Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Infection ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607591

RESUMEN

BACKGROUND: Within endemic regions in southern and eastern Germany, Borna disease virus 1 (BoDV-1) causes rare zoonotic spill-over infections in humans, leading to encephalitis with a high case-fatality risk. So far, intra-vitam diagnosis has mainly been based on RT-qPCR from cerebrospinal fluid (CSF) and serology, both being associated with diagnostic challenges. Whilst low RNA copy numbers in CSF limit the sensitivity of RT-qPCR from this material, seroconversion often occurs late during the course of the disease. CASE PRESENTATION: Here, we report the new case of a 40 - 50 year-old patient in whom the detection of virus-specific T cells via ELISpot corroborated the diagnosis of BoDV-1 infection. The patient showed a typical course of the disease with prodromal symptoms like fever and headaches 2.5 weeks prior to hospital admission, required mechanical ventilation from day three after hospitalisation and remained in deep coma until death ten days after admission. RESULTS: Infection was first detected by positive RT-qPCR from a CSF sample drawn four days after admission (viral load 890 copies/mL). A positive ELISpot result was obtained from peripheral blood collected on day seven, when virus-specific IgG antibodies were not detectable in serum, possibly due to previous immune adsorption for suspected autoimmune-mediated encephalitis. CONCLUSION: This case demonstrates that BoDV-1 ELISpot serves as additional diagnostic tool even in the first week after hospitalisation of patients with BoDV-1 encephalitis.

2.
Mikrochim Acta ; 191(6): 303, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709340

RESUMEN

A platform was designed based on Fe3O4 and CsPbBr3@SiO2 for integrated magnetic enrichment-fluorescence detection of Salmonella typhimurium, which significantly simplifies the detection process and enhances the working efficiency. Fe3O4 served as a magnetic enrichment unit for the capture of S. typhimurium. CsPbBr3@SiO2 was employed as a fluorescence-sensing unit for quantitative signal output, where SiO2 was introduced to strengthen the stability of CsPbBr3, improve its biomodificability, and prevent lead leakage. More importantly, the SiO2 shell shows neglectable absorption or scattering towards fluorescence, making the CsPbBr3@SiO2 exhibit a high quantum yield of 74.4%. After magnetic enrichment, the decreasing rate of the fluorescence emission intensity of the CsPbBr3@SiO2 supernatant at 527 nm under excitation light at UV 365 nm showed a strong linear correlation with S. typhimurium concentration of 1 × 102~1 × 108 CFU∙mL-1, and the limit of detection (LOD) reached 12.72 CFU∙mL-1. This platform has demonstrated outstanding stability, reproducibility, and resistance to interference, which provides an alternative for convenient and quantitative detection of S. typhimurium.


Asunto(s)
Colorantes Fluorescentes , Límite de Detección , Salmonella typhimurium , Dióxido de Silicio , Salmonella typhimurium/aislamiento & purificación , Dióxido de Silicio/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Plomo/química , Sistemas de Atención de Punto , Sulfuros/química , Nanopartículas de Magnetita/química , Humanos
3.
Bioorg Med Chem ; 87: 117301, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37150117

RESUMEN

In this work, we report the design, synthesis, and application of a bis-pyrene phospholipid probe for detection of phospholipase A2 action through changes in pyrene monomer and excimer fluorescence intensities. Continuous fluorometric assays enabled detection of the activities of multiple PLA2 enzymes as well as the decrease in catalysis by PLA2 from honey bee venom caused by the inhibitor p-bromo phenacylbromide. Thin-layer chromatography and mass spectrometry analysis were also used to validate probe hydrolysis by PLA2. Mass spectrometry data also supported cleavage of the probe by phospholipase C and D enzymes, although changes in fluorescence were not observed in these cases. Nevertheless, the bis-pyrene phospholipid probe developed in this work is effective for detection of PLA2 enzyme activity through an assay that enables screening for inhibitor development.


Asunto(s)
Fosfolipasas , Fosfolípidos , Hidrólisis , Fosfolipasas/análisis , Fosfolipasas A2/química , Pirenos
4.
J Fluoresc ; 33(3): 775-798, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36538145

RESUMEN

Identification of trace level chemical species (drugs, pesticides, metal ions and biomarkers) plays key role in environmental monitoring. Recently, fluorescence assay has shown significant advances in detecting of trace level drugs, pesticides, metal ions and biomarkers in real samples. Ultra-small nanostructure materials (metal nanoclusters (NCs), quantum dots (QDs) and carbon dots (CDs)) have been integrated with fluorescence spectrometer for sensitive and selective analysis of trace level target analytes in various samples including environmental and biological samples. This review summarizes the properties of metal NCs and ligand chemistry for the fabrication of metal NCs. We also briefly summarized the synthetic routes for the preparation of QDs and CDs. Advances of ultra-small fluorescent nanosensors (NCs, QDs and CDs) for sensing of metal ions, drugs, pesticides and biomarkers in various sample matrices are briefly discussed. Additionally, we discuss the recent challenges and future perspectives of ultra-small materials as fluorescent sensors for assaying of wide variety of target analytes in real samples.


Asunto(s)
Plaguicidas , Puntos Cuánticos , Espectrometría de Fluorescencia , Metales , Puntos Cuánticos/química , Colorantes Fluorescentes/química , Iones , Carbono/química , Biomarcadores
5.
Methods ; 206: 69-76, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36049704

RESUMEN

The detection of albumin proteins with high accuracy by facile analytical approaches is important for the diagnosis of various diseases. This manuscript introduced an easy-to-prepare Schiff base L by condensing vitamin B6 cofactor pyridoxal 5'-phosphate (PLP) with 2-aminothiophenol for the fluorescence turn-on sensing of bovine serum albumin (BSA) and ovalbumin (OVA). The weakly emissive L showed a significant fluorescence enhancement at 485 and 490 nm in the presence of OVA and BSA with an estimated sensitivity limit of 1.7 µM and 0.3 µM, respectively. The formation of protein-ligand complex restricted the free intramolecular rotation of L is expected to show the selective fluorescence enhancement. The molecular docking and molecular dynamics simulations were performed to examine the binding affinity and modes between BSA/OVA and L. The practical utility of L as a fluorescent turn-on sensor was validated by quantifying BSA and OVA in various real biological samples of milk, serum, egg white and urine with good recovery percentages.


Asunto(s)
Albúmina Sérica Bovina , Vitamina B 6 , Ligandos , Simulación del Acoplamiento Molecular , Ovalbúmina , Fosfatos , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Bases de Schiff/química , Albúmina Sérica Bovina/química , Espectrometría de Fluorescencia , Vitamina B 6/química , Vitaminas
6.
Anal Bioanal Chem ; 415(18): 4061-4077, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37119357

RESUMEN

Increasing evidence supports the critical role of saccharides in various pathophysiological steps of tumor progression, where they regulate tumor proliferation, invasion, hematogenic metastasis, and angiogenesis. The identification and recognition of these saccharides provide a solid foundation for the development of targeted drug preparations, which are however not fully understood due to their complex and similar structures. In order to achieve fluorescence sensing of saccharides, extensive research has been conducted to design molecular probes and nanoparticles made of different materials. This paper aims to provide in-depth discussion of three main topics that cover the current status of the carbohydrate sensing based on the fluorescence sensing mechanism, including a phenylboronic acid-based sensing platform, non-boronic acid entities, as well as an enzyme-based sensing platform. It also highlights efforts made to understand the recognition mechanisms and improve the sensing properties of these systems. Finally, we present the challenge of achieving high selectivity and sensitivity recognition of saccharides, and suggest possible future avenues for exploration.


Asunto(s)
Carbohidratos , Nanopartículas , Fluorescencia , Carbohidratos/química , Sondas Moleculares
7.
Bioorg Chem ; 140: 106826, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37666108

RESUMEN

Diabetes mellitus (DM) is a disease of civilization. If left untreated, it can cause serious complications and significantly shortens the life time. DM is one of the leading causes of end-stage renal disease (uremia) worldwide. Early diagnosis is a prerequisite for successful treatment, preferably before the first symptoms appear. In this paper, we describe the optimization and synthesis of the internally quenched fluorescent substrate disintegrin and metalloproteinase 10 (ADAM10). Using combinatorial chemistry methods with iterative deconvolution, the substrate specificity of the enzyme in non-primed and primed positions was determined. We used the ABZ-Lys-Ile-Ile-Asn-Leu-Lys-Arg-Tyr(3-NO2)-NH2 peptide to study ADAM10 activity in urine samples collected from patients diagnosed with type 2 diabetes, compared to urine samples from healthy volunteers. The proteolytically active enzyme was present in diabetes samples, while in the case of healthy people we did not observe any activity. In conclusion, our study provides a possible basis for further research into the potential role of ADAM10 in the diagnosis of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Colorantes , Técnicas Químicas Combinatorias , Voluntarios Sanos , Especificidad por Sustrato
8.
Environ Res ; 224: 115402, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764433

RESUMEN

In recent years, silicon nanoparticles (Si NPs) have been explored as a promising alternative to traditional organic fluorophores in optical sensing and bioimaging applications owing to their exceptional optical properties and negligible toxicity. In this study, water-dispersible Si NPs were prepared from a 3-aminopropyl trimethoxysilane precursor using a facile one-pot process. The as-prepared Si NPs exhibited excitation-wavelength-dependent fluorescence properties and bright green fluorescence at 530 nm upon excitation at 420 nm. The fluorescence properties of Si NPs remained unperturbed under various physiological conditions, such as varying pH, ionic strength, and incubation time. A sensitive fluorometric turn-off sensor for cyanide ion (CN-) detection was devised based on the unique fluorescence properties of Si NPs. The Si NPs-based detection assay showed a good linear response toward CN- ranging between 0 and 33 µM, with a limit of detection as low as 0.90 nM. Caenorhabditis elegans is used as a model organism to evaluate the in vivo toxicity and molecular imaging capability of Si NPs.


Asunto(s)
Nanopartículas , Silicio , Animales , Caenorhabditis elegans , Cianuros , Nanopartículas/química , Colorantes Fluorescentes/química
9.
Mikrochim Acta ; 190(10): 380, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37695413

RESUMEN

Molecularly imprinted polymers with methylammonium lead halide perovskite quantum dots (MIP@MAPbBr3 PQDs) have been prepared and applied to the determination of benzo(a)pyrene (BaP) for the first time. The photoluminescence (PL) of MIP@MAPbBr3 PQDs was enhanced due to the surface passivation of defects by BaP. PL excitation and emission spectra, X-ray diffraction, Fourier transform infrared, and time-resolved PL studies suggest that the interaction between MIP@MAPbBr3 PQDs and BaP is a dynamic process. After MIP@MAPbBr3 PQDs were incubated with BaP, the benzene ring in the molecular structure of BaP can interact with MIP@MAPbBr3 PQDs through π electrons, which reduces non-radiative recombination of MIP@MAPbBr3 PQDs and lengthens excited state lifetime. The PL intensity of the MIP@MAPbBr3 PQDs-BaP system was monitored at 520 nm with 375 nm excitation. Under optimized conditions, the PL intensity of MIP@MAPbBr3 PQDs is linear with the concentration of BaP in the 10 to 100 ng·mL-1 range, with a detection limit of 1.6 ng·mL-1. The imprinting factor was 3.9, indicating excellent specificity of MIP@MAPbBr3 PQDs for BaP. The MIP@MAPbBr3 PQDs were subsequently applied to the PL analysis of BaP in sunflower seed oil, cured meat, and grilled fish samples, achieving recoveries from 79.3 to 107%, and relative standard deviations below 10%. This molecularly imprinted fluorescence assay improves the selectivity of BaP in complex mixtures and could be extended to other analytes.

10.
Mikrochim Acta ; 191(1): 29, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095724

RESUMEN

A novel nucleic acid aptamer nanoprobes-mediated hairpin allosteric and aptamer-assisted CRISPR system for detection of Streptococcus pneumoniae and Staphylococcus aureus is presented. In this fluorescence assay system, utilizing the hairpin allosteric effect caused by the aptamer binding to the target bacteria, the detection of S. pneumoniae is first achieved through changes in fluorescence due to FRET. Subsequently, a Cas12a protein mixture is added to detect S. aureus. The amplified output signal is triggered by two methods to ensure the sensitivity of the method: the synergistic FRET effect is achieved by the assembly of multi-aptamer through the conjugation of streptavidin-biotin, and the trans-cleavage function of CRISPR/Cas 12a. Under the optimized conditions, the proposed hairpin allosteric aptasensor could achieve high sensitivity (a detection limit of 135 cfu/mL) and broad-concentration quantification (dynamic range of 103-107 cfu/mL) of S. pneumoniae. The aptamer-assisted CRISPR system for S. aureus detection showed good linearity (R2 = 0.996) in the concentration range 102-108 cfu/mL, with a detection limit of 39 cfu/mL. No cross-reactivity with other foodborne pathogenic bacteria was observed in both systems. Taking only 55 min, this method of multiple pathogen detection proved to be promising.


Asunto(s)
Aptámeros de Nucleótidos , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus/genética , Aptámeros de Nucleótidos/genética , Streptococcus pneumoniae/genética , Bacterias
11.
Mikrochim Acta ; 191(1): 12, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063936

RESUMEN

PML/RARα fusion gene (P/R) is the characteristic signature genetic variation of acute promyelocytic leukemia (APL). Here, by integrating triple-stranded DNA hybridization-triggered strand displacement amplification (tri-HT SDA) and cobalt oxyhydroxide nanosheets/quantum dots (CoOOH/QD)-based amplification, we constructed a novel biosensor of easy-operating, time-saving and high sensitivity for detecting P/R to meet clinical needs. Owing to the specific recognition and efficient amplification of tri-HT SDA as well as impressive anti-interference and considerable amplification of CoOOH/QD, this biosensor demonstrated a wide dynamic range (10 fM to 10 nM) with a low limit of detection (5.50 fM) in P/R detection. Additionally, this biosensor could detect P/R spiked into human serum with good recoveries and relative standard deviation (RSD), thus potentially exhibiting ultrasensitive and specific nuclear acid sequence detection ability in clinical diagnosis owing to combing isothermal amplification and nanomaterials.


Asunto(s)
Puntos Cuánticos , Humanos , Cobalto , Óxidos , Variación Genética
12.
Molecules ; 28(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37375313

RESUMEN

Poly(ADP-ribose) polymerase-1 (PARP1) is a potential biomarker and therapeutic target for cancers that can catalyze the poly-ADP-ribosylation of nicotinamide adenine dinucleotide (NAD+) onto the acceptor proteins to form long poly(ADP-ribose) (PAR) polymers. Through integration with aggregation-induced emission (AIE), a background-quenched strategy for the detection of PARP1 activity was designed. In the absence of PARP1, the background signal caused by the electrostatic interactions between quencher-labeled PARP1-specitic DNA and tetraphenylethene-substituted pyridinium salt (TPE-Py, a positively charged AIE fluorogen) was low due to the fluorescence resonance energy transfer effect. After poly-ADP-ribosylation, the TPE-Py fluorogens were recruited by the negatively charged PAR polymers to form larger aggregates through electrostatic interactions, thus enhancing the emission. The detection limit of this method for PARP1 detection was found to be 0.006 U with a linear range of 0.01~2 U. The strategy was used to evaluate the inhibition efficiency of inhibitors and the activity of PARP1 in breast cancer cells with satisfactory results, thus showing great potential for clinical diagnostic and therapeutic monitoring.


Asunto(s)
NAD , Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Electricidad Estática , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , NAD/metabolismo
13.
Anal Biochem ; 657: 114889, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36113549

RESUMEN

1,2-Diacylglycerol lipases (DAGLs) are the most important enzymes for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG), and their role in various pathophysiological conditions is currently under investigation. We synthesized a new 1,2-diacylglycerol substrate for these enzymes with a fluorogenic 4-(pyren-1-yl)butanoyl residue in sn-2 position. Using the fluorescent substrate, we measured DAGL activity in rat liver S9 fraction and brain microsomes. To this end, 2-acylglycerol release was directly determined via HPLC and fluorescence detection without further sample clean-up. The method was used to evaluate the action of several known DAGL inhibitors. These showed partly significant differences in their inhibitory effect on DAGLs in liver versus brain preparations. The method was verified by measuring the IC50 values for a subset of inhibitors by HPLC and single-quad MS detection using the deuterated natural DAGL substrate 1-stearoyl-2-arachidonoyl-sn-glycerol-d8. DAGL activity could also be measured with the new pyrene-labeled substrate by HPLC and UV instead of fluorescence detection, if larger quantities of the samples were injected into the HPLC system. Furthermore, using intact human sperm, we show that the substrate is also converted by DAGL enzymes in human cells.


Asunto(s)
Endocannabinoides , Lipoproteína Lipasa , Animales , Cromatografía Líquida de Alta Presión , Diglicéridos , Glicéridos , Humanos , Masculino , Pirenos , Ratas , Semen
14.
Mikrochim Acta ; 189(12): 463, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418555

RESUMEN

Cysteinyl aspartate-specific protease 8 (caspase-8) plays a key role in various biological processes by regulating apoptosis. Therefore, this makes accurate detection and intracellular imaging of caspase-8 of great importance for drug screening, disease diagnosis, and prognostication. Here, by designing a reduced graphene oxide (rGO) quenched peptide probe, we constructed a new biosensing system for monitoring in vitro and intracellular caspase-8 activity. In this system, a fluorophore-labeled peptide and rGO were used as the substrate of caspase-8 and the fluorophore quencher, respectively. The hydrolysis of caspase-8 on the polypeptide probe substrate can generate two fragments with different lengths. The release of the short fragment labeled with the fluorophore causes recovery of the fluorescence signal (Ex/Em = 520/576 nm). Under the optimized conditions, the proposed fluorescence method exhibited a linear response range of 0.2 to 5 U·mL-1 for caspase-8 with a limit of detection (LOD) of 0.2 U·mL-1 in vitro. Furthermore, this method has been successfully applied to monitoring the upregulation of intracellular caspase-8 activity caused by tert-butyl hydroperoxide (TBHP) and fluorouracil. Flow cytometry assay indicated the positive relation between the upregulation of intracellular caspase-8 activity and cell apoptosis rate. In summary, the above results demonstrated the practical application of this method for apoptosis-related cell imaging.


Asunto(s)
Grafito , Caspasa 8 , Péptidos , Colorantes Fluorescentes
15.
Mikrochim Acta ; 189(2): 66, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064352

RESUMEN

The possibility to prepare molecularly imprinted nanoparticles from silk fibroin was recently demonstrated starting from methacrylated silk fibroin and choosing a protein as template. Here, we attempted the imprinting of fibroin-based molecularly imprinted polymers (MIPs), called bioMIPs, using as a template hepcidin that is a iron-metabolism regulator-peptide, possessing a hairpin structure. A homogeneous population (PDI < 0.2) of bioMIPs with size ~50 nm was produced. The bioMIPs were selective for the template; the estimated dissociation constant for hepcidin was KD = 3.6 ± 0.5 10-7 M and the average number of binding sites per bioMIP was equal to 2. The bioMIPs used in a competitive assay for hepcidin in serum showed a detection range of 1.01 10-7- 6.82 10-7 M and a limit of detection of 3.29 10-8 M.


Asunto(s)
Fibroínas/química , Hepcidinas/química , Impresión Molecular , Nanopartículas/química
16.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35957269

RESUMEN

In this work, we reported a rapid and sensitive fluorescence assay in homogenous solution for detecting organophosphorus pesticides by using tetramethylrhodamine (TAMRA)-labeled aptamer and its complementary DNA (cDNA) with extended guanine (G) bases. The hybridization of cDNA and aptamer drew TAMRA close to repeated G bases, then the fluorescence of TAMRA was quenched by G bases due to the photoinduced electron transfer (PET). Upon introducing the pesticide target, the aptamer bound to pesticide instead of cDNA because of the competition between pesticide and cDNA. Thus, the TAMRA departed from G bases, resulting in fluorescence recovery of TAMRA. Under optimal conditions, the limits of detection for phorate, profenofos, isocarbophos, and omethoate were 0.333, 0.167, 0.267, and 0.333 µg/L, respectively. The method was also used in the analysis of profenofos in vegetables. Our fluorescence design was simple, rapid, and highly sensitive, which provided a means for monitoring the safety of agricultural products.


Asunto(s)
Aptámeros de Nucleótidos , Plaguicidas , Aptámeros de Nucleótidos/genética , ADN Complementario , Fluorescencia , Compuestos Organofosforados/análisis , Plaguicidas/análisis
17.
Int J Mol Sci ; 23(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35628295

RESUMEN

Processes that monitor the nucleation of amyloids and characterize the formation of amyloid fibrils are vital to medicine and pharmacology. In this study, we observe the nucleation and formation of lysozyme amyloid fibrils using a facile microfluidic system to generate nanoliter droplets that can control the flow rate and movement of monomer-in-oil emulsion droplets in a T-junction microchannel. Using a fluorescence assay, we monitor the nucleation and growth process of amyloids based on the volume of droplets. Using the microfluidic system, we demonstrate that the lag phase, which is vital to amyloid nucleation and growth, is reduced at a lower droplet volume. Furthermore, we report a peculiar phenomenon of high amyloid formation at the edge of a bullet-shaped droplet, which is likely due to the high local monomer concentration. Moreover, we discovered that amyloid fibrils synthesized in the nanoliter droplets are shorter and thicker than fibrils synthesized from a bulk solution via the conventional heating method. Herein, a facile procedure to observe and characterize the nucleation and growth of amyloid fibrils using nanoliter droplets is presented, which is beneficial for investigating new features of amyloid fibril formation as an unconventional synthetic method for amyloid fibrils.


Asunto(s)
Amiloide , Proteínas Amiloidogénicas , Emulsiones , Microfluídica
18.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499173

RESUMEN

α-Synuclein (α-Syn) aggregates are implicated in Parkinson's disease (PD), so inhibitors of α-Syn aggregation have been intensively explored. It has been demonstrated that small molecules might be able to reduce α-Syn aggregation in fibrils, thus exerting neuroprotective effects in models of PD. To expand our knowledge about the structural requirements for blocking the recognition process into the oligomeric assembly of α-Syn aggregates, we performed a ligand-based virtual screening procedure using two well-known α-Syn aggregation inhibitors, SynuClean-D and ZPD-2, as query compounds. A collection of thirty-four compounds bearing distinct chemical functionalities and mutual chemical features were studied in a Th-T fluorescence test, thus identifying 5-(2,6-dinitro-4-(trifluoromethyl)benzyl)-1-methyl-1H-tetrazole (named MeSC-04) as a potent α-Syn amyloid formation inhibitor that demonstrated similar behavior when compared to SynuClean-D in the thioflavin-T-monitored kinetic assays, with both molecules reducing the number and size of amyloid fibrils, as evidenced by electron microscopy. Molecular modeling studies suggested the binding mode of MeSC-04 through the identification of putative druggable pockets on α-syn fibrils and a subsequent consensus docking methodology. Overall, this work could furnish new insights in the development of α-Syn amyloid inhibitors from synthetic sources.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Ligandos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Proteínas Amiloidogénicas
19.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743221

RESUMEN

S100A9 is a pro-inflammatory protein that co-aggregates with other proteins in amyloid fibril plaques. S100A9 can influence the aggregation kinetics and amyloid fibril structure of alpha-synuclein (α-syn), which is involved in Parkinson's disease. Currently, there are limited data regarding their cross-interaction and how it influences the aggregation process. In this work, we analyzed this interaction using solution 19F and 2D 15N-1H HSQC NMR spectroscopy and studied the aggregation properties of these two proteins. Here, we show that α-syn interacts with S100A9 at specific regions, which are also essential in the first step of aggregation. We also demonstrate that the 4-fluorophenylalanine label in alpha-synuclein is a sensitive probe to study interaction and aggregation using 19F NMR spectroscopy.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Amiloide/metabolismo , Calgranulina B , Humanos , Espectroscopía de Resonancia Magnética/métodos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
20.
Plant Foods Hum Nutr ; 77(1): 90-97, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35088214

RESUMEN

Betalain pigments are mainly produced by plants belonging to the order of Caryophyllales. Betalains exhibit strong antioxidant activity and responds to environmental stimuli and stress in plants. Recent reports of antioxidant, anti-inflammatory and anti-cancer properties of betalain pigments have piqued interest in understanding their biological functions. We investigated the effects of betalain pigments (betanin and isobetanin) derived from red-beet on amyloid-ß (Aß) aggregation, which causes Alzheimer's disease. Non-specific inhibition of Aß aggregation against Aß40 and Aß42 by red-beet betalain pigments, in vitro was demonstrated using the thioflavin t fluorescence assay, circular dichroism spectroscopy analysis, transmission electron microscopy and nuclear magnetic resonance (NMR) analysis. Furthermore, we examined the ability of red-beet betalain pigments to interfere with Aß toxicity by using the transgenic Caenorhabditis elegans model, which expresses the human Aß42 protein intracellularly within the body wall muscle. It responds to Aß-toxicity with paralysis and treatment with 50 µM red-beet betalain pigments significantly delayed the paralysis of C. elegans. These results suggest that betalain pigments reduce Aß-induced toxicity.


Asunto(s)
Beta vulgaris , Betalaínas , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Antioxidantes/farmacología , Beta vulgaris/química , Betalaínas/análisis , Betalaínas/química , Betalaínas/farmacología , Caenorhabditis elegans/metabolismo , Parálisis/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA