania. We characterized the allelic and functional (i.e., supertype) diversity of the major histocompatibility complex (MHC class II) of M. natalensis and investigated links to Y. pestis vectors and infections. We detected antibodies against Y. pestis in rodents inhabiting both endemic areas and areas considered non-endemic. Of the 111 nucleotide MHC alleles, only DRB*016 was associated with an increased infestation with the flea Xenopsylla. Surprisingly, we found no link between MHC alleles or supertypes and antibodies of Y. pestis. Our findings hint, however, at local adaptations towards Y. pestis vectors, an observation that more exhaustive sampling could unwind in the future.


Asunto(s)
Peste , Siphonaptera , Yersinia pestis , Animales , Humanos , Peste/genética , Peste/epidemiología , Tanzanía/epidemiología , Inmunogenética , Yersinia pestis/genética , Siphonaptera/genética , Murinae/genética , Anticuerpos
10.
Parasitology ; 150(11): 1031-1039, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37705252

RESUMEN

Combining the biogeography and phylogenetic patterns of parasite-host associations allows a better understanding of the history of parasite­host interactions, which can be achieved via biogeographic regionalization incorporating phylogenetic information. Recently, the concepts of evoregions (regions where a majority of species evolved from one or several ancestors inhabiting these regions) and evolutionary transition zones (regions of high phylogenetic turnover) have been proposed, coupled with a classification approach for these concepts. We applied this approach to 206 flea species and 265 host species of the Palearctic and aimed to identify evoregions and evolutionary transition zones for both fleas and hosts and to understand whether these evoregions and transition zones match each other. We identified 5 evoregions with 3 transition zones for either fleas or hosts, but neither the positions and boundaries of the flea and host evoregions nor the transition zones coincided. Indications of multiple geographic centres of diversification of the same flea lineages suggested that (a) the common evolutionary history of fleas and hosts was characterized by multiple events other than codiversification and that (b) dispersal played an important role in flea and host assemblies. Barriers to dispersal could be represented by landscape features (deserts and mountain ranges) and/or climate differences.


Asunto(s)
Infestaciones por Pulgas , Parásitos , Siphonaptera , Animales , Filogenia , Infestaciones por Pulgas/veterinaria , Mamíferos , Interacciones Huésped-Parásitos
11.
Parasitology ; 150(5): 455-467, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36799019

RESUMEN

We investigated phylogenetic patterns in flea assemblages from 80 regions in 6 biogeographic realms and asked whether (a) flea phylogenetic turnover is driven by host phylogenetic turnover, environmental dissimilarity or geographic distance; (b) the relative importance of these drivers differs between realms; and (c) the environmental drivers of flea phylogenetic turnover are similar to those of host phylogenetic turnover. We also asked whether the phylogenetic originality of a flea species correlates with the degree of its host specificity and whether the phylogenetic originality of a host species correlates with the diversity of its flea assemblages. We found that host phylogenetic turnover was the best predictor of flea phylogenetic turnover in all realms, whereas the effect of the environment was weaker. Environmental predictors of flea phylogenetic turnover differed between realms. The importance of spatial distances as a predictor of the phylogenetic dissimilarity between regional assemblages varied between realms. The responses of host turnover differed from those of fleas. In 4 of the 6 realms, geographic distances were substantially better predictors of host phylogenetic turnover than environmental gradients. We also found no general relationship between flea phylogenetic originality and its host specificity in terms of either host species richness or host phylogenetic diversity. We conclude that flea phylogenetic turnover is determined mainly by the phylogenetic turnover of their hosts rather than by environmental gradients. Phylogenetic patterns in fleas are manifested at the level of regional assemblages rather than at the level of individual species.


Asunto(s)
Infestaciones por Pulgas , Siphonaptera , Animales , Siphonaptera/fisiología , Filogenia , Mamíferos , Especificidad del Huésped , Infestaciones por Pulgas/veterinaria , Interacciones Huésped-Parásitos
12.
Med Vet Entomol ; 37(2): 359-370, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36621899

RESUMEN

Fleas in the genus Ctenocephalides are the most clinically important parasitic arthropods of dogs and cats worldwide yet risk factors that might increase the risk of infestation in small animals remains unclear. Here we developed a supervised text mining approach analysing key aspects of flea epidemiology using electronic health records from domestic cats and dogs seen at a sentinel network of 191 voluntary veterinary practices across Great Britain between March 2014 and July 2020. Our methods identified fleas as likely to have been present during 22,276 of 1,902,016 cat consultations (1.17%) and 12,168 of 4,844,850 dog consultations (0.25%). Multivariable logistic regression modelling found that animals originating from areas of least deprivation were associated with 50% reductions in odds of veterinary-recorded flea infestation compared to the most deprived regions in England. Age of the animal was significantly associated with flea presentation in both cats and dogs, with cases peaking before animals reached 12 months. Cases were recorded through each study years, peaking between July and October, with fluctuations between each year. Our findings can be used towards healthcare messaging for veterinary practitioners and owners.


Asunto(s)
Enfermedades de los Gatos , Ctenocephalides , Enfermedades de los Perros , Infestaciones por Pulgas , Siphonaptera , Animales , Gatos , Perros , Enfermedades de los Gatos/epidemiología , Enfermedades de los Gatos/parasitología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/parasitología , Infestaciones por Pulgas/epidemiología , Infestaciones por Pulgas/veterinaria
13.
Med Vet Entomol ; 37(1): 86-95, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36125325

RESUMEN

The role of red fox as host for a wide range of parasites, particularly fleas and other arthropods causing vector-borne diseases, in combination with its capability to adapt to anthropized environments, makes this wild canid an epidemiologically remarkable species at the wildlife-domestic-human interface, especially in the present time of rise of emerging and re-emerging diseases. This study evaluated the prevalence and parasite intensity of fleas in 88 foxes from Murcia Region (Southeastern Spain) and determined the geographic distribution of areas with the highest potential risk of flea presence. Pulex irritans, Ctenocephalides felis, Spilopsyllus cuniculi and Nosopsyllus fasciatus were identified. The overall prevalence was 76.13%. This is the first time that N. fasciatus has been reported in foxes from Murcia Region. The predictive model established a certain pattern to determine the areas with the highest risk of acquiring fleas. Positive correlation of daily potential evapotranspiration (ET0 ) in winter and the opposite effect occurring for ET0 in summer were obtained, as well as positive correlations for mean daily temperature (Tmean ) in summer and mean precipitation (Pmean ) in winter and summer. The model was also found positively correlated in the forest habitat ecotone areas and the anthropized areas.


Asunto(s)
Ctenocephalides , Infestaciones por Pulgas , Siphonaptera , Animales , Humanos , Zorros/parasitología , Infestaciones por Pulgas/epidemiología , Infestaciones por Pulgas/veterinaria , Infestaciones por Pulgas/parasitología , España/epidemiología
14.
Parasitol Res ; 122(10): 2317-2324, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37522953

RESUMEN

We studied the relationship between fleas' metabolic rate and their ecological traits, using data on standard metabolic rate (SMR), mean abundance, host specificity, and geographic range size in males and females of seven desert flea species. SMR was measured via mass-specific CO2 emission, whereas host specificity was measured as (a) the mean number of host species used by a flea per region in regions where this flea was recorded; (b) the total number of host species a flea exploited across its geographic range; and (c) the phylogenetic diversity of the flea's hosts. To control for confounding effects of phylogeny when analysing data on multiple species, we applied the Phylogenetic Generalised Least Squares (PGLS) model. We found that the only ecological trait significantly correlating with flea SMR was the phylogenetic diversity of hosts utilized by a flea across its geographic range. The strength of the association between SMR and host phylogenetic diversity was higher in male than in female fleas. We explain the relationship between flea SMR and their host specificity by the necessity of host-opportunistic species to compensate for the high energetic cost of neutralizing multiple defences from multiple hosts by increased SMR.


Asunto(s)
Infestaciones por Pulgas , Siphonaptera , Animales , Masculino , Femenino , Filogenia , Interacciones Huésped-Parásitos , Infestaciones por Pulgas/veterinaria , Especificidad del Huésped
15.
Parasitol Res ; 122(2): 571-583, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36515752

RESUMEN

We applied a step-down factor analysis (SDFA) and multi-site generalised dissimilarity modelling (MS-GDM) to local flea communities harboured by small mammals (i.e., collected at small sampling sites over a short time period) in two South American regions (Patagonia and the Northwestern Argentina) with the aim of understanding whether these communities were assembled via niche-based or dispersal-based processes. The SDFA allows us to determine whether clusters of flea assemblages across different types of climates, vegetation and soils can be distinguished (suggesting niche-based assembly). MS-GDM allows us to determine whether a substantial proportion of the variation in flea species turnover is explained by specific climate-associated, vegetation-associated and soil-associated variables (indicating niche-based assembly) or host turnover (indicating dispersal-based assembly). Mapping of assemblages on climate, vegetation and soil maps, according to their loadings on axis 1 or axis 2 of the SDFA, did not provide clear-cut results. Clusters of similar loadings could be recognized within some, but not other, climate, vegetation and soil types. However, MS-GDM demonstrated that the effect of environmental variables (especially air temperature) on flea compositional turnover was much stronger than that of host turnover, indicating the predominance of niche-based processes in local community assembly. A comparison of our results with those on the mechanisms that drive species assembly in regional communities allows us to conclude that local and regional communities result from the joint action of niche-based and dispersal-based processes, with the former more important at a smaller spatial scale and the latter at a larger spatial scale.


Asunto(s)
Siphonaptera , Animales , Mamíferos , Suelo , Clima Tropical , Argentina , Ecosistema , Biodiversidad
16.
Annu Rev Microbiol ; 71: 215-232, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28886687

RESUMEN

Interest in arthropod-borne pathogens focuses primarily on how they cause disease in humans. How they produce a transmissible infection in their arthropod host is just as critical to their life cycle, however. Yersinia pestis adopts a unique life stage in the digestive tract of its flea vector, characterized by rapid formation of a bacterial biofilm that is enveloped in a complex extracellular polymeric substance. Localization and adherence of the biofilm to the flea foregut is essential for transmission. Here, we review the molecular and genetic mechanisms of these processes and present a comparative evaluation and updated model of two related transmission mechanisms.


Asunto(s)
Adaptación Biológica , Biopelículas/crecimiento & desarrollo , Insectos Vectores/microbiología , Peste/microbiología , Peste/transmisión , Siphonaptera/microbiología , Yersinia pestis/fisiología , Animales , Transmisión de Enfermedad Infecciosa , Tracto Gastrointestinal/microbiología , Yersinia pestis/genética
17.
Parasitology ; 149(1): 124-137, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35184781

RESUMEN

We investigated the patterns of phylogenetic and functional (dis)similarity in the species composition of host spectra between co-habitating generalist flea species in regional assemblages from four continents (Europe, Asia, North America and Africa) using a recently developed ordination approach (Double Similarity Principal Component Analysis). From the functional perspective, we considered physiological [body mass and basal metabolic rate (BMR)] and ecological (shelter depth and complexity) host traits. We asked (a) whether host phylogeny, physiology or ecology is the main driver of (dis)similarities between flea host spectra and (b) whether the patterns of phylogenetic and functional (dis)similarity in host spectra vary between flea assemblages from different continents. Phylogenetic similarity between the host spectra was highest in Africa, lowest in North America and moderate in Europe and Asia. In each assemblage, phylogenetic clusters of hosts dominating in the host spectra could be distinguished. The functional similarity between the host spectra of co-occurring fleas was low for shelter structure in all assemblages and much higher for body mass and BMR in three of the four assemblages (except North America). We conclude that host phylogeny and shelter structure are the main drivers of (dis)similarity between the host spectra of co-habitating fleas. However, the effects of these factors on the patterns of (dis)similarity varied across continents.


Asunto(s)
Infestaciones por Pulgas , Siphonaptera , África , Animales , Asia , Infestaciones por Pulgas/veterinaria , Interacciones Huésped-Parásitos , Filogenia , Siphonaptera/fisiología
18.
Parasitology ; 149(11): 1450-1459, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35787741

RESUMEN

We used data on the species composition of regional assemblages of fleas and their small mammalian hosts from 6 biogeographic realms and applied a novel method of step-down factor analyses (SDFA) and cluster analyses to identify biogeographic (across the entire globe) and ecological (within a realm across the main terrestrial biomes) clusters of these assemblages. We found that, at the global scale, the clusters of regional assemblage loadings on SDFA axes reflected well the assemblage distribution, according to the biogeographic realms to which they belong. At the global scale, the cluster topology, corresponding to the biogeographic realms, was similar between flea and host assemblages, but the topology of subtrees within realm-specific clusters substantially differed between fleas and hosts. At the scale of biogeographic realms, the distribution of regional flea and host assemblages did not correspond to the predominant biome types. Assemblages with similar loadings on SDFA axes were often situated in different biomes and vice versa. The across-biome, within-realm distributions of flea vs host assemblages suggested weak congruence between these distributions. Our results indicate that dispersal is a predominant mechanism of flea and host community assembly across large regions.


Asunto(s)
Infestaciones por Pulgas , Siphonaptera , Animales , Ecosistema , Infestaciones por Pulgas/veterinaria , Interacciones Huésped-Parásitos , Mamíferos
19.
Med Vet Entomol ; 36(1): 88-96, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34716716

RESUMEN

Chronic Chagas disease affects humans and animals, involving rural and urban inhabitants. Dogs participate in the maintenance and transmission of Trypanosoma cruzi. The objective of this study was to evaluate the presence of T. cruzi in dogs and their ticks and fleas, in a rural area of Central Chile. Trypanosoma cruzi was detected by PCR both in dogs and ectoparasites. From the blood samples obtained, 57% were infected by T. cruzi, 5.4% of the ticks detected were positive, and all fleas were negative. Additionally, we performed electrocardiograms and found supraventricular arrhythmia in 44% of T. cruzi-positive dogs. Nevertheless, their risk for supraventricular arrhythmias was not higher in infected versus noninfected dogs. Considering the detected infection levels, dogs act as T. cruzi hosts in Central Chile, and ticks could be used as an indicator of infection when blood samples are not available. However, at this point, there is no indication that these ticks could pass on the parasite to another host. Periodic ectoparasitic treatment of pets should reduce the chance of vectorial transmission of T. cruzi and improve canine health; however, this is an uncommon practice among rural communities, so governmental programs are encouraged to tackle this problem.


Asunto(s)
Enfermedad de Chagas , Enfermedades de los Perros , Infestaciones por Pulgas , Siphonaptera , Garrapatas , Trypanosoma cruzi , Lobos , Animales , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/veterinaria , Chile/epidemiología , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/parasitología , Perros , Infestaciones por Pulgas/veterinaria , Reacción en Cadena de la Polimerasa/veterinaria , Trypanosoma cruzi/genética
20.
J Invertebr Pathol ; 195: 107850, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36347390

RESUMEN

A significant amount of work has been devoted towards understanding the cellular and humoral immune responses in arthropod vectors. Although fleas (Siphonaptera) are vectors of numerous bacterial pathogens, few studies have examined how these insects defend themselves from infection. In this study, we investigated the immune defense mechanisms in the hemocoel of cat fleas (Ctenocephalides felis), currently the most important flea pest of humans and many domestic animals. Using model species of bacteria (Micrococcus luteus, Serratia marcescens, and Escherichia coli), we delivered a systemic infection and measured the following: antimicrobial activity of hemolymph, levels of free radicals resulting from the induction of oxidase-based pathways, number of circulating hemocytes, phagocytosis activity of circulating hemocytes, and in vivo bacteria killing efficiency when phagocytosis activity is limited. Our results show that the antimicrobial activity of flea hemolymph increases in response to certain species of bacteria; yet, a systemic infection with the same bacterial species did not influence levels of hydrogen peroxide (H2O2), a reactive intermediate of oxygen, at the same time. Additionally, the number of circulating hemocytes increases in response to E. coli infection, and these cells display strong phagocytic activity against this bacterium. Moreover, limiting phagocytosis by injecting polystyrene beads subsequently increases flea susceptibility to E. coli infection when compared to injury controls; however, impairing the cellular immune response itself did not increase flea susceptibility to infection when compared to untreated fleas. Overall, this work yields significant insight into how fleas interact with bacterial pathogens in their hemocoel, and suggests that cellular and humoral immune responses cooperate to combat systemic bacterial infections.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Enfermedades de los Gatos , Ctenocephalides , Infecciones por Escherichia coli , Infestaciones por Pulgas , Gatos , Humanos , Animales , Ctenocephalides/microbiología , Escherichia coli , Peróxido de Hidrógeno , Insectos Vectores/microbiología , Bacterias , Infecciones por Escherichia coli/veterinaria , Mecanismos de Defensa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA