Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(2): 479-491.e7, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34963054

RESUMEN

Genetically encoded biosensors are powerful tools to monitor cellular behavior, but the difficulty in generating appropriate reporters for chromatin factors hampers our ability to dissect epigenetic pathways. Here, we present TRACE (transgene reporters across chromatin environments), a high-throughput, genome-wide technique to generate fluorescent human reporter cell lines responsive to manipulation of epigenetic factors. By profiling GFP expression from a large pool of individually barcoded lentiviral integrants in the presence and absence of a perturbation, we identify reporters responsive to pharmacological inhibition of the histone lysine demethylase LSD1 and genetic ablation of the PRC2 subunit SUZ12. Furthermore, by manipulating the HIV-1 host factor LEDGF through targeted deletion or fusion to chromatin reader domains, we alter lentiviral integration site preferences, thus broadening the types of chromatin examined by TRACE. The phenotypic reporters generated through TRACE will allow the genetic interrogation of a broad range of epigenetic pathways, furthering our mechanistic understanding of chromatin biology.


Asunto(s)
Técnicas Biosensibles , Epigénesis Genética , Genes Reporteros , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Lentivirus/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ensamble y Desensamble de Cromatina , Epigenoma , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Lentivirus/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células THP-1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(30): e2309686121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39024115

RESUMEN

Antibody responses require the proliferative expansion of B cells controlled by affinity-dependent signals. Yet, proliferative bursts are heterogeneous, varying between 0 and 8 divisions in response to the same stimulus. NFκB cRel is activated in response to immune stimulation in B cells and is genetically required for proliferation. Here, we asked whether proliferative heterogeneity is controlled by natural variations in cRel abundance. We developed a fluorescent reporter mTFP1-cRel for the direct observation of cRel in live proliferating B cells. We found that cRel is heterogeneously distributed among naïve B cells, which are enriched for high expressors in a heavy-tailed distribution. We found that high cRel expressors show faster activation of the proliferative program, but do not sustain it well, with population expansion decaying earlier. With a mathematical model of the molecular network, we showed that cRel heterogeneity arises from balancing positive feedback by autoregulation and negative feedback by its inhibitor IκBε, confirmed by mouse knockouts. Using live-cell fluorescence microscopy, we showed that increased cRel primes B cells for early proliferation via higher basal expression of the cell cycle driver cMyc. However, peak cMyc induction amplitude is constrained by incoherent feedforward regulation, decoding the fold change of cRel activity to terminate the proliferative burst. This results in a complex nonlinear, nonmonotonic relationship between cRel expression and the extent of proliferation. These findings emphasize the importance of direct observational studies to complement gene knockout results and to learn about quantitative relationships between biological processes and their key regulators in the context of natural variations.


Asunto(s)
Linfocitos B , Proliferación Celular , FN-kappa B , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Ratones , FN-kappa B/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-rel/metabolismo , Proteínas Proto-Oncogénicas c-rel/genética
3.
RNA ; 30(4): 392-403, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38282417

RESUMEN

The Mango I and II RNA aptamers have been widely used in vivo and in vitro as genetically encodable fluorogenic markers that undergo large increases in fluorescence upon binding to their ligand, TO1-Biotin. However, while studying nucleic acid sequences, it is often desirable to have trans-acting probes that induce fluorescence upon binding to a target sequence. Here, we rationally design three types of light-up RNA Mango Beacons based on a minimized Mango core that induces fluorescence upon binding to a target RNA strand. Our first design is bimolecular in nature and uses a DNA inhibition strand to prevent folding of the Mango aptamer core until binding to a target RNA. Our second design is unimolecular in nature, and features hybridization arms flanking the core that inhibit G-quadruplex folding until refolding is triggered by binding to a target RNA strand. Our third design builds upon this structure, and incorporates a self-inhibiting domain into one of the flanking arms that deliberately binds to, and precludes folding of, the aptamer core until a target is bound. This design separates G-quadruplex folding inhibition and RNA target hybridization into separate modules, enabling a more universal unimolecular beacon design. All three Mango Beacons feature high contrasts and low costs when compared to conventional molecular beacons, with excellent potential for in vitro and in vivo applications.


Asunto(s)
Aptámeros de Nucleótidos , Mangifera , ARN/genética , Mangifera/genética , Mangifera/metabolismo , Colorantes Fluorescentes/química , Aptámeros de Nucleótidos/química , Hibridación de Ácido Nucleico
4.
Plant J ; 119(5): 2255-2272, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39015950

RESUMEN

Advancing chloroplast genetic engineering in Chlamydomonas reinhardtii remains challenging, decades after its first successful transformation. This study introduces the development of a chloroplast-optimized mNeonGreen fluorescent reporter, enabling in vivo observation through a sixfold increase in fluorescence via context-aware construct engineering. Our research highlights the influence of transcriptional readthrough and antisense mRNA pairing on post-transcriptional regulation, pointing to novel strategies for optimizing heterologous gene expression. We further demonstrate the applicability of these insights using an accessible experimentation system using glass-bead transformation and reestablishment of photosynthesis using psbH mutants, focusing on the mitigation of transcriptional readthrough effects. By characterizing heterologous expression using regulatory elements such as PrrnS, 5'atpA, and 3' rbcL in a sense-transcriptional context, we further documented up to twofold improvement in fluorescence levels. Our findings contribute new tools for molecular biology research in the chloroplast and evidence fundamental gene regulation processes that could enable the development of more effective chloroplast engineering strategies. This work not only paves the way for more efficient genetic engineering of chloroplasts but also deepens our understanding of the regulatory mechanisms at play.


Asunto(s)
Chlamydomonas reinhardtii , Cloroplastos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Transcripción Genética , Genes Reporteros , Fotosíntesis/genética , ARN sin Sentido/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo
5.
Plant J ; 119(1): 525-539, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38693717

RESUMEN

Regulation of gene expression in eukaryotes is controlled by cis-regulatory modules (CRMs). A major class of CRMs are enhancers which are composed of activating cis-regulatory elements (CREs) responsible for upregulating transcription. To date, most enhancers and activating CREs have been studied in angiosperms; in contrast, our knowledge about these key regulators of gene expression in green algae is limited. In this study, we aimed at characterizing putative activating CREs/CRMs from the histone genes of the unicellular model alga Chlamydomonas reinhardtii. To test the activity of four candidates, reporter constructs consisting of a tetramerized CRE, an established promoter, and a gene for the mCerulean3 fluorescent protein were incorporated into the nuclear genome of C. reinhardtii, and their activity was quantified by flow cytometry. Two tested candidates, Eupstr and Ehist cons, significantly upregulated gene expression and were characterized in detail. Eupstr, which originates from highly expressed genes of C. reinhardtii, is an orientation-independent CRE capable of activating both the RBCS2 and ß2-tubulin promoters. Ehist cons, which is a CRM from histone genes of angiosperms, upregulates the ß2-tubulin promoter in C. reinhardtii over a distance of at least 1.5 kb. The octamer motif present in Ehist cons was identified in C. reinhardtii and the related green algae Chlamydomonas incerta, Chlamydomonas schloesseri, and Edaphochlamys debaryana, demonstrating its high evolutionary conservation. The results of this investigation expand our knowledge about the regulation of gene expression in green algae. Furthermore, the characterized activating CREs/CRMs can be applied as valuable genetic tools.


Asunto(s)
Chlamydomonas reinhardtii , Histonas , Regiones Promotoras Genéticas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Histonas/metabolismo , Histonas/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas , Secuencias Reguladoras de Ácidos Nucleicos/genética
6.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37211903

RESUMEN

The tumor suppressor p53 (also known as TP53) plays a central role in cellular stress responses by regulating transcription of multiple target genes. The temporal dynamics of p53 are thought to be important for its function; these encode input information and are decoded to induce distinct cellular phenotypes. However, it remains unclear to what extent the temporal dynamics of p53 reflect the activity of p53-induced gene expression. In this study, we report a multiplexed reporter system that allows us to visualize the transcriptional activity of p53 at the single-cell level. Our reporter system features simple and sensitive observation of the transcriptional activity of endogenous p53 to the response elements of various target genes. Using this system, we show that the transcriptional activation of p53 exhibits strong cell-to-cell heterogeneity. The transcriptional activation of p53 after etoposide treatment is highly dependent on the cell cycle but this is not seen after UV exposure. Finally, we show that our reporter system allows simultaneous visualization of the transcriptional activity of p53 and cell cycle. Our reporter system can thus be a useful tool for studying biological processes involving the p53 signaling pathway.


Asunto(s)
Fluorescencia , Transcripción Genética , Proteína p53 Supresora de Tumor , Ciclo Celular , Genes Reporteros , Activación Transcripcional/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Eur J Immunol ; 53(12): e2350529, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37741290

RESUMEN

TDC are hematopoietic cells that combine dendritic cell (DC) and conventional T-cell markers and functional properties. They were identified in secondary lymphoid organs (SLOs) of naïve mice as cells expressing CD11c, major histocompatibility molecules (MHC)-II, and the T-cell receptor (TCR). Despite thorough characterization, a physiological role for TDC remains to be determined. Unfortunately, using CD11c as a marker for TDC has the caveat of its upregulation on different cells, including T cells, upon activation. Here, we took advantage of Zbtb46-GFP reporter mice to explore the frequency and localization of TDC in different tissues at steady state and upon viral infection. RNA sequencing analysis confirmed that TDC sorted from Zbtb46-GFP mice have a gene signature that is distinct from conventional T cells and DC. In addition, this reporter model allowed for identification of TDC in situ not only in SLOs but also in the liver and lung of naïve mice. Interestingly, we found that TDC numbers in the SLOs increased upon viral infection, suggesting that TDC might play a role during viral infections. In conclusion, we propose a visualization strategy that might shed light on the physiological role of TDC in several pathological contexts, including infection and cancer.


Asunto(s)
Linfocitos T , Virosis , Ratones , Animales , Células Dendríticas/patología , Antígeno CD11c , Ratones Endogámicos C57BL
8.
Biochem Biophys Res Commun ; 690: 149231, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000293

RESUMEN

Cell fusion plays a key role in the development and formation of tissues and organs in several organisms. Skeletal myogenesis is assessed in vitro by cell shape and gene and protein expression using immunofluorescence and immunoblotting assays. However, these conventional methods are complex and do not allow for easy time-course observation in living cells. Therefore, this study aimed to develop a Cre recombination-based fluorescent reporter system to monitor cell-cell fusion. We combined green and red fluorescent proteins with a Cre-loxP system to detect syncytium formation using a fluorescent binary switch. This allowed us to visualize mononucleated cells with green fluorescence before fusion and multinucleated syncytia with red fluorescence by conditional expression after cell fusion. The formation of multinuclear myotubes during myogenic differentiation was detected by the change in fluorescence from green to red after Cre-mediated recombination. The distribution of the fluorescence signal correlated with the expression of myogenic differentiation markers. Moreover, red reporter fluorescence intensity was correlated with the number of nuclei contained in the red fluorescent-positive myotubes. We also successfully demonstrated that our fusion monitoring system is applicable to the formation of skeletal muscle myotube and placental syncytiotrophoblast. These results suggest that the color-switching fluorescent reporter system, using Cre-mediated recombination, could be a robust tool used to facilitate the study of cell-to-cell fusion.


Asunto(s)
Placenta , Proteína Fluorescente Roja , Embarazo , Femenino , Humanos , Fusión Celular , Placenta/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Diferenciación Celular/genética , Recombinación Genética , Integrasas/genética , Integrasas/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
9.
J Cell Sci ; 134(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34322699

RESUMEN

G-protein-coupled receptor (GPCR) 68 (GPR68, or OGR1) couples extracellular acidifications and mechanical stimuli to G-protein signaling and plays important roles in vascular physiology, neuroplasticity and cancer progression. Inspired by previous GPCR-based reporters, here, we inserted a cyclic permuted fluorescent protein into the third intracellular loop of GPR68 to create a genetically encoded fluorescent reporter of GPR68 activation we call 'iGlow'. iGlow responds to known physiological GPR68 activators such as fluid shear stress and extracellular acidifications. In addition, iGlow responds to Ogerin, a synthetic GPR68-selective agonist, but not to a non-active Ogerin analog, showing the specificity of iGlow-mediated fluorescence signals. Flow-induced iGlow activation is not eliminated by pharmacological modulation of downstream G-protein signaling, disruption of actin filaments or application of GsMTx4, an inhibitor of certain mechanosensitive ion channels activated by membrane stretch. Deletion of the conserved helix 8, proposed to mediate mechanosensitivity in certain GPCRs, does not eliminate flow-induced iGlow activation. iGlow could be useful to investigate the contribution of GPR68-dependent signaling in health and disease.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Receptores Acoplados a Proteínas G/genética , Estrés Mecánico
10.
Exp Eye Res ; 235: 109637, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37659708

RESUMEN

Although cell type-specific Cre recombinase-expressing mouse lines are commonly used to generate conditional knockout of genes of interest, germline recombination and ectopic "leakiness" in Cre recombinase expression in non-specific cell types has been observed in several neuronal and glial-specific Cre lines. This often leads to inadvertent loss of conditional mouse lines, requiring rederivation. It is therefore imperative to be able to monitor and validate cell type-specific Cre recombinase-mediated gene editing. Herein, we describe a simple, inexpensive, rapid ZsGreen fluor-reporter-based strategy for genotype-free identification of ectopic leakiness using a custom-designed, 3-D blue LED light box. We assessed cell type-specific expression in several allegedly specific Cre recombinase mouse lines commonly used in vision research: retinal pigment epithelium (RPE)-specific (VMD2 (Best1) Cre, RPE65 Cre); astrocyte-specific (GFAP Cre); as well as photoreceptor-bipolar progenitor cell-specific (CRX Cre). Our standardized workflow allows facile, rapid identification of ectopic and non-specific Cre recombinase expression in any presume specific Cre mouse line, without the need for genotyping and without causing animal distress.


Asunto(s)
Colorantes , Neuronas , Animales , Ratones , Integrasas/genética , Coloración y Etiquetado
11.
BMC Biol ; 20(1): 28, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35086530

RESUMEN

BACKGROUND: The functional understanding of genetic interaction networks and cellular mechanisms governing health and disease requires the dissection, and multifaceted study, of discrete cell subtypes in developing and adult animal models. Recombinase-driven expression of transgenic effector alleles represents a significant and powerful approach to delineate cell populations for functional, molecular, and anatomical studies. In addition to single recombinase systems, the expression of two recombinases in distinct, but partially overlapping, populations allows for more defined target expression. Although the application of this method is becoming increasingly popular, its experimental implementation has been broadly restricted to manipulations of a limited set of common alleles that are often commercially produced at great expense, with costs and technical challenges associated with production of intersectional mouse lines hindering customized approaches to many researchers. Here, we present a simplified CRISPR toolkit for rapid, inexpensive, and facile intersectional allele production. RESULTS: Briefly, we produced 7 intersectional mouse lines using a dual recombinase system, one mouse line with a single recombinase system, and three embryonic stem (ES) cell lines that are designed to study the way functional, molecular, and anatomical features relate to each other in building circuits that underlie physiology and behavior. As a proof-of-principle, we applied three of these lines to different neuronal populations for anatomical mapping and functional in vivo investigation of respiratory control. We also generated a mouse line with a single recombinase-responsive allele that controls the expression of the calcium sensor Twitch-2B. This mouse line was applied globally to study the effects of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on calcium release in the ovarian follicle. CONCLUSIONS: The lines presented here are representative examples of outcomes possible with the successful application of our genetic toolkit for the facile development of diverse, modifiable animal models. This toolkit will allow labs to create single or dual recombinase effector lines easily for any cell population or subpopulation of interest when paired with the appropriate Cre and FLP recombinase mouse lines or viral vectors. We have made our tools and derivative intersectional mouse and ES cell lines openly available for non-commercial use through publicly curated repositories for plasmid DNA, ES cells, and transgenic mouse lines.


Asunto(s)
Calcio , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Animales , Femenino , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Neuronas/fisiología , Recombinasas/genética , Recombinasas/metabolismo
12.
J Cell Sci ; 133(2)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974277

RESUMEN

Impaired chloride transport affects diverse processes ranging from neuron excitability to water secretion, which underlie epilepsy and cystic fibrosis, respectively. The ability to image chloride fluxes with fluorescent probes has been essential for the investigation of the roles of chloride channels and transporters in health and disease. Therefore, developing effective fluorescent chloride reporters is critical to characterizing chloride transporters and discovering new ones. However, each chloride channel or transporter has a unique functional context that demands a suite of chloride probes with appropriate sensing characteristics. This Review seeks to juxtapose the biology of chloride transport with the chemistries underlying chloride sensors by exploring the various biological roles of chloride and highlighting the insights delivered by studies using chloride reporters. We then delineate the evolution of small-molecule sensors and genetically encoded chloride reporters. Finally, we analyze discussions with chloride biologists to identify the advantages and limitations of sensors in each biological context, as well as to recognize the key design challenges that must be overcome for developing the next generation of chloride sensors.


Asunto(s)
Técnicas Biosensibles/métodos , Cloruros/metabolismo , Humanos
13.
Allergy ; 77(2): 469-482, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34570913

RESUMEN

BACKGROUND: Tyrophagus putresecentiae is an important mite species in rural and urban environments, causing sensitization and allergic disease. While evidence suggests that microRNAs (miRNAs) may regulate the expression of allergen-encoding genes, no study has directly investigated this possibility. Here, this gap was addressed by profiling miRNAs and elucidating their target allergen messenger RNAs (mRNAs) in this mite species. METHODS: Small RNA and transcriptome libraries were constructed for eggs, larvae, nymphs, and adults. After deep miRNA and whole-transcriptome sequencing were performed, the miRNA and allergen-encoding mRNA regulatory networks were explored. RESULTS: A total of 540 miRNAs were identified, including 155 with expression levels differing significantly across the four mite developmental stages (p < .01), 59 of which were novel. The mRNA expression for allergens was higher for Tyr p 1 in adults than in other developmental stages; Tyr p 2-5, 7, 10, 13, 33, and 34 in immature stages; and Tyr p 28, 35, and 36 in eggs and adults. A combined miRNA and transcriptome bioinformatics analysis showed that allergen Tyr p 3 was regulated by miRNA PC-5p-5698441_1, Tyr p 4 was regulated by PC-5p-7050653_1, and Tyr p 34 was regulated by PC-5p-5534223_1 and PC-5p-5698441_1. These three allergen mRNA and three miRNAs were identified using qRT-PCR, and their regulatory roles were confirmed by double-fluorescent reporter gene system and site-directed mutagenesis technology. CONCLUSIONS: For the first time, allergen mRNA expression and miRNAs were profiled throughout the life cycle for an allergen-producing mite, and the results showed that miRNAs bind to target allergen mRNAs to regulate their expression.


Asunto(s)
Acaridae , Hipersensibilidad , MicroARNs , Ácaros , Adulto , Alérgenos/genética , Animales , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Hipersensibilidad/genética , Hipersensibilidad/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Transcriptoma
14.
Cell Mol Life Sci ; 78(4): 1221-1231, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33015720

RESUMEN

During embryogenesis, the processes that control how cells differentiate and interact to form particular tissues and organs with precise timing and shape are of fundamental importance. One prominent example of such processes is vertebrate somitogenesis, which is governed by a molecular oscillator called the segmentation clock. The segmentation clock system is initiated in the presomitic mesoderm in which a set of genes and signaling pathways exhibit coordinated spatiotemporal dynamics to establish regularly spaced boundaries along the body axis; these boundaries provide a blueprint for the development of segment-like structures such as spines and skeletal muscles. The highly complex and dynamic nature of this in vivo event and the design principles and their regulation in both normal and abnormal embryogenesis are not fully understood. Recently, live-imaging has been used to quantitatively analyze the dynamics of selected components of the circuit, particularly in combination with well-designed experiments to perturb the system. Here, we review recent progress from studies using live imaging and manipulation, including attempts to recapitulate the segmentation clock in vitro. In combination with mathematical modeling, these techniques have become essential for disclosing novel aspects of the clock.


Asunto(s)
Relojes Biológicos/genética , Tipificación del Cuerpo/genética , Desarrollo Embrionario/genética , Somitos/crecimiento & desarrollo , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Mesodermo/crecimiento & desarrollo , Modelos Teóricos , Transducción de Señal/genética
15.
Sensors (Basel) ; 22(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36080791

RESUMEN

Quantitating intracellular oxidative damage caused by reactive oxygen species (ROS) is of interest in many fields of biological research. The current systems primarily rely on supplemented oxygen-sensitive substrates that penetrate the target cells, and react with ROS to produce signals that can be monitored with spectroscopic or imaging techniques. The objective here was to design a new non-invasive analytical strategy for measuring ROS-induced damage inside living cells by taking advantage of the native redox sensor system of E. coli. The developed plasmid-based sensor relies on an oxygen-sensitive transcriptional repressor IscR that controls the expression of a fluorescent marker in vivo. The system was shown to quantitatively respond to oxidative stress induced by supplemented H2O2 and lowered cultivation temperatures. Comparative analysis with fluorescence microscopy further demonstrated that the specificity of the reporter system was equivalent to the commercial chemical probe (CellROX). The strategy introduced here is not dependent on chemical probes, but instead uses a fluorescent expression system to detect enzyme-level oxidative damage in microbial cells. This provides a cheap and simple means for analysing enzyme-level oxidative damage in a biological context in E. coli.


Asunto(s)
Escherichia coli , Peróxido de Hidrógeno , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescencia , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/genética , Oxígeno/metabolismo , Plásmidos/genética , Especies Reactivas de Oxígeno/química
16.
J Biol Chem ; 295(18): 5871-5890, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32205447

RESUMEN

Nucleoside analogues are a valuable experimental tool. Incorporation of these molecules into newly synthesized DNA (i.e. pulse-labeling) is used to monitor cell proliferation or to isolate nascent DNA. Some of the most common nucleoside analogues used for pulse-labeling of DNA in cells are the deoxypyrimidine analogues 5-ethynyl-2'-deoxyuridine (EdU) and 5-ethynyl-2'-deoxycytidine (EdC). Click chemistry enables conjugation of an azide molecule tagged with a fluorescent dye or biotin to the alkyne of the analog, which can then be used to detect incorporation of EdU and EdC into DNA. The use of EdC is often recommended because of the potential cytotoxicity associated with EdU during longer incubations. Here, by comparing the relative incorporation efficiencies of EdU and EdC during short 30-min pulses, we demonstrate significantly lower incorporation of EdC than of EdU in noninfected human fibroblast cells or in cells infected with either human cytomegalovirus or Kaposi's sarcoma-associated herpesvirus. Interestingly, cells infected with herpes simplex virus type-1 (HSV-1) incorporated EdC and EdU at similar levels during short pulses. Of note, exogenous expression of HSV-1 thymidine kinase increased the incorporation efficiency of EdC. These results highlight the limitations when using substituted pyrimidine analogues in pulse-labeling and suggest that EdU is the preferable nucleoside analogue for short pulse-labeling experiments, resulting in increased recovery and sensitivity for downstream applications. This is an important discovery that may help to better characterize the biochemical properties of different nucleoside analogues with a given kinase, ultimately leading to significant differences in labeling efficiency of nascent DNA.


Asunto(s)
Citomegalovirus/fisiología , Desoxicitidina/análogos & derivados , Desoxiuridina/análogos & derivados , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 8/fisiología , Transporte Biológico , Línea Celular , Desoxicitidina/metabolismo , Desoxiuridina/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virología , Humanos , Epitelio Pigmentado de la Retina/citología
17.
Antimicrob Agents Chemother ; 65(12): e0146821, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34570646

RESUMEN

Uropathogenic Escherichia coli (UPEC), the major causative agent of urinary tract infections, can invade different types of host cells. To compare the pharmacodynamic properties of antibiotics against intra- and extracellular UPEC, an in vitro model of intracellular infection was established in J774 mouse macrophages infected by the UPEC strain CFT073. We tested antibiotics commonly prescribed against urinary tract infections (gentamicin, ampicillin, nitrofurantoin, trimethoprim, sulfamethoxazole, and ciprofloxacin) and the investigational fluoroquinolone finafloxacin. The metabolic activity of individual bacteria was assessed by expressing the fluorescent reporter protein TIMERbac within CFT073. Concentration-response experiments revealed that all tested antibiotics were much less effective against intracellular bacteria than extracellular ones. Most antibiotics, except fluoroquinolones, were unable to reach a bactericidal effect intracellularly at clinically achievable concentrations. Ciprofloxacin and finafloxacin killed 99.9% of extracellular bacteria at concentrations around the MIC, while for intracellular bacteria, concentrations more than 100× over the MIC were required to achieve a bactericidal effect. Time-kill curves showed that finafloxacin was more rapidly bactericidal in acidic medium than at neutral pH, while the reverse observation was made for ciprofloxacin. Intracellularly, kill curves showed biphasic kinetics for both fluoroquinolones, suggesting the presence of drug-tolerant subpopulations. Flow cytometry analysis of TIMERbac fluorescence revealed a marked heterogeneity in intracellular growth of individual bacteria, suggesting that the presence of subpopulations reaching a state of metabolic dormancy was the main reason for increased antibiotic tolerance of intracellular UPEC.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ciprofloxacina/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Ratones , Infecciones Urinarias/tratamiento farmacológico
18.
Appl Environ Microbiol ; 87(21): e0097621, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34406833

RESUMEN

Plantaricin 423 is produced by Lactobacillus plantarum 423 using the pla biosynthetic operon located on the 8,188-bp plasmid pPLA4. As with many class IIa bacteriocin operons, the pla operon carries biosynthetic genes (plaA, precursor peptide; plaB, immunity; plaC, accessory; and plaD, ABC transporter) but does not carry local regulatory genes. Little is known about the regulatory mechanisms involved in the expression of the apparently regulationless class IIa bacteriocins, such as plantaricin 423. In this study, phylogenetic analysis of class IIa immunity proteins indicated that at least three distinct clades exist, which were then used to subgroup the class IIa operons. It became evident that the absence of classical quorum-sensing genes on mobile bacteriocin-encoding elements is a predisposition of the subgroup that includes plantaricin 423, pediocin AcH/PA-1, divercin V41, enterocin A, leucocin-A and -B, mesentericin Y105, and sakacin G. Further analysis of the subgroup suggested that the regulation of these class IIa operons is linked to transition metal homeostasis in the host. By using a fluorescent promoter-reporter system in Lactobacillus plantarum 423, transcriptional regulation of plantaricin 423 was shown to be upregulated in response to manganese privation. IMPORTANCE Lactic acid bacteria hold huge industrial application and economic value, especially bacteriocinogenic strains, which further aids in the exclusion of specific foodborne pathogens. Since bacteriocinogenic strains are sought after, it is equally important to understand the mechanism of bacteriocin regulation. This is currently an understudied aspect of class IIa operons. Our research suggests the existence of a previously undescribed mode of class IIa bacteriocin regulation, whereby bacteriocin expression is linked to management of the producer's transition metal homeostasis. This delocalized metalloregulatory model may fundamentally affect the selection of culture conditions for bacteriocin expression and change our understanding of class IIa bacteriocin gene transfer dynamics in a given microbiome.


Asunto(s)
Bacteriocinas , Lactobacillus plantarum , Manganeso/metabolismo , Bacteriocinas/genética , Lactobacillus plantarum/genética , Operón , Filogenia , Poliésteres , Regulación hacia Arriba
19.
Int J Mol Sci ; 22(22)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34830411

RESUMEN

Synaptotagmin-13 (Syt13) is an atypical member of the vesicle trafficking synaptotagmin protein family. The expression pattern and the biological function of this Ca2+-independent protein are not well resolved. Here, we have generated a novel Syt13-Venus fusion (Syt13-VF) fluorescence reporter allele to track and isolate tissues and cells expressing Syt13 protein. The reporter allele is regulated by endogenous cis-regulatory elements of Syt13 and the fusion protein follows an identical expression pattern of the endogenous Syt13 protein. The homozygous reporter mice are viable and fertile. We identify the expression of the Syt13-VF reporter in different regions of the brain with high expression in tyrosine hydroxylase (TH)-expressing and oxytocin-producing neuroendocrine cells. Moreover, Syt13-VF is highly restricted to all enteroendocrine cells in the adult intestine that can be traced in live imaging. Finally, Syt13-VF protein is expressed in the pancreatic endocrine lineage, allowing their specific isolation by flow sorting. These findings demonstrate high expression levels of Syt13 in the endocrine lineages in three major organs harboring these secretory cells. Collectively, the Syt13-VF reporter mouse line provides a unique and reliable tool to dissect the spatio-temporal expression pattern of Syt13 and enables isolation of Syt13-expressing cells that will aid in deciphering the molecular functions of this protein in the neuroendocrine system.


Asunto(s)
Encéfalo/metabolismo , Intestinos/metabolismo , Páncreas/metabolismo , Sinaptotagminas/genética , Animales , Encéfalo/patología , Línea Celular Tumoral , Linaje de la Célula/genética , Movimiento Celular/genética , Regulación de la Expresión Génica/genética , Humanos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Ratones , Sistemas Neurosecretores/metabolismo , Sistemas Neurosecretores/patología , Oxitocina/genética , Sinaptotagminas/metabolismo , Tirosina 3-Monooxigenasa/genética
20.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810480

RESUMEN

Nkx6-1 is a member of the Nkx family of homeodomain transcription factors (TFs) that regulates motor neuron development, neuron specification and pancreatic endocrine and ß-cell differentiation. To facilitate the isolation and tracking of Nkx6-1-expressing cells, we have generated a novel Nkx6-1 Venus fusion (Nkx6-1-VF) reporter allele. The Nkx6-1-VF knock-in reporter is regulated by endogenous cis-regulatory elements of Nkx6-1 and the fluorescent protein fusion does not interfere with the TF function, as homozygous mice are viable and fertile. The nuclear localization of Nkx6-1-VF protein reflects the endogenous Nkx6-1 protein distribution. During embryonic pancreas development, the reporter protein marks the pancreatic ductal progenitors and the endocrine lineage, but is absent in the exocrine compartment. As expected, the levels of Nkx6-1-VF reporter are upregulated upon ß-cell differentiation during the major wave of endocrinogenesis. In the adult islets of Langerhans, the reporter protein is exclusively found in insulin-secreting ß-cells. Importantly, the Venus reporter activities allow successful tracking of ß-cells in live-cell imaging and their specific isolation by flow sorting. In summary, the generation of the Nkx6-1-VF reporter line reflects the expression pattern and dynamics of the endogenous protein and thus provides a unique tool to study the spatio-temporal expression pattern of this TF during organ development and enables isolation and tracking of Nkx6-1-expressing cells such as pancreatic ß-cells, but also neurons and motor neurons in health and disease.


Asunto(s)
Técnicas Citológicas , Proteínas de Homeodominio/genética , Células Secretoras de Insulina/citología , Páncreas/metabolismo , Alelos , Animales , Diferenciación Celular , Línea Celular , Linaje de la Célula , Perfilación de la Expresión Génica , Genes Reporteros , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Páncreas/embriología , Dominios Proteicos , Proteínas Recombinantes de Fusión/química , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA