Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Phytopathology ; 114(4): 770-779, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598410

RESUMEN

Gray mold caused by Botrytis cinerea is among the 10 most serious fungal diseases worldwide. Fludioxonil is widely used to prevent and control gray mold due to its low toxicity and high efficiency; however, resistance caused by long-term use has become increasingly prominent. Therefore, exploring the resistance mechanism of fungicides provides a theoretical basis for delaying the occurrence of diseases and controlling gray mold. In this study, fludioxonil-resistant strains were obtained through indoor drug domestication, and the mutation sites were determined by sequencing. Strains obtained by site-directed mutagenesis were subjected to biological analysis, and the binding modes of fludioxonil and iprodione to Botrytis cinerea Bos1 BcBos1 were predicted by molecular docking. The results showed that F127S, I365S/N, F127S + I365N, and I376M mutations on the Bos1 protein led to a decrease in the binding energy between the drug and BcBos1. The A1259T mutation did not lead to a decrease in the binding energy, which was not the cause of drug resistance. The biological fitness of the fludioxonil- and point mutation-resistant strains decreased, and their growth rate, sporulation rate, and pathogenicity decreased significantly. The glycerol content of the sensitive strains was significantly lower than that of the resistant strains and increased significantly after treatment with 0.1 µg/ml of fludioxonil, whereas that of the resistant strains decreased. The osmotic sensitivity of the resistant strains was significantly lower than that of the sensitive strains. Positive cross-resistance was observed between fludioxonil and iprodione. These results will help to understand the resistance mechanism of fludioxonil in Botrytis cinerea more deeply.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Botrytis , Dioxoles , Farmacorresistencia Fúngica , Proteínas Fúngicas , Fungicidas Industriales , Histidina Quinasa , Hidantoínas , Pirroles , Botrytis/genética , Botrytis/efectos de los fármacos , Botrytis/enzimología , Dioxoles/farmacología , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidantoínas/farmacología , Pirroles/farmacología , Pirroles/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Enfermedades de las Plantas/microbiología , Simulación del Acoplamiento Molecular , Mutación , Mutagénesis Sitio-Dirigida
2.
Pestic Biochem Physiol ; 198: 105750, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225093

RESUMEN

Gray mold, caused by the fungus Botrytis cinerea, is one of the most important plant diseases worldwide that is prone to developing resistance to fungicides. Currently, the phenylpyrrole fungicide fludioxonil exhibits excellent efficacy in the control of gray mold in China. In this study, we detected the fludioxonil resistance of gray mold disease in Shouguang City of Shandong Province, where we first found fludioxonil-resistant isolates of B. cinerea in 2014. A total of 87 single spore isolates of B. cinerea were obtained from cucumbers in greenhouse, and 3 of which could grow on PDA plates amended with 50 µg/mL fludioxonil that was defined as high-level resistance, with a resistance frequency of 3.4%. Furthermore, the 3 fludioxonil-resistant isolates also showed high-level resistance to the dicarboximide fungicides iprodione and procymidone. Sequencing comparison revealed that all the 3 fludioxonil-resistant isolates had a point mutation at codon 1158, GAC (Asp) â†’ AAC (Asn) in the histidine kinase Bos1, which was proved to be the reason for fludioxonil resistance. In addition, the fludioxonil-resistant isolates possessed an impaired biological fitness compared to the sensitive isolates based on the results of mycelial growth, conidiation, virulence, and osmotic stress tolerance determination. Taken together, our results indicate that the high-level resistance to fludioxonil caused by the Bos1 point mutation (D1158N) has emerged in the field gray mold disease, and the resistance risk is relatively high, and fludioxonil should be used sparingly.


Asunto(s)
Síndrome Branquio Oto Renal , Dioxoles , Fungicidas Industriales , Pirroles , Fungicidas Industriales/farmacología , Histidina Quinasa/genética , Mutación Puntual , Farmacorresistencia Fúngica/genética , Hongos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Botrytis
3.
Pestic Biochem Physiol ; 200: 105815, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582573

RESUMEN

Fusarium graminearum is an important fungal pathogen causing Fusarium head blight (FHB) in wheat and other cereal crops worldwide. Due to lack of resistant wheat cultivars, FHB control mainly relies on application of chemical fungicides. Both fludioxonil (a phenylpyrrole compound) and phenamacril (a cyanoacrylate fungicide) have been registered for controlling FHB in China, however, fludioxonil-resistant isolates of F. graminearum have been detected in field. To evaluate the potential risk of dual resistance of F. graminearum to both compounds, fludioxonil and phenamacril dual resistant (DR) mutants of F. graminearum were obtained via fungicide domestication in laboratory. Result showed that resistance of the DR mutants to both fludioxonil and phenamacril were genetically stable after sub-cultured for ten generations or stored at 4 °C for 30 days on fungicide-free PDA. Cross-resistance assay showed that the DR mutants remain sensitive to other groups of fungicides, including carbendazim, tebuconazole, pydiflumetofen, and fluazinam. In addition, the DR mutants exhibited defects in mycelia growth, conidiation, mycotoxin deoxynivalenol (DON) production, and virulence Moreover, the DR mutants displayed increased sensitivity to osmotic stress. Sequencing results showed that amino acid point mutations S217L/T in the myosin I protein is responsible for phenamacril resistance in the DR mutants. Our results indicate that mutations leading to fludioxonil and phenamacril dual resistance could result in fitness cost for F. graminearum. Our results also suggest that the potential risk of F. graminearum developing resistance to both fludioxonil and phenamacril in field could be rather low, which provides scientific guidance in controlling FHB with fludioxonil and phenamacril.


Asunto(s)
Dioxoles , Fungicidas Industriales , Fusarium , Pirroles , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Cianoacrilatos , Enfermedades de las Plantas/microbiología
4.
Pestic Biochem Physiol ; 201: 105862, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685239

RESUMEN

Phomopsis longicolla, a causal agent of soybean root rot, stem blight, seed decay, pod and stem canker, which seriously affects the yield and quality of soybean production worldwide. The phenylpyrrole fungicide fludioxonil exhibits a broad spectrum and high activity against phytopathogenic fungi. In this study, the baseline sensitivity of 100 P. longicolla isolates collected from the main soybean production areas of China to fludioxonil were determined. The result showed that the EC50 values of all the P. longicolla isolates ranged from 0.013 to 0.035 µg/ml. Furthermore, 12 fludioxonil-resistance (FluR) mutants of P. longicolla were generated from 6 fludioxonil-sensitive (FluS) isolates. and the resistance factors (RF) of 12 FluR mutants were >3500. Sequence alignment showed that multiple mutation types were found in PlOS1, PlOS4 or/and PlOS5 of FluR mutants. All the FluR mutants exhibited fitness penalty in mycelial growth, conidiation, virulence and osmo-adaptation. Under fludioxonil or NaCl treatment condition, the glycerol accumulation was significantly increased in FluS isolates, but was slightly increased in FluR mutants, and the phosphorylation level of most FluR mutants was significantly decreased when compared to the FluS isolates. Additionally, positive cross-resistance was observed between fludioxonil and procymidone but not fludioxonil and pydiflumetofen, pyraclostrobin or fluazinam. This is first reported that the baseline sensitivity of P. longicolla to fludioxonil, as well as the biological and molecular characterizations of P. longicolla FluR mutants to fludioxonil. These results can provide scientific directions for controlling soybean diseases caused by P. longicolla using fludioxonil.


Asunto(s)
Ascomicetos , Dioxoles , Farmacorresistencia Fúngica , Fungicidas Industriales , Pirroles , Pirroles/farmacología , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Dioxoles/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Ascomicetos/metabolismo , Mutación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Glycine max/microbiología , Glycine max/efectos de los fármacos
5.
Environ Toxicol ; 39(5): 2993-3002, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38314641

RESUMEN

Fludioxonil (Flu) is a phenylpyrrole fungicide and is currently used in over 900 agricultural products globally. Flu possesses endocrine-disrupting chemical-like properties and has been shown to mediate various physiological and pathological changes, such as apoptosis and differentiation, in diverse cell lines. However, the effects of Flu on cardiomyocytes have not been studied so far. The present study investigated the effects of Flu on mitochondria in AC16 human cardiomyocytes and H9c2 rat cardiomyoblasts. Flu decreased cell viability in a water-soluble tetrazolium assay and mediated morphological changes suggestive of apoptosis in AC16 and H9c2 cells. We confirmed that annexin V positive cells were increased by Flu through annexin V/propidium iodide staining. This suggests that the decrease in cell viability due to Flu may be associated with increased apoptotic changes. Flu consistently increased the expression of pro-apoptotic markers such as Bcl-2-associated X protein (Bax) and cleaved-caspase 3. Further, Flu reduced the oxygen consumption rate (OCR) in AC16 and H9c2 cells, which is associated with decreased mitochondrial membrane potential (MMP) as observed through JC-1 staining. In addition, Flu augmented the production of mitochondrial reactive oxygen species, which can trigger oxidative stress in cardiomyocytes. Taken together, these results indicate that Flu induces mitochondrial dysregulation in cardiomyocytes via the downregulation of the OCR and MMP and upregulation of the oxidative stress, consequently resulting in the apoptosis of cardiomyocytes. This study provides evidence of the risk of Flu toxicity on cardiomyocytes leading to the development of cardiovascular diseases and suggests that the use of Flu in agriculture should be done with caution and awareness of the probable health consequences of exposure to Flu.


Asunto(s)
Dioxoles , Enfermedades Mitocondriales , Miocitos Cardíacos , Pirroles , Ratas , Animales , Humanos , Cardiotoxicidad/metabolismo , Anexina A5/metabolismo , Anexina A5/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Enfermedades Mitocondriales/metabolismo , Potencial de la Membrana Mitocondrial
6.
Plant Dis ; 108(6): 1481-1485, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38301218

RESUMEN

The main phytosanitary problem for table grape production in Chile is gray mold caused by the fungus Botrytis cinerea. To manage this issue, the primary method utilized is chemical control. Fludioxonil, a phenylpyrrole, is highly effective in controlling B. cinerea and other plant pathogens. Consistently, there have been no field reports of reduced efficacy of fludioxonil; however, subpopulations with reduced sensitivity to fludioxonil are on the rise globally, as per increasing reports. Our study involved a large-scale evaluation of B. cinerea's sensitivity to fludioxonil in the Central Valley of Chile's primary table grape production area during the growing seasons from 2015 to 2018. Out of 2,207 isolates, only 1.04% of the isolates (n = 23) exceeded the sensitivity threshold value of 1 µg/ml. Remarkably, 95.7% are concentrated in a geographic region (Valparaíso Region). Isolates with reduced sensitivity to fludioxonil showed growth comparable with sensitive isolates and even more robust growth under nutritional deficit, temperature, or osmotic stress, suggesting greater environmental adaptation. When table grape detached berries were stored at 0°C, isolates less sensitive to fludioxonil caused larger lesions than sensitive isolates (2.82 mm compared with 1.48 mm). However, the lesions generated by both types of isolates were equivalent at room temperature. This study found no cross-resistance between fludioxonil and fenhexamid, an essential fungicide integrated with fludioxonil in Chilean B. cinerea control programs. All the Chilean isolates with reduced sensitivity to fludioxonil were controlled by the fludioxonil/cyprodinil mixture, a commonly employed form of fludioxonil. The cyprodinil sensitivity in the isolates with reduced sensitivity to fludioxonil explains their low field frequency despite their null fitness penalties. However, the emergence of fludioxonil-resistant isolates inside the Chilean B. cinerea population demands a comprehensive analysis of their genetic bases, accompanied by monitoring tools that allow the permanence of field fludioxonil efficacy.


Asunto(s)
Botrytis , Dioxoles , Fungicidas Industriales , Enfermedades de las Plantas , Pirroles , Vitis , Botrytis/efectos de los fármacos , Botrytis/genética , Chile , Fungicidas Industriales/farmacología , Pirroles/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Dioxoles/farmacología , Vitis/microbiología , Farmacorresistencia Fúngica/genética
7.
Plant Dis ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320375

RESUMEN

The gray mold (Botrytis cinerea; Botrytis) is the main disease affecting grapevines production in Chile. Succinate Dehydrogenase Inhibitors (SDHI) belonging to the carboxamides fungicide family are a key tool for the control of Botrytis in grapevines from Chilean Central Valley. This study aimed to determine the sensitivity of Chilean Botrytis population to the new generation carboxamide pydiflumetofen. Conidial germination (CG) and germ-tube elongation (GTE) sensitivity assays were conducted on 200 single-spore isolates collected during the 2016-2017 season. The mean effective concentration that inhibited 50% (EC50) of CG in the Botrytis population was 0.0545 µg/mL, with mean values of 0.066 µg/mL and 0.042 µg/mL, for table and wine grapes, respectively. The mean EC50 value of GTE was 0.000245 µg/mL, 0.0003 µg/mL, and 0.0019 µg/mL for the total, table grape, and wine grape populations, respectively. The comparison between pydiflumetofen and fludioxonil, a highly-efficient fungicide carrying a different mode of action, showed the 87.5% and 97.5% of Botrytis control with an EC50 threshold of 0.1 µg/mL, in table grape, and wine grape populations, respectively. No cross-resistance between pydiflumetofen and fludioxonil was detected. For nine isolates with reduced pydiflumetofen sensitivity, we evaluated SdhB mutations using a qPCR-HRM diagnostic system. Two isolates carried the sdhBP225/H272R genotype and two the sdhBP225/H272Y. Additional analysis of SdhB mutant isolates determined that pydiflumetofen controls wild-type as well as sdhBP225/H272R and sdhBP225H/H272 mutants. Pydiflumetofen does not control CG in the sdhBP225/H272Y mutant but is effective in the GTE control. Pydiflumetofen significantly controls Botrytis independently of the SdhB genotype in wounded berry assays. This condition resembles the berry cracking due to heavy rainfall right before harvest, as seen in recent years in the Chilean Central Valley. The findings demonstrate that pydiflumetofen effectively controls the grapevine Botrytis population, suggest a moderate risk of pydiflumetofen resistance, and highlight the significance of incorporating genetic data into the design of control programs.

8.
Plant Dis ; 108(2): 278-285, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37743587

RESUMEN

The fungal pathogen Botrytis cinerea is a notorious problem on many floriculture greenhouse hosts including petunia, geranium, and poinsettia; these key crops contribute to the $6.43 billion U.S. ornamental industry. While growers use cultural strategies to reduce relative humidity and free moisture to limit Botrytis blight, fungicides remain a primary component of control programs. Isolates (n = 386) of B. cinerea sampled from symptomatic petunia, geranium, and poinsettia in Michigan greenhouses from 2018 to 2021 were screened for resistance to eight fungicides belonging to seven Fungicide Resistance Action Committee (FRAC) groups. Single-spored isolates were subjected to a germination-based assay using previously defined discriminatory doses of each fungicide. Resistance was detected to thiophanate-methyl (FRAC 1; 94%), pyraclostrobin (FRAC 11; 80%), boscalid (FRAC 7; 67%), iprodione (FRAC 2; 65%), fenhexamid (FRAC 17; 38%), cyprodinil (FRAC 9; 38%), fludioxonil (FRAC 12; 21%), and fluopyram (FRAC 7; 13%). Most isolates (63.5%) were resistant to at least four FRAC groups, with 8.7% of all isolates demonstrating resistance to all seven FRAC groups tested. Resistance frequencies for each fungicide were similar among crops, production regions, and growing cycles but varied significantly for each greenhouse. Phenotypic diversity was high, as indicated by the 48 different fungicide resistance profiles observed. High frequencies of resistance to multiple fungicides in B. cinerea populations from floriculture hosts highlight the importance of sustainable and alternative disease management practices for greenhouse growers.


Asunto(s)
Fragaria , Fungicidas Industriales , Fungicidas Industriales/farmacología , Botrytis , Farmacorresistencia Fúngica , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Fragaria/microbiología
9.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39201710

RESUMEN

Fludioxonil, an antifungal agent used as a pesticide, leaves a measurable residue in fruits and vegetables. It has been identified to cause endocrine disruption, interrupt normal development, and cause various diseases such as cancers. In this study, fludioxonil was examined for its effects on the development and metastasis of breast cancer cells. On fludioxonil exposure (10-5 M) for 72 h, mutant p53 (mutp53) MDA-MB-231 triple-negative breast cancer (TNBC) cells significantly inhibited cell viability and developed into polyploid giant cancer cells (PGCCs), with an increase in the number of nuclei and expansion in the cell body size. Fludioxonil exposure disrupted the normal cell cycle phase ratio, resulting in a new peak. In addition, PGCCs showed greater motility than the control and were resistant to anticancer drugs, i.e., doxorubicin, cisplatin, and 5-fluorouracil. Cyclin E1, nuclear factor kappa B (NF-κB), and p53 expressions were remarkably increased, and the expression of cell cycle-, epithelial-mesenchymal-transition (EMT)-, and cancer stemness-related proteins were increased in the PGCCs. The daughter cells obtained from PGCCs had the single nucleus but maintained their enlarged cell size and showed greater cell migration ability and resistance to the anticancer agents. Consequently, fludioxonil accumulated Cyclin E1 and promoted the inflammatory cytokine-enriched microenvironment through the up-regulation of TNF and NF-κB which led to the transformation to PGCCs via abnormal cell cycles such as mitotic delay and mitotic slippage in mutp53 TNBC MDA-MB-231 cells. PGCCs and their daughter cells exhibited significant migration ability, chemo-resistance, and cancer stemness. These results strongly suggest that fludioxonil, as an inducer of potential genotoxicity, may induce the formation of PGCCs, leading to the formation of metastatic and stem cell-like breast cancer cells.


Asunto(s)
Dioxoles , Transición Epitelial-Mesenquimal , Células Madre Neoplásicas , Poliploidía , Pirroles , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Pirroles/farmacología , Femenino , Línea Celular Tumoral , Dioxoles/farmacología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fungicidas Industriales/farmacología , Fungicidas Industriales/toxicidad , Movimiento Celular/efectos de los fármacos , Metástasis de la Neoplasia , Células Gigantes/efectos de los fármacos , Células Gigantes/metabolismo , Células Gigantes/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos
10.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125929

RESUMEN

In this work, liposomes loaded with the fungicide, Fludioxonil (FLUD), for the containment of fungal diseases in agriculture were developed. Three types of vesicles with different compositions were compared: (I) plain vesicles, composed of soy phosphatidylcholine and cholesterol; (II) PEG-coated vesicles, with an additional polyethylene glycol coating; and (III) cationic vesicles, containing didodecyldimethylammonium bromide. Nanometric-sized vesicles were obtained both by the micelle-to-vesicle transition method and by the extrusion technique, and encapsulation efficiency, drug loading content, and Zeta potential were determined for all the samples. The extruded and PEGylated liposomes were the most stable over time and together with the cationic ones showed a significant prolonged FLUD release capacity. The liposomes' biological activity was evaluated on conidial germination, germ tube elongation and colony radial growth of the ascomycete Botrytis cinerea, a phytopathogenic fungus affecting worldwide many important agricultural crops in the field as well as in the postharvest phase. The extruded and PEGylated liposomes showed greater effectiveness in inhibiting germ tube elongation and colony radial growth of the fungal pathogen, even at 0.01 µg·mL-1, the lowest concentration assessed.


Asunto(s)
Botrytis , Dioxoles , Fungicidas Industriales , Liposomas , Enfermedades de las Plantas , Liposomas/química , Botrytis/efectos de los fármacos , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Dioxoles/farmacología , Dioxoles/química , Dioxoles/administración & dosificación , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Polietilenglicoles/química , Agricultura/métodos , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Fosfatidilcolinas/química , Esporas Fúngicas/efectos de los fármacos , Pirroles
11.
BMC Genomics ; 24(1): 684, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964194

RESUMEN

BACKGROUND: Aspergillus fumigatus is a major fungal pathogen that causes severe problems due to its increasing resistance to many therapeutic agents. Fludioxonil is a compound that triggers a lethal activation of the fungal-specific High Osmolarity Glycerol pathway. Its pronounced antifungal activity against A. fumigatus and other pathogenic molds renders this agent an attractive lead substance for the development of new therapeutics. The group III hydride histidine kinase TcsC and its downstream target Skn7 are key elements of the multistep phosphorelay that represents the initial section of the High Osmolarity Glycerol pathway. Loss of tcsC results in resistance to fludioxonil, whereas a Δskn7 mutant is partially, but not completely resistant. RESULTS: In this study, we compared the fludioxonil-induced transcriptional responses in the ΔtcsC and Δskn7 mutant and their parental A. fumigatus strain. The number of differentially expressed genes correlates well with the susceptibility level of the individual strains. The wild type and, to a lesser extend also the Δskn7 mutant, showed a multi-faceted stress response involving genes linked to ribosomal and peroxisomal function, iron homeostasis and oxidative stress. A marked difference between the sensitive wild type and the largely resistant Δskn7 mutant was evident for many cell wall-related genes and in particular those involved in the biosynthesis of chitin. Biochemical data corroborate this differential gene expression that does not occur in response to hyperosmotic stress. CONCLUSIONS: Our data reveal that fludioxonil induces a strong and TcsC-dependent stress that affects many aspects of the cellular machinery. The data also demonstrate a link between Skn7 and the cell wall reorganizations that foster the characteristic ballooning and the subsequent lysis of fludioxonil-treated cells.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Dioxoles , Pirroles , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicerol/metabolismo , Pared Celular/metabolismo
12.
Pestic Biochem Physiol ; 197: 105622, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072516

RESUMEN

Cucumber corynespora leaf spot, caused by Corynespora cassiicola, is the primary disease of cucumber leaves in greenhouses in China. Fludioxonil is a phenylpyrrole fungicide that inhibits C. cassiicola growth. We studied the sensitivity of 170 isolates of C. cassiicola to fludioxonil and evaluated resistance risk. All of the isolates were sensitive to fludioxonil. The EC50 values ranged from 0.082 to 0.539 µg/mL with a mean of 0.207 ± 0.0053 µg/mL. Laboratory-created mutants with a high resistance factor to fludioxonil were genetically stable after 10 transfers and showed positive cross-resistance to iprodione and procymidone but not to azoxystrobin, carbendazim, pydiflumetofen, and prochloraz. There was no significant difference in mycelial growth and temperature adaptation between the mutant s and the sensitive isolates, except for pathogenicity and sporulation. The resistant isolates accumulated less glycerol than their parental isolates and were more sensitive to osmotic stress. The histidine kinase activity of the sensitive isolates was significantly inhibited compared to that of the resistant mutants. Sequence alignment of the histidine kinase gene CCos revealed that the mutants RTL4, RXM5, and RFS102 had point mutations at different sites that resulted in amino acid changes at G934E, S739F, and A825P in the CCos protein. The mutant RFS102 had an alanine deletion at site 824. After fludioxonil treatment, CCos expression by RFS20 was significantly lower than that of the parental isolate. Our findings demonstrate that C. cassiicola exhibits moderate resistance to fludioxonil.


Asunto(s)
Cucumis sativus , Farmacorresistencia Fúngica , Histidina Quinasa , Farmacorresistencia Fúngica/genética , Medición de Riesgo
13.
Pestic Biochem Physiol ; 194: 105500, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532358

RESUMEN

Hickory trunk canker (HTC), primarily caused by Botryosphaeria dothidea, is an aggravating disease that threatens an important regional economic tree species of Chinese hickory and few information is available in the control of this disease. Here, the sensitivity of 93 isolates to fludioxonil and the resistance risk were investigated. All the isolates tested were sensitive to fludioxonil and the EC50 ranged from 0.0028 to 0.0569 µg/mL. The tamed fludioxonil-resistant mutants remained highly resistant to fludioxonil even after 10 consecutive transfers to fludioxonil-free PDA plates. As for fitness penalty, the fludioxonil-resistant mutants demonstrated a reduction in conidia production and virulence as well as increased sensitivity to high osmotic stress. While, variations in mycelial growth and responses to SDS and H2O2 were not detected in all the resistant mutants. In addition, the resistant mutants demonstrated positive cross-resistance to iprodione but not to fungicides of other modes of action. Sequential analysis of BdNik1 showed that premature stop codon occurred in all the resistant mutants despite of point mutation (BD16-22R9 and BD16-22R20) or frameshift mutation (BD16-22R8, BD16-22R11 and BD16-22R18). Our study suggested that fludioxonil exhibited excellent inhibition activity on mycelial growth of B. dothidea in vitro, the resistance risk of B. dothidea to fludioxonil should be low to moderate and fludioxonil would be a nice candidate in controlling HTC caused by B. dothidea.


Asunto(s)
Ascomicetos , Carya , Fungicidas Industriales , Enfermedades de las Plantas , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Fungicidas Industriales/farmacología , Peróxido de Hidrógeno , Carya/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
14.
Plant Dis ; 107(11): 3523-3530, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37486274

RESUMEN

Wheat brown foot rot (WBFR), caused by a variety of phytopathogenic fungi, is an important soilborne and seedborne disease of wheat. WBFR causes wheat lodging and seedling dieback, which seriously affect the yield and quality of wheat. In this study, 64 isolates of WBFR were isolated from different wheat fields in Yancheng city, Jiangsu Province, China. The internal transcribed spacer, elongation factor 1α, and RNA polymerase II subunit were amplified and the sequencing results of the fragments were analyzed with BLAST in NCBI. Through morphological and molecular identification, all of the isolates were identified as Microdochium majus. Verification by Koch's postulates confirmed that M. majus was the pathogen causing WBFR. The antifungal activities of fludioxonil and prochloraz against 64 isolates of M. majus were determined based on mycelial growth inhibition method. The results showed that fludioxonil and prochloraz had good antifungal activity against M. majus. The mean 50% effective concentration values of fludioxonil and prochloraz against M. majus were 0.2956 ± 0.1285 µg/ml and 0.0422 ± 0.0157 µg/ml, respectively. Control efficacy for seed-coating treatments conducted in a greenhouse indicated that M. majus severely damaged the normal growth of wheat, while seed coating with fludioxonil or prochloraz significantly reduced the disease incidence and improved the seedling survival rates. At fludioxonil doses of 7.5 g per 100 kg and prochloraz doses of 15 g per 100 kg, the incidence was reduced by 22.26 and 25.33%, seedling survival rates increased by 25.37 and 22.66%, and control efficacy reached 70.02 and 72.30%, respectively. These findings provide vital information for the accurate diagnosis and effective management of WBFR.


Asunto(s)
Ascomicetos , Triticum , Antifúngicos , China
15.
Plant Dis ; 107(9): 2784-2791, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36802296

RESUMEN

Seeds play a critical role in the production of American ginseng. Seeds are also one of the most important media for the long-distant dissemination and the crucial way for pathogen survival. Figuring out the pathogens carried by seeds is the basis for effective management of seedborne diseases. In this paper, we tested the fungi carried by the seeds of American ginseng from the main production areas of China using incubation and highly throughput sequencing methods. The seed-carried rates of fungi in Liuba, Fusong, Rongcheng, and Wendeng were 100, 93.8, 75.2, and 45.7%, respectively. Sixty-seven fungal species, which belonged to 28 genera, were isolated from the seeds. Eleven pathogens were identified from the seed samples. Among the pathogens, Fusarium spp. were found in all of the seed samples. The relative abundance of Fusarium spp. in the kernel was higher than that in the shell. Alpha index showed that the fungal diversity between seed shell and kernel differed significantly. Nonmetric multidimensional scaling analysis revealed that the samples from different provinces and between seed shell and kernel were distinctly separated. The inhibition rates of four fungicides to seed-carried fungi of American ginseng were 71.83% for Tebuconazole SC, 46.67% for Azoxystrobin SC, 46.08% for Fludioxonil WP, and 11.11% for Phenamacril SC. Fludioxonil, a conventional seed treatment agent, showed a low inhibitory effect on seed-carried fungi of American ginseng.


Asunto(s)
Fungicidas Industriales , Fusarium , Panax , Endófitos/genética , Fusarium/genética , Fungicidas Industriales/farmacología , Semillas/microbiología , Panax/microbiología
16.
Plant Dis ; 107(4): 1159-1165, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36194734

RESUMEN

Rhizoctonia solani anastomosis group (AG) 2-1 is an ubiquitous soilborne pathogen causing severe damping-off of oilseed rape (OSR). In the absence of varietal resistance to AG2-1, there are limited methods for integrated disease management. The objectives of these field studies were to quantify yield losses due to AG2-1 and to determine the effectiveness of integrated control using sedaxane, fludioxonil, and metalaxyl-M applied as seed treatment on two OSR genotypes at a sowing rate of 40 (low) or 80 (high) seeds m-2. Crop assessments of green area index (GAI), vigor, and cabbage stem flea beetle (CSFB) Psylliodes chrysocephala damage were carried out at GS16, while pathogen DNA in soil was quantified using real-time PCR at GS32. Yield and seed weight losses of 41 and 18%, respectively, were associated with reduced establishment, GAI, vigor, and delayed development and flowering of OSR. Seed treatment reduced AG2-1 DNA in soil by 80%, resulting in a 94, 16, and 64% increase of establishment, thousand seed weight (TSW), and yield, respectively. Seed treatment also mitigated the effects of AG2-1 on delaying plant development, resulting in increased uniformity of crop flowering. OSR plants infected with AG2-1 suffered 27% more damage by the CSFB, indicating positive pathogen-pest interaction at the expense of the OSR host. Optimum control of AG2-1 infection was achieved by integrating low sowing rate and seed treatment. However, under dual pest and pathogen attack, high sowing rates should be combined with the use of seed treatment to mitigate seedling death and delayed development caused by AG2-1 and CSFB damage.


Asunto(s)
Brassica napus , Semillas , Plantas , Suelo
17.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674501

RESUMEN

Botrytis cinerea, the causal agent of gray mold, is one of the most destructive pathogens of cherry tomatoes, causing fruit decay and economic loss. Fludioxonil is an effective fungicide widely used for crop protection and is effective against tomato gray mold. The emergence of fungicide-resistant strains has made the control of B. cinerea more difficult. While the genome of B. cinerea is available, there are few reports regarding the large-scale functional annotation of the genome using expressed genes derived from transcriptomes, and the mechanism(s) underlying such fludioxonil resistance remain unclear. The present study prepared RNA-sequencing (RNA-seq) libraries for three B. cinerea strains (two highly resistant (LR and FR) versus one highly sensitive (S) to fludioxonil), with and without fludioxonil treatment, to identify fludioxonil responsive genes that associated to fungicide resistance. Functional enrichment analysis identified nine resistance related DEGs in the fludioxonil-induced LR and FR transcriptome that were simultaneously up-regulated, and seven resistance related DEGs down-regulated. These included adenosine triphosphate (ATP)-binding cassette (ABC) transporter-encoding genes, major facilitator superfamily (MFS) transporter-encoding genes, and the high-osmolarity glycerol (HOG) pathway homologues or related genes. The expression patterns of twelve out of the sixteen fludioxonil-responsive genes, obtained from the RNA-sequence data sets, were validated using quantitative real-time PCR (qRT-PCR). Based on RNA-sequence analysis, it was found that hybrid histidine kinase, fungal HHKs, such as BOS1, BcHHK2, and BcHHK17, probably involved in the fludioxonil resistance of B. cinerea, in addition, a number of ABC and MFS transporter genes that were not reported before, such as BcATRO, BMR1, BMR3, BcNMT1, BcAMF1, BcTOP1, BcVBA2, and BcYHK8, were differentially expressed in the fludioxonil-resistant strains, indicating that overexpression of these efflux transporters located in the plasma membranes may associate with the fludioxonil resistance mechanism of B. cinerea. All together, these lines of evidence allowed us to draw a general portrait of the anti-fludioxonil mechanisms for B. cinerea, and the assembled and annotated transcriptome data provide valuable genomic resources for further study of the molecular mechanisms of B. cinerea resistance to fludioxonil.


Asunto(s)
Fungicidas Industriales , Transcriptoma , Fungicidas Industriales/farmacología , Fungicidas Industriales/metabolismo , Perfilación de la Expresión Génica , Botrytis , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Transporte de Membrana/metabolismo , ARN/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Farmacorresistencia Fúngica/genética
18.
Fungal Genet Biol ; 158: 103649, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34921997

RESUMEN

In phytopathogenic fungi, the HOG MAPK pathway has roles in osmoregulation, fungicide sensitivity, and other processes. The ATF1/CREB-activating transcription factor Atf1 is a regulator that functions downstream of the HOG MAPK pathway. Here, we identified a gene, designated CsAtf1, that encodes a bZIP transcription factor in Colletotrichum siamense, which is the main pathogen that causes Colletotrichum leaf fall disease in rubber trees in China. CsAtf1 localizes to the nucleus. Its mRNA expression correlates positively with that of CsPbs2 and CsHog1 in the HOG MAPK pathway in response to activator (anisomycin), inhibitor (SB203580) and fludioxonil treatments. The CsAtf1 deletion mutant showed slightly retarded mycelial growth, small conidia, slow spore germination, and abnormal appressorium formation. This mutant showed the increased spore germination rate after fludioxonil treatment and more resistance to the fungicide fludioxonil than did the wild-type fungus. However, unlike deletion of Pbs2 or Hog1, which resulted in greater sensitivity to osmotic stress, the CsAtf1 deletion induced slightly increased resistance to osmotic stress and the cell wall stress response. The ΔCsAtf1 strain also exhibited significantly reduced virulence on rubber tree leaves. These data revealed that CsAtf1 plays a key role in the regulation of fludioxonil sensitivity and in pathogenicity regulation in C. siamense.


Asunto(s)
Colletotrichum , Hevea , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Colletotrichum/genética , Dioxoles , Proteínas Fúngicas/genética , Enfermedades de las Plantas , Pirroles , Virulencia/genética
19.
Pestic Biochem Physiol ; 184: 105101, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35715040

RESUMEN

Fusarium head blight (FHB) predominately caused by F. graminearum, is an economical devastating disease for grain cereal crops especially on wheat. The phenylpyrrole fungicide fludioxonil exhibits excellent activity against F. graminearum and has been registered to control FHB in China. In this study, 6 fludioxonil-resistant (FludR) isolates of F. graminearum were identified from 2910 isolates collected from wheat cultivated field in Jiang Su, An Hui and Henan province of China in 2020. The sensitivity assay showed that resistance factor (RF) of FludR isolates ranges from 170.73 to >1000. In comparison with fludioxonil-sensitive (FludS) isolates, all of FludR isolates showed fitness defects in terms of mycelial growth, conidiation and virulence. Under fludioxonil treatment condition, the glycerol accumulation was obviously increased in FludS isolates, but was slightly increased in FludR isolates. Four FludR isolates exhibited increased sensitivity to osmotic stresses. Moreover, there is no positive cross-resistance between fludioxonil and other fungicides including phenamacril, carbendazim and tebuconazole. When treated with fludioxonil, the phosphorylation level of Hog1 was significantly decreased in the four FludR isolates, which was in contrast to the observation in the FludS and two FludR isolates where phosphorylation level of Hog1 was increased. Sequencing assay showed that the mutations were identified in different domains in FgOS1, FgOS2 or FgOS4 in FludR isolates. This was first reported that biological and molecular characterizations of field isolates of F. graminearum resistant to fludioxonil. The results can provide scientific directions for controlling FHB using fludioxonil.


Asunto(s)
Fungicidas Industriales , Fusarium , Dioxoles , Farmacorresistencia Fúngica/genética , Grano Comestible , Fungicidas Industriales/farmacología , Fusarium/genética , Enfermedades de las Plantas , Pirroles , Triticum
20.
Pestic Biochem Physiol ; 183: 105058, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35430062

RESUMEN

Sensitivity of B. cinerea to commonly used fungicides against Gray mold with emphasis to the newer quinone outside inhibitor (QoIs), and succinate dehydrogenase inhibitors (SDHIs) was assessed during a monitoring survey from vegetable greenhouses in four representative regions of Crete. 42% from a total of 168 isolates were simultaneously resistant to boscalid, fluopyram, pyraclostrobin and fenhexamid but not to fludioxonil making this phenylpyrrole fungicide an excellent anti-resistance antifungal agent. Isolates with double resistance to SDHIs and QoIs were found in very high frequencies indicating a selection towards double resistance due to the use of pyraclostrobin-boscalid mixtures. A number of sdhB resistance mutations (H272R, N230I and P225F/H) were found in isolates also carrying the G143A cytb resistance mutation in the above isolates. A novel sdhB point mutation (I274V) was identified for the first time in B. cinerea isolates collected from greenhouses with a fluopyram spray history with specific resistance to SDHIs. A PCR-RFLP diagnostic assay was developed for the detection of this mutation in the sdhB gene. Mutations P225F/H and I274V were found to be associated with fitness penalties in terms of mycelial growth, sporulation or pathogenicity. Results suggest that, in order to retain effective control of gray mold in Crete, appropriate anti-resistance strategies should be implemented taking into account the high double SDHI and QoI resistance frequencies. Additional studies for monitoring the already known and the new SDHI-resistance mutations, are necessary in order to hinder the further spread and establishment of single or double resistant isolates of B. cinerea detected in greenhouses in Crete.


Asunto(s)
Botrytis , Fungicidas Industriales , Botrytis/genética , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Mutación , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA