Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(37): e2123451119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067301

RESUMEN

Filaggrin (FLG), an essential structural protein for skin barrier function, is down-regulated under chronic inflammatory conditions, leading to disruption of the skin barrier. However, the detailed molecular mechanisms of how FLG changes in the context of chronic inflammation are poorly understood. Here, we identified the molecular mechanisms by which inflammatory cytokines inhibit FLG expression in the skin. We found that the AP1 response element within the -343/+25 of the FLG promoter was necessary for TNFα + IFNγ-induced down-regulation of FLG promoter activity. Using DNA affinity precipitation assay, we observed that AP1 subunit composition binding to the FLG promoter was altered from c-FOS:c-JUN (at the early time) to FRA1:c-JUN (at the late time) in response to TNFα + IFNγ stimulation. Knockdown of FRA1 or c-JUN abrogated TNFα + IFNγ-induced FLG suppression. Histone deacetylase (HDAC) 1 interacted with FRA1:c-JUN under TNFα + IFNγ stimulation. Knockdown of HDAC1 abrogated the inhibitory effect of TNFα + IFNγ on FLG expression. The altered expression of FLG, FRA1, c-JUN, and HDAC1 was confirmed in mouse models of 2,4-dinitrochlorobenzene-induced atopic dermatitis and imiquimod-induced psoriasis. Thus, the current study demonstrates that TNFα + IFNγ stimulation suppresses FLG expression by promoting the FRA1:c-JUN:HDAC1 complex. This study provides insight into future therapeutic strategies targeting the FRA1:c-JUN:HDAC1 complex to restore impaired FLG expression in chronic skin inflammation.


Asunto(s)
Proteínas Filagrina , Histona Desacetilasa 1 , Queratinocitos , Proteínas Proto-Oncogénicas c-fos , Proteínas Proto-Oncogénicas c-jun , Animales , Enfermedad Crónica , Dermatitis/genética , Dermatitis/metabolismo , Regulación hacia Abajo , Proteínas Filagrina/genética , Proteínas Filagrina/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Interferón gamma/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
2.
Environ Toxicol ; 37(8): 2019-2032, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35499148

RESUMEN

Silica dust particles are representative of air pollution and long-term inhalation of silicon-containing dust through the respiratory tract can cause pulmonary fibrosis. Epithelial-mesenchymal transformation (EMT) plays an important role in the development of fibrosis. This process can relax cell-cell adhesion complexes and enhance cell migration and invasion properties of these cells. Dysregulation of microRNA-34c (miR-34c) is highly correlated with organ fibrosis including pulmonary fibrosis. In this study, we found that miR-34c-5p could alleviate the occurrence and development of silica-mediated EMT. Fos-related antigen 1 was identified as a functional target of miR-34c-5p by bioinformatics analysis and the dual luciferase gene reporting assay. Importantly, chemically induced up-regulation of hsa-miR-34c-5p correlated inversely with the expression of Fra-1 and further exploration found that the miR-34c-5p/Fra-1 axis inhibits the activation of the phosphatase and tensin homolog deleted on chromosome 10/phosphatidylinositol-4,5-bisphosphate3-kinase/protein kinase B (PTEN/PI3K/AKT) signaling pathway. In addition, through interaction with PTEN/p53 it inhibits the proliferation and migration of human bronchial epithelial cells stimulated by silica, and promotes cell apoptosis, thereby preventing EMT. This finding provides a promising biomarker for the diagnosis and prognosis of pulmonary fibrosis. Furthermore, overexpression of miR-34c-5p represents a potential therapeutic approach.


Asunto(s)
MicroARNs , Fibrosis Pulmonar , Proliferación Celular/genética , Polvo , Transición Epitelial-Mesenquimal/genética , Fibrosis , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-fos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Transducción de Señal/genética , Dióxido de Silicio/toxicidad , Proteína p53 Supresora de Tumor/metabolismo
3.
Scand J Immunol ; 88(1): e12676, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29807388

RESUMEN

The thymus of a myasthenia gravis (MG) patient is often accompanied by and effected with follicular hyperplasia. Inflammatory cytokines in thymus induce the formation of germinal centres (GC). MG thymic inflammatory cytokines are predominantly secreted by stromal cells. Our previous studies revealed that the expression level of the Fra1 protein, which is a Fos member of the activator protein 1 transcription factors (AP-1), was higher in the MG thymus compared with that of the normal thymus. Based on that, we demonstrated that Fra1 was mainly expressed in medulla thymic epithelial cells (mTECs) and that the rate of Fra1 positive mTECs in the MG thymus was higher than normal. In vitro, we found that the expression of CCL-5, CCL-19 and CCL-21 could be regulated by Fra1 in mTEC and that IL-1ß, IL-6, IL-8 and ICAM1 were downregulated in the Fra1 overexpression group and upregulated in the Fra1 knock-down group. Meanwhile, we detected that the expression levels of suppressor of cytokine signalling 3 (SOCS3) were significantly upregulated along with the overexpression of Fra1. Hence, we considered that the overexpression of Fra1 disrupted inflammatory cytokine secretion by mTEC in the MG thymus and that STAT3 and SOCS3 were strongly involved in this process.


Asunto(s)
Miastenia Gravis/inmunología , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Timo/inmunología , Adolescente , Adulto , Citocinas/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Miastenia Gravis/metabolismo , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/inmunología , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Timo/metabolismo , Adulto Joven
4.
Am J Respir Cell Mol Biol ; 55(5): 667-674, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27286066

RESUMEN

Previously, we have reported that Fos-related antigen-1 (Fra-1) transcription factor promotes LPS-induced acute lung injury and mortality, and that LPS-induced Fra-1 expression in the lung occurs predominantly in alveolar macrophages. Nuclear factor-κB (NF-κB) and c-Jun transcription factors play key roles in modulating inflammatory and immune responses induced by infectious and non-infectious insults. Here, we report that NF-κB and c-Jun coregulate Fra-1 induction by LPS in alveolar macrophages and that this regulation occurs through both the NF-κB and the extracellular signal-regulated protein kinase (ERK) signaling pathways. Transient transfections with Fra-1 promoter-reporter constructs and inhibitor studies revealed that the transcriptional activation of Fra-1 by LPS in alveolar macrophages is mediated by NF-κB and ERK1/2 signaling. Importantly, chromatin immunoprecipitation assays revealed the recruitment of c-Jun and NF-κB to the endogenous Fra-1 promoter after LPS stimulation. We found that inhibition of ERK1/2 signaling reduced LPS-stimulated c-Jun and NF-κB recruitment to the promoter. Likewise, NF-κB inhibitor blocked LPS-induced NF-κB and c-Jun binding to the promoter. ERK1/2 inhibition had no effect on c-Jun activation but suppressed LPS-stimulated NF-κB phosphorylation. Finally, functional assays showed reduced levels of LPS-stimulated NF-κB regulated proinflammatory IL-1ß and macrophage inflammatory protein-1α expression and increased antiinflammatory IL-10 expression in lung alveolar macrophages of Fra-1-null mice in vivo. Thus, our studies indicate that NF-κB and c-Jun coregulate LPS-induced Fra-1 transcription and that Fra-1 selectively modulates LPS-stimulated inflammatory cytokine expression in lung alveolar macrophages during inflammatory lung injury.


Asunto(s)
Lipopolisacáridos/farmacología , Macrófagos Alveolares/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transcripción Genética/efectos de los fármacos , Animales , Línea Celular , Citocinas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Mediadores de Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Ratones , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-fos/deficiencia , Proteínas Proto-Oncogénicas c-fos/metabolismo
5.
J Cell Mol Med ; 20(5): 909-19, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26861188

RESUMEN

A number of natural phytochemicals have anti-photoaging properties that appear to be mediated through the inhibition of matrix metalloproteinase-1 (MMP-1) expression, but their direct target molecule(s) and mechanism(s) remain unclear. We investigated the effect of naringenin, a major flavonoid found in citrus, on UVB-induced MMP-1 expression and identified its direct target. The HaCaT human skin keratinocyte cell line and 3-dimensional (3-D) human skin equivalent cultures were treated or not treated with naringenin for 1 hr before exposure to UVB. The mechanism and target(s) of naringenin were analysed by kinase assay and multiplex molecular assays. Dorsal skins of hairless mice were exposed to UVB 3 times per week, with a dose of irradiation that was increased weekly by 1 minimal erythema dose (MED; 45 mJ/cm(2)) to 4 MED over 15 weeks. Wrinkle formation, water loss and water content were then assessed. Naringenin suppressed UVB-induced MMP-1 expression and AP-1 activity, and strongly suppressed UVB-induced phosphorylation of Fos-related antigen (FRA)-1 at Ser265. Importantly, UVB irradiation-induced FRA1 protein stability was reduced by treatment with naringenin, as well as with a mitogen-activated protein kinase (MEK) inhibitor. Naringenin significantly suppressed UVB-induced extracellular signal-regulated kinase 2 (ERK2) activity and subsequently attenuated UVB-induced phosphorylation of p90(RSK) by competitively binding with ATP. Constitutively active MEK (CA-MEK) increased FRA1 phosphorylation and expression and also induced MMP-1 expression, whereas dominant-negative ERK2 (DN-ERK2) had opposite effects. U0126, a MEK inhibitor, also decreased FRA1 phosphorylation and expression as well as MMP-1 expression. The photoaging data obtained from mice clearly demonstrated that naringenin significantly inhibited UVB-induced wrinkle formation, trans-epidermal water loss and MMP-13 expression. Naringenin exerts potent anti-photoaging effects by suppressing ERK2 activity and decreasing FRA1 stability, followed by down-regulation of AP-1 transactivation and MMP-1 expression.


Asunto(s)
Flavanonas/farmacología , Queratinocitos/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Envejecimiento de la Piel/efectos de los fármacos , Protectores Solares/farmacología , Rayos Ultravioleta/efectos adversos , Animales , Butadienos/farmacología , Técnicas de Cultivo de Célula , Línea Celular , Femenino , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Luciferasas/genética , Luciferasas/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Ratones , Ratones Pelados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Proteínas Proto-Oncogénicas c-fos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Envejecimiento de la Piel/genética , Envejecimiento de la Piel/patología , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Agua/metabolismo
6.
Mol Biotechnol ; 66(5): 1019-1030, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38147235

RESUMEN

The miR-497-195 cluster facilitates the occurrence and development of cancer. This study aims to investigate whether the miR-195-497 cluster could regulate the progression of colorectal cancer by regulating the common target gene, FOS-related antigen 1 (FRA1). Overexpression of the miR-195/497 vector was used to evaluate the effect of overexpression of miR-195-497 clusters on the biological behavior of colon cancer cells. In animal experiments, tumor growth and metastasis were recorded by constructing a nude mouse model of a subcutaneously implanted tumor. miR-195 and miR-497 were expressed to varying degrees in Caco-2, LoVo, and HT-29 cells. Overexpression of miR-195/497 and inhibition of FRA1 decreased HT-29 cell proliferation, inhibited cell invasion and migration, and promoted Epithelial-mesenchymal transition (EMT). In vivo experiments showed that the overexpression of miR-195/497 or inhibition of FRA1 inhibited tumor growth, affected EMT in tumor cells, and inhibited the expression of FRA1. Additionally, the aforementioned conditions had the best effect when used together. The miR-195-497 cluster can regulate the proliferation, EMT, invasion, and migration of colorectal cancer cells by regulating the common target gene FRA1, thereby affecting the development of colorectal cancer.


Asunto(s)
Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , MicroARNs , Proteínas Proto-Oncogénicas c-fos , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transición Epitelial-Mesenquimal/genética , Proliferación Celular/genética , Movimiento Celular/genética , Ratones , Células HT29 , Células CACO-2 , Línea Celular Tumoral , Ratones Endogámicos BALB C , Invasividad Neoplásica/genética
7.
Cancers (Basel) ; 14(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35326630

RESUMEN

The genetic and epigenetic changes affecting transcription factors, coactivators, and chromatin modifiers are key determinants of the hallmarks of cancer. The acquired dependence on oncogenic transcriptional regulators, representing a major determinant of cancer cell vulnerability, points to transcription factors as ideal therapeutic targets. However, given the unavailability of catalytic activities or binding pockets for small-molecule inhibitors, transcription factors are generally regarded as undruggable proteins. Among components of the AP-1 complex, the FOS-family transcription factor Fra-1, encoded by FOSL1, has emerged as a prominent therapeutic target. Fra-1 is overexpressed in most solid tumors, in response to the BRAF-MAPK, Wnt-beta-catenin, Hippo-YAP, IL-6-Stat3, and other major oncogenic pathways. In vitro functional analyses, validated in onco-mouse models and corroborated by prognostic correlations, show that Fra-1-containing dimers control tumor growth and disease progression. Fra-1 participates in key mechanisms of cancer cell invasion, Epithelial-to-Mesenchymal Transition, and metastatic spreading, by driving the expression of EMT-inducing transcription factors, cytokines, and microRNAs. Here we survey various strategies aimed at inhibiting tumor growth, metastatic dissemination, and drug resistance by interfering with Fra-1 expression, stability, and transcriptional activity. We summarize several tools aimed at the design and tumor-specific delivery of Fra-1/AP-1-specific drugs. Along with RNA-based therapeutics targeting the FOSL1 gene, its mRNA, or cognate regulatory circRNAs, we will examine the exploitation of blocking peptides, small molecule inhibitors, and innovative Fra-1 protein degraders. We also consider the possible caveats concerning Fra-1 inhibition in specific therapeutic contexts. Finally, we discuss a recent suicide gene therapy-based approach, aimed at selectively killing the Fra-1-overexpressing neoplastic cells.

8.
Exp Ther Med ; 22(6): 1474, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34737814

RESUMEN

Acute respiratory distress syndrome (ARDS) is a multifactorial syndrome that leads to increased morbidity and mortality in infants and children. The identification of novel biomarkers is critical for the treatment of ARDS. The present study aimed to investigate the effects of chitinase-3-like-1 protein (CHI3L1 or YKL-40) in an in vitro model of ARDS and to explore the potential underlying mechanisms. The in vitro model of ARDS was established in A549 alveolar epithelial type II cells, which were treated by lipopolysaccharide (LPS) to induce inflammation. Transfection was performed to alter YKL-40 expression. The mRNA and protein expression of YKL-40 was determined using reverse transcription-quantitative PCR and western blotting, respectively. Cell Counting Kit-8 and TUNEL assays were used to evaluate the cell viability and apoptosis, respectively. The production of cytokines was evaluated using specific ELISA kits. The relationship between YKL-40 and Fos-related antigen 1 (Fra-1) was verified using luciferase reporter and chromatin immunoprecipitation assays. The expression of the apoptotic proteins was detected using western blotting. The expression levels of YKL-40 and Fra-1 were increased in LPS-treated A549 cells. Higher levels of pro-inflammatory cytokines and induction of cell apoptosis were observed in LPS-treated A549 cells compared with the control. YKL-40 knockdown in LPS-treated A549 cells significantly decreased the production of pro-inflammatory cytokines and reduced cell apoptosis, whereas it concomitantly caused upregulation of Bax and downregulation of Bcl-2, cleaved caspase-3 and cleaved caspase-9. In addition, Fra-1 could directly bind to YKL-40 promoter and regulate its expression level. Overexpression of YKL-40 partly decreased the inhibitory effects of Fra-1 knockdown on the inflammatory response and induction of apoptosis. In summary, the findings from the present study indicated that Fra-1 could bind to YKL-40 and regulate its expression, whereas YKL-40 knockdown could further suppress LPS-induced inflammatory response and apoptosis in A549 cells. These data may provide novel evidence on the diagnosis and therapy of ARDS.

9.
Front Immunol ; 8: 1793, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29326694

RESUMEN

Dysfunction of T helper 17 (Th17) cells leads to chronic inflammatory disorders. Signal transducer and activator of transcription 3 (STAT3) orchestrates the expression of proinflammatory cytokines and pathogenic cell differentiation from interleukin (IL)-17-producing Th17 cells. However, the pathways mediated by STAT3 signaling are not fully understood. Here, we observed that Fos-related antigen 1 (FRA1) and JUNB are directly involved in STAT3 binding to sites in the promoters of Fosl1 and Junb. Promoter binding increased expression of IL-17 and the development of Th17 cells. Overexpression of Fra1 and Junb in mice resulted in susceptibility to collagen-induced arthritis and an increase in Th17 cell numbers and inflammatory cytokine production. In patients with rheumatoid arthritis, FRA1 and JUNB were colocalized with STAT3 in the inflamed synovium. These observations suggest that FRA1 and JUNB are associated closely with STAT3 activation, and that this activation leads to Th17 cell differentiation in autoimmune diseases and inflammation.

10.
Oncol Lett ; 13(5): 2903-2908, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28521396

RESUMEN

A reduced incidence and decreased clinical progression of uterine cervical intraepithelial neoplasia (CIN) has been observed in women infected with human immunodeficiency virus (HIV) treated with HIV-protease inhibitors (PIs). The HIV-PIs saquinavir (SQV) and ritonavir (RTV) have been demonstrated to efficiently inhibit invasion of human primary CIN cells by downregulating the expression of matrix metalloproteinase (MMP)-9. The present study further investigated the molecular mechanisms underlying the activity of SQV and RTV in CIN. The results of the present study indicate that the treatment of human primary CIN cells with SQV or RTV directly impairs events leading to MMP-9 expression, including the phosphorylation of AKT and the nuclear localisation of the Fos-related antigen transcription factor. In addition, neither SQV nor RTV affected the expression of human papilloma virus proteins, such as E6 or E7. In view of the important role that the AKT/Fra-1/MMP-9 signalling pathway serves in CIN progression to invasive cervical carcinoma, these data further support the use of HIV-PIs in the treatment of CIN in women infected with HIV and women who are not infected with HIV. Furthermore, the present study identified a molecular mechanism underlying the anti-invasive effects of SQV/RTV, providing useful information for the development of SQV/RTV derivatives, which may be employed as novel anticancer drugs.

11.
Onco Targets Ther ; 9: 6597-6604, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27822064

RESUMEN

OBJECTIVE: MicroRNAs have key roles in tumor metastasis. The acquisition of metastatic capability by cancer cells is associated with epithelial-mesenchymal transition (EMT). Here, we describe the role and molecular mechanism of miR-497 in colorectal cancer (CRC) cell EMT, migration, and invasion. METHODS: Quantitative real-time polymerase chain reaction and Western blot assays were performed to detect the expression levels of miR-497 and Fos-related antigen-1 (Fra-1) in the CRC cells. HCT116 and SW480 cells with miR-497 overexpression or Fra-1 low expression were constructed by lipofection. Target prediction and luciferase reporter assays were performed to investigate whether Fra-1 is one of the targets of miR-497. Western blot and Transwell assays were performed to detect the effects of miR-497 and Fra-1 on CRC cell EMT, migration and invasion. RESULTS: We searched the miRanda, TargetScan, and PicTar databases and found that Fra-1, a key driver of CRC metastasis, is a potential target of miR-497. Quantitative real-time polymerase chain reaction and Western blot analysis verified downregulation of miR-497 and upregulation of Fra-1 in CRC cells. Western blot and Transwell assays showed that overexpression of miR-497 suppresses CRC cell EMT, migration, and invasion. Luciferase gene reporter assay revealed that Fra-1 is a downstream target of miR-497 as miR-497 bound directly to the 3' untranslated region of Fra-1 messenger RNA. An inverse correlation was also found between miR-497 and Fra-1 in HCT116 and SW480 cells. Furthermore, knockdown of Fra-1 recuperated the effects of miR-497 overexpression. CONCLUSION: miR-497 suppresses CRC cell EMT, migration, and invasion partly by targeting Fra-1.

12.
J Am Coll Cardiol ; 62(25): 2422-2430, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24013056

RESUMEN

OBJECTIVES: This study sought to investigate whether selective ablation of the carotid body (CB) chemoreceptors improves cardiorespiratory control and survival during heart failure. BACKGROUND: Chronic heart failure (CHF) is a recognized health problem worldwide, and novel treatments are needed to better improve life quality and decrease mortality. Enhanced carotid chemoreflex drive from the CB is thought to contribute significantly to autonomic dysfunction, abnormal breathing patterns, and increased mortality in heart failure. METHODS: Chronic heart failure was induced by coronary ligation in rats. Selective CB denervation was performed to remove carotid chemoreflex drive in the CHF state (16 weeks post-myocardial infarction). Indexes of autonomic and respiratory function were assessed in CB intact and CB denervated animals. CB denervation at 2 weeks post-myocardial infarction was performed to evaluate whether early targeted CB ablation decreases the progression of left ventricular dysfunction, cardiac remodeling, and arrhythmic episodes and improves survival. RESULTS: The CHF rats developed increased CB chemoreflex drive and chronic central pre-sympathetic neuronal activation, increased indexes of elevated sympathetic outflow, increased breathing variability and apnea incidence, and desensitization of the baroreflex. Selective CB ablation reduced the central pre-sympathetic neuronal activation by 40%, normalized indexes of sympathetic outflow and baroreflex sensitivity, and reduced the incidence of apneas in CHF animals from 16.8 ± 1.8 events/h to 8.0 ± 1.4 events/h. Remarkably, when CB ablation was performed early, cardiac remodeling, deterioration of left ventricle ejection fraction, and cardiac arrhythmias were reduced. Most importantly, the rats that underwent early CB ablation exhibited an 85% survival rate compared with 45% survival in CHF rats without the intervention. CONCLUSIONS: Carotid chemoreceptors play a seminal role in the pathogenesis of heart failure, and their targeted ablation might be of therapeutic value to reduce cardiorespiratory dysfunction and improve survival during CHF.


Asunto(s)
Presión Sanguínea/fisiología , Cuerpo Carotídeo/fisiología , Ablación por Catéter , Células Quimiorreceptoras/fisiología , Insuficiencia Cardíaca/fisiopatología , Mecánica Respiratoria/fisiología , Animales , Ablación por Catéter/métodos , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/cirugía , Frecuencia Cardíaca/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Tasa de Supervivencia/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA